
Solving the Multi-objective Quadratic Assignment Problem Using a fast messy
Genetic Algorithm

Richard O. Day, Mark P. Kleeman, Gary B. Lamont
Department of Electrical and Computer Engineering

Air Force Institute of Technology
Wright Patterson Air Force Base, Dayton, OH 45433

Abstract- The multi-objective quadratic assignment
problem is an NP-complete problem with a multitude
of real-world applications. The specific application ad-
dressed in this paper is the minimization of communica-
tion flows in a heterogenous mix of unmanned aerial ve-
hicles. Developed is a multi-objective approach to solv-
ing the general mQAP for this UAV application. The
combinatoric nature of this problem calls for a stochas-
tic search algorithm; moreover, the Multi-Objective fast
messy Genetic Algorithm (MOMGA-II) [22] is used for
experimentation. Results indicate that much of the
Pareto optimal points are found.

1 Introduction

The multi-objective quadratic assignment problem (mQAP)
is an NP-complete problem. In this paper the mQAP is
mapped to a heterogenous mix of unmanned aerial vehi-
cles (UAVs). Our model concentrates on minimizing com-
munication flow and maximize mission success by posi-
tioning UAVs in a selected position within a strict forma-
tion. MQAP experiments are conducted using the our multi-
objective evolutionary algorithm (MOEA), Multi-Objective
Messy Genetic Algorithm - II (MOMGA-II). Solutions are
then compared to a deterministic results (were applicable).
Section II of the paper covers the problem description in
great length. Section III contains a brief discussion of
Evolutionary Algorithms (EAs) including the fast messy
Genetic Algorithms (fmGAs). Section III also contains
a discussion of MOEAs focusing in particular on the the
MOMGA-II. Section IV contains design of experiments and
section V presents the results and analysis.

2 General QAP Description

Currently, the Air Force uses the unmanned Aerial vehicles
(UAVs) Predator and Global Hawk for reconnaissance mis-
sions over the field of battle. They have a goal right now for
UAVs to perform suppression of enemy air defense (SEAD)
missions by the year 2010 with the unmanned combat aerial
vehicle (UCAV)[4]. In the future, they are looking to have
UAVs, flying in large groups, play a bigger role in the air.
One possible scenario is to have a heterogenous group of
UAVs flying together to meet an objective. There could be

†The views expressed in this article are those of the authors and do not
reflect the official policy of the United States Air Force, Department of
Defense, or the U.S. Government. The authors also wish to acknowledge
the following individuals: Jesse Zydallis for the use of his MOMGA-II
code, Todd Hack and Justin Kautz for all the hard work and effort they put
forth in supporting these experiments.

some in the group that are doing reconnaissance and report-
ing the information to the UCAV, whose goal is to take out
a target when it is located by one of the other UAVs. There
could also be fighter UAVs, whose job is to defend the group
of UAVs from enemy aircraft.

In a large heterogenous group, such as this one, your po-
sition with respect to the other UAVs is important. For ex-
ample, it would be best to place fighter UAVs around the
outside of the group in order to protect the group as a whole
from enemy aircraft. It would also be advantageous to have
the reconnaissance planes nearer to the ground in order to
allow them to have an unobstructed field of view.

While location in the formation for their particular part
of the mission is important, they also need to be in a po-
sition where they can communicate effectively with other
UAVs. For example, the reconnaissance UAVs need to com-
municate coordinates to the UCAVs, to enable them to find
their target. The fighter UAVs need to communicate with all
of the other UAVs when they sense approaching enemy air-
craft, so that the group can take evasive action. And UCAVs
need to communicate when they have no munitions left. All
of these flows of communication can also dictate where the
best location in the group may be for each UAV.

This UAV communication and mission success problem
is a natural extension of the mQAP. The mQAP comes from
the quadratic assignment problem (QAP) and was intro-
duced by Knowles and Corne [13]. The scalar quadratic
assignment problem was introduced in 1957 by Koopmans
and Beckmann. They used it to model a plant location
problem[3]. It is defined where you have a fixed number
of locations where each location is a fixed distance apart
from one another. You also have the same number of fixed
objects that need to be put into each location. Each object
has a fixed flow to each of the other objects. The goal of the
QAP is to find the best placement of the objects into the lo-
cations such that the product of the distances and flows are
minimized. Mathematically, this is defined in Equation 1.

minC(π) =
min

π∈P (n)

n∑

i=1

n∑

j=1

aijbπiπj
(1)

where n is the number of objects/locations, aij is the dis-
tance between location i and location j, bij is the flow from
object i to object j, and πi gives the location of object i

in permutation π ∈ P (n) where P (n) is the QAP search
space, which is the set of all permutations of {1, 2, . . . , n}
[14]. This problem is not only NP-hard and NP-hard to ap-
proximate, but is almost intractable. It is generally consid-
ered to be impossible to solve optimally any QAP that has
20 instances or more within a reasonable time frame [3, 19].

The mQAP is similar to the scalar QAP, with the ex-

ception that there are multiple types of fl ows coming from
each object. For example, the UAVs may use one communi-
cation channel for passing reconnaissance information, an-
other channel for target information, and yet another chan-
nel for status messages. So the goal is to minimize all the
communication fl ows between the UAVs. The mQAP is de-
fined in mathematical terms in Equations 2 and 3

minimize{C(π)} = {C1(π), C2(π), . . . , Cm(π)} (2)

Ck(π) =
min

π∈P (n)

n∑

i=1

n∑

j=1

aijb
k
πiπj

, k ∈ 1..m (3)

and where n is the number of objects/locations, aij is the
distance between location i and location j, bk

ij is the kth
fl ow from object i to object j, πi gives the location of object
i in permutation π ∈ P (n), and ’minimize’ means to obtain
the Pareto front [14].

There has been a lot of work done with respect to the fit-
ness landscape of QAP instances. Knowles and Corne [14]
have enumerated two measurements, diameter and entropy,
that they use as mQAP metrics. They use the diameter of the
population as it is defined by Bachelet [1] which is shown
in Equation 4:

dmm(P) =

∑
π∈P

∑
µ∈P dist(π, µ)

|P |2
(4)

where dist(π, µ) is a distance measurement that measures
the smallest number of two-swaps that need to be performed
in order to transform one solution, π, into another solution,
µ. The distance measure has a range of [0, n − 1].

The entropy measurement, which measures the disper-
sion of the solutions, is shown in Equation 5

ent(P) =
−1

nlogn

n∑

i=1

n∑

j=1

(
nij

|P |
log

nij

|P |
) (5)

where nij is a measure of the number of times object i is
assigned to the j location in the population.

Many approaches have been tried to solve the QAP. Re-
searchers interested in finding the optimal solution can usu-
ally only do so for problems that are of size 20 or less.
And even problem sizes of 15 are considered to be diffi-
cult [3]. But when it is feasible to find the optimal solu-
tion, branch and bound methods are typically used [7, 20, 3].
But since many real-world problems are larger than 20 in-
stances, other methods need to be employed in order to find
a good solution in a reasonable amount of time. The use of
Ant Colonies has been explored and has been found to do
fairly well when compared to other some of the best heuris-
tics available for the QAP [5, 11, 16]. Evolutionary algo-
rithms have also been applied many times [17, 15, 10, 18].
Several researchers have compared the performance of dif-
ferent search methods [21, 9].

The goal of this research is to see how effective a fast
messy GA can be at solving the mQAP using a serial version
of the MOMGA-II.

3 MOMGA-II Software Design

This section develops an understanding of the MOMGA-II
and describes its growth from being a single objective EA
(namely the messy GA).

3.1 Multi-Objective Evolutionary Algorithms (MOEAs)

Evolutionary algorithms (EA) include genetic algorithms,
evolution strategies, evolutionary programming, and genetic
programming. EAs are a class of algorithms that use the
concepts of genetics to help enable them to explore the
search landscape. In an EA a collection of an individu-
als traits are known as chromosomes. A group of chromo-
somes is defined as a population. Chromosomes consist of
cells in which various data types can reside; binary, integer,
real-valued. These individual chromosome allele values are
manipulated by EA operators. Thus, the population moves
through generations by using genetic operators such as mu-
tation and recombination. Mutation works by inserting new
genetic material into the population by modifying allele val-
ues, recombination by transferring preexisting genetic ma-
terial or allele values between two or more individuals of the
population. There are many varieties of genetic operators,
each with a different set of parameters that may be modified
given a particular EA type [2]. The transition to MOEAs
focuses on the phenotype domain with multiple objectives
or fitness functions. The genotype domain is essentially the
same with each individual chromosome evaluated for each
fitness function. In order to understand the structure of the
specific MOEA, the MOMGA-II, a single-objective GA re-
ferred to as the fast messy GA is discussed.

3.2 Fast Messy GA Structure (fmGA)

In fmGAs, the length is variable. This is because the fmGA
allows for over-specification (and under-specification). The
reason for the difference is that in a GA, the location of
an allele in a chromosome is defined to mean something,
but in a fmGA, the allele contains both the value and the
location that the value belongs to in the chromosome. So
a chromosome can have more than one value listed for the
same location. This is called over-specification. The way
this is usually resolved is that the first value that is listed for
a location is the value used. Under-specified chromosomes
don’t have all of the locations covered with allele values. In
that case, the values are placed onto a master template which
has a value assigned for all locations. Then, the template
values will replace the missing allele values.

Regarding population, a messy GA is different in that the
entire set of possible solutions is represented in the initial
population. Since this could be a potentially time consum-
ing task, the fmGA was invented by Goldberg et. al., that
only uses a probabilistic subset of all possible solutions in
the initial population. Of course, the desire is to generate
good building blocks from generation to generation per the
Schema Theorem [8].

The operators most commonly used in EAs are crossover
and mutation. Crossover is usually the major operator for
GAs and mutation is a minor operator. Crossover is done by

picking a point or series of points on two selected chromo-
somes, usually called parents. Then the values are swapped
between each of the parents to create two new children. For
an fmGA, this operator is replaced by one called the cut-
and-splice operator. It does basically the same thing, ex-
cept that it picks random points for each of the parents for
the cutting, versus the same random point for both chromo-
somes. This is needed because of the variable chromosome
size.

Mutation is where a point in the chromosome is changed
based on the mutation probability. This value is usually
quite low. It is used to add new allele combinations to the
chromosome.

The selection operator is used to determine which indi-
viduals in the population will become parents and/or which
individuals will advance to the next generation. There are
a number of selection operators that can be used such as
rank selection, proportional selection, and tournament se-
lection to name a few. Each of these has their merits and
are best used when matched closely with other particulars
of the problem.

3.3 General Multi-Objective Problem (MOP)

A multi-objective optimization problem (MOP) consists of
decision variables, two or more objective functions, and
constraints. These three components of an MOP are de-
cision variables., objective function: and constraints. Stan-
dard MOP and MOEA definitions and nomenclature can be
found in (Coello Coello et al., 2002). Such symbolic for-
mulation includes feasible regions in objective space, feasi-
ble solutions, solution dominance and non-dominance, true
and approximate Pareto optimal solutions P*/ Pknown and
Pareto front PF*/ PFknown, fitness sharing, niche count,
sharing function, mating restrictions, ranking and the re-
quired evolutionary algorithm characteristics. The goal of
a Pareto-based MOEA is convergence of PFknown towards
PF*. MOEAs operate on a population of candidate solutions
(chromosomes) as opposed to a single solution; therefore,
the strength of an MOEA is its ability to uncover multiple
nondominated solutions (Pknown). The QAP is the MOP of
interest in this paper.

3.4 MOMGA-II

The Multi-Objective Messy Genetic Algorithm - II
(MOMGA-II) program is based on the concept of the Build-
ing Block Hypothesis (BBH). The MOMGA implements
a deterministic process to generate an enumeration of all
possible BBs, of a user specified size, for the initial pop-
ulation. This process is referred to as Partially Enumera-
tive Initialization (PEI). Thus, the MOMGA explicitly uses
these building blocks in combination to attempt to solve for
the optimal solutions in multiobjective problems.

The original messy GA consists of three distinct phases:
Initialization Phase, Primordial Phase, Juxtapositional
Phase. The MOMGA uses these concepts and extends them
where necessary to handle k > 1 objective functions. In
the initialization phase, the MOMGA produces all building

blocks of a user specified size.
The primordial phase performs tournament selection on

the population and reduces the population size if necessary.
The population size is adjusted based on the percentage of
“high” fitness BBs that exist. In some cases, the “lower”
fitness BBs may be removed from the population to increase
this percentage.

In the juxtapositional phase, BBs are combined through
the use of a cut and splice recombination operator. Cut
and splice is a recombination (crossover) operator used with
variable string length chromosomes. The cut and splice
operator is used with tournament thresholding selection to
generate the next population.

The main bottleneck in the mGA and the MOMGA is the
initialization phase. This phase requires the enumeration of
every possible BB, of user specified size.

Table 1: Test Suite used - Knowles and Corne
Test Name Instance # of # of

Category locations fl ows

KC10-2fl -1uni Uniform 10 2
KC10-2fl -2uni Uniform 10 2
KC10-2fl -3uni Uniform 10 2
KC20-2fl -1uni Uniform 20 2
KC20-2fl -2uni Uniform 20 2
KC20-2fl -3uni Uniform 20 2
KC30-3fl -1uni Uniform 30 3
KC30-3fl -2uni Uniform 30 3
KC30-3fl -3uni Uniform 30 3
KC10-2fl -1rl Real-like 10 2
KC10-2fl -2rl Real-like 10 2
KC10-2fl -3rl Real-like 10 2
KC10-2fl -4rl Real-like 10 2
KC10-2fl -5rl Real-like 10 2
KC20-2fl -1rl Real-like 20 2
KC20-2fl -2rl Real-like 20 2
KC20-2fl -3rl Real-like 20 2
KC20-2fl -4rl Real-like 20 2
KC20-2fl -5rl Real-like 20 2
KC30-3fl -1rl Real-like 30 3
KC30-3fl -2rl Real-like 30 3
KC30-3fl -3rl Real-like 30 3

A probabilistic approach is used in initializing the pop-
ulation of the fmGA. The approach is referred to as Prob-
abilistically Complete Initialization (PCI) [6]. PCI initial-
izes the population by creating a controlled number of BBs
based on the user specified BB size and string length. The
fmGA’s initial population size is smaller than the mGA (and
MOMGA by extension) and grows at a smaller rate as a
total enumeration of all BBs of size o is not necessary.
These BBs are then “filtered,” through a Building Block
Filtering (BBF) phase, to probabilistically ensure that all
of the desired good BBs from the initial population are re-
tained in the population. The BBF approach effectively re-
duces the computational bottlenecks encountered with PEI
through reducing the initial population size required to ob-

Table 2: Population sizes for N facilities and locations
Population by (N) # of Generations by (N)

Era (10) (20) (30) (10) (20) (30)

1 403 401 400 300 100 300
2 413 405 402 20 100 20
3 430 411 405 20 100 20
4 455 419 408 20 100 20
5 491 431 413 20 100 20
6 553 458 431 20 100 20
7 601 464 427 20 100 20
8 685 487 436 20 100 20
9 794 514 447 20 100 20

10 937 546 458 20 100 20

Table 3: MOMGA-II settings
Variable Setting used

GA-type fast messy GA
Number of eras 10

Population representation Binary
Number of bits per facility 10 bits

Splice Probablility 1.00
Cut Probability 0.02

Allelic Mutation Probability 0.00
Genic Mutation Probability 0.00

Thresholding No
Tiebreaking No

tain “ good” statistical results. The fmGA concludes by ex-
ecuting a number of juxtapositional phase generations in
which the BBs are recombined to create strings of poten-
tially better fitness.

The MOMGA-II mirrors the fmGA and consists of the
following phases: Initialization, Building Block Filtering,
and Juxtapositional. The MOMGA-II differs from the
MOMGA in the Initialization and Primordial phase, which
is referred to as the Building Block Filtering phase. The
initialization phase of the MOMGA-II uses PCI instead of
the PEI implementation used in the MOMGA and randomly
creates the initial population.

The application of an MOEA to a class of MOP contain-
ing few feasible points creates difficulties that an MOEA
must surpass in order to generate any feasible points
throughout the search process. A random initialization of
an MOEA’s population may not generate any feasible points
in a constrained MOP. Without any feasible solutions in the
population, one must question whether or not the MOEA
can even conduct a worthwhile search. In problems where
the feasible region is greatly restricted, it may be impossi-
ble to create a complete initial population of feasible so-
lutions randomly. Without feasible population members,
any MOEA is destined to fail. Feasible population mem-
bers contain the BBs necessary to generate good solutions.
It is possible for an infeasible population member to con-
tain a BB that is also present in a feasible solution. As it is
also possible for mutation to generate a feasible population
member from a infeasible population member. However,

2 2.5 3 3.5 4 4.5 5 5.5

x 10
6

2.5

3

3.5

4

4.5

5

5.5

x 10
6

Objective 1

O
bj

ec
tiv

e
2

KC10−2fl−1rl diameter =5.4958 entropy = 0.61196

Exhaustive Search # PO = 58
FMGA Search # PO = 45

Figure 1: Pareto front found for the KC10-2fl -1rl test in-
stance

typically feasible population members contain BBs that are
not present in infeasible population members. EVOPs ap-
plied to feasible members tend to yield better results than
EVOPs applied to infeasible population members. There-
fore, it is critical to initialize and maintain a population of
feasible individuals.

4 Design of Experiments and Testing

We wanted to compare our results with other programs that
have solved the mQAP. In order to do this, we needed to use
some sort of benchmark data set that we could compare.
We chose to use the test suite created by Knowles [12]. See
table 1 for a detailed parameter description of the test suite
problems.

3 4 5 6 7 8 9 10

x 10
6

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
7

Objective 1

O
bj

ec
tiv

e
2

KC10−2fl−5rl diameter =5.2845 entropy = 0.57271

Exhaustive Search # PO = 49
FMGA Search # PO = 45

Figure 2: Pareto front found for the KC10-2fl -5rl test in-
stance

The results of the MOMGA-II as applied to the QAP
MOP using the default parameter settings for the MOMGA-
II are presented in Table 3. The population size and num-
ber of generations run in each era for 10 facilities and 10
locations is shown in table 2. For 20 locations and 20 fa-
cilities are shown in table 2. And the population for the 30
facilities and 30 locations is shown in table 2. These popu-

Table 4: Comparison of Results
Knowles Results Our Results

Test Name # of pareto points Diameter Entropy # of pareto points Diameter Entropy

KC10-2fl -1uni 27 7 0.71 13 5 0.66
KC10-2fl -2uni 4 6 0.39 1 0 0
KC10-2fl -3uni 135 8 0.78 118 6 0.87
KC20-2fl -1uni 80 15 0.828 24 11 0.82
KC20-2fl -2uni 19 14 0.43 538 15 1.48
KC20-2fl -3uni 178 16 0.90 51 12 0.92
KC30-3fl -1uni 705 24 0.97 126 20 0.50
KC30-3fl -2uni 168 22 0.92 58 22 0.64
KC30-3fl -3uni 1257 24 0.96 155 20 0.56
KC10-2fl -1rl 38 8 0.68 44 5 0.69
KC10-2fl -2rl 17 7 0.49 10 5 0.56
KC10-2fl -3rl 58 8 0.62 36 6 0.71
KC10-2fl -4rl 33 8 0.58 34 4 0.53
KC10-2fl -5rl 48 8 0.63 45 6 0.69
KC20-2fl -1rl 541 15 0.63 17 12 0.73
KC20-2fl -2rl 842 14 0.6 12 11 0.76
KC20-2fl -3rl 1587 15 0.66 29 12 0.91
KC20-2fl -4rl 1217 15 0.51 25 10 0.18
KC20-2fl -5rl 966 15 0.56
KC30-3fl -1rl 1329 24 0.83 191 24 0.79
KC30-3fl -2rl 1924 24 0.86 183 24 0.77
KC30-3fl -3rl 1906 24 0.86

2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65

x 10
7

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

x 10
7

Objective 1

O
bj

ec
tiv

e
2

KC20−2fl−1rl diameter =11.5986 entropy = 0.73083

Total Pareto Front point found = 17

Figure 3: Pareto front found for the KC20-2fl -1rl test in-
stance

lation values were created using the Probabilisitically Com-
plete Initialization method referred to earlier in the paper.
The MOMGA-II results are taken over 30 data runs. The
MOMGA-II was run on a Beowulf PC cluster consisting of
32 dual-processor machines, each with 1-GB memory and
two 1-GHz Pentium III processors (using Redhat LINUX
version 7.3 and MPI version 1.2.7.1).

We first ran the MOMGA-II code in order to gener-
ate a population with good (low) fitness values for the
fl ows. Next, we ran another program called pareto enum
that pulled out all of the unique pareto front points. Some
of the data we generated was rather large, so we had to split

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5

x 10
7

5.5

6

6.5

7

7.5

8

8.5

9

9.5

x 10
6

Objective 1

O
bj

ec
tiv

e
2

KC20−2fl−4rl diameter =10.3936 entropy = 0.18458

Total Pareto Front point found = 25

Figure 4: Pareto front found for the KC20-2fl -4rl test in-
stance

it into smaller sets in order to run the pareto enum program
and avoid running out of memory. After we had the unique
pareto points for each of our runs. We we then combined the
results, one at a time, and used pareto enum to pull out the
unique pareto points for each round. We then wrote a simple
Matlab program that showed how our data values improved
as more runs were run.

The 30 location and 30 facility instances produced the
most interesting 3-d pareto fronts, as can be seen in Fig-
ure 7. Once again we generated far fewer points than the
benchmark.

1.4
1.6

1.8
2

2.2
2.4

2.6

x 10
7

7

8

9

10

11

12

x 10
6

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

x 10
7

Objective 1

KC10−2fl−2rl diameter =24.2802 entropy = 0.77536

Objective 2

O
bj

ec
tiv

e
3

Total Pareto Front point found = 183

Figure 5: Pareto front found for the KC30-3fl -2rl test in-
stance

2

2.05

2.1

2.15

x 10
6

2

2.05

2.1

x 10
6

1.98

2

2.02

2.04

2.06

2.08

2.1

x 10
6

Objective 1

KC10−3fl−2uni diameter =22.333 entropy = 0.63951

Objective 2

O
bj

ec
tiv

e
3 Total Pareto Front point found = 57

Figure 6: Pareto front found for the KC30-3fl -2uni test in-
stance

5 Analysis

Table 4 compares our results to those found by Knowles
and Corne [14]. For all of the instances with 10 locations
and 10 facilities, they were able to find the pareto optimal
points using an exhaustive search. For the instances with
20 locations and 20 facilities, they employed local search
measures which employed 1000 local searches from each
of the 100 different λ vectors. For the instances with 30
locations and 30 facilities, they employed a similar local
search measure which used 1000 local searches from each
of the 105 different λ vectors [13].

By comparing our results for the 10 locations with 10 fa-
cilities instances, we see that our results did not equal the
results for the pareto optimal. While we don’t know the ac-
tual values found by Knowles and Corne, we do know that
the number of points we generated along the pareto front do
not match the numbers Knowles and Corne came up with.
This tells us that our present implementation is not able to
discern the best points on small instances. In order to im-
prove our results we need to look at our settings and tweak
them in order to overcome possible premature convergence.
We would also like to determine the exact pareto optimal
points and compare them with our results in order to see

2
2.05

2.1
2.15

2.2
2.25

x 10
6

2.05

2.1

2.15

2.2

2.25

2.3

x 10
6

2.1

2.15

2.2

2.25

2.3

2.35

x 10
6

Objective 1

KC10−3fl−3uni diameter =20.434 entropy = 0.56205

Objective 2

O
bj

ec
tiv

e
3

Total Pareto Front point found = 155

Figure 7: Pareto front found for the KC30-3fl -3uni test in-
stance

exactly how close we are to pareto true.
We were able to see the pareto front advancing as the

number of runs we ran increased. Unfortunately, we didn’t
generate enough members in our population in order to fully
populate the front. See the various graphs from Figure 1 to
Figure 2 to see the pareto front we found for the 10 location
test instances.

Our 20 location and 20 facility results also show that we
too few members on the pareto front compared to Knowles
and Cornes test results. Once again, we feel that this is due
to improper sizing of our building blocks and requires some
tweaking to the MOMGA-II parameters. We can make no
real conclusion about the entropy results we received, but
it does appear that our diameter was almost always smaller
than our benchmark. We believe that once we fix our build-
ing block size, we will also bring the diameter more in-line
with the benchmark results. See Figures 3 to 4 for a visual
display of the pareto front we found.

Future work includes cleaning up our code and remov-
ing some inefficiencies that we have uncovered. We also
want to tweak our code and adjust our building block size
in order to improve our results. We would also like to imple-
ment the code in parallel and see how much faster it will run
compared the serial implementation we ran for this paper.

6 Conclusion

The mQAP is a very difficult problem to solve determinis-
tically for problem sizes greater than 20. Even stochastic
algorithms will take a while to get an answer for a large
number of locations, simply because the solution space is
so large, with a complexity of O(n!). It’s imperative to en-
sure that the proper building block size is used in order to
populate the pareto front with enough members to get as
close to pareto true as possible.

Bibliography

[1] Vincent Bachelet. Métaheuristiques Parallèles
Hybrides: Application au Problème D’affectation

Quadratique. PhD thesis, Université des Sciences et
Technologies de Lille, December 1999.

[2] Thomas A. Bäck. Evolutionary Algorithms in Theory
and Practice. Oxford University Press, New York -
Oxford, 1996.

[3] Eranda Çela. The Quadratic Assignment Problem -
Theory and Algorithms. Kluwer Academic Publishers,
Boston, MA, 1998.

[4] DARPA. Darpa and air force select boeing
to build ucav demonstrator system. 10 June
2003 http://www.defenselink.mil/news/
Mar1999/b03241999_bt123-99.html.

[5] L. M. Gambardella, E. D. Taillard, and M. Dorigo. Ant
colonies for the quadratic assignment problems. Jour-
nal of the Operational Research Society, 50:167–176,
1999.

[6] David E. Goldberg, Kalyanmoy Deb, Hillol Kargupta,
and Georges Harik. Rapid, accurate optimization
of difficult problems using fast messy genetic algo-
rithms. In Stephanie Forrest, editor, Proceedings of
the Fifth International Conference on Genetic Algo-
rithms, pages 56–64. Morgan Kauffmann Publishers,
1993.

[7] Peter Hahn, Nat Hall, and Thomas Grant. A branch-
and bound algorithm for the quadratic assignment
problem based on the hungarian method. European
Journal of Operational Research, August 1998.

[8] John H. Holland, Keith J. Holyoak, Richard E. Nisbett,
and Paul R. Thagard. Induction: processes of infer-
ence, learning and discovery. Computational models
of cognition and perception. MIT Press, Cambridge,
1986.

[9] IEEE. A comparison of memetic algorithms, tabu
search, and ant colonies for the quadratic assignment
problem, volume 3. IEEE, 1999.

[10] IEEE. Resolution of quadratic assignment problems
using an evolutionary algorithm, volume 2. IEEE,
2000.

[11] IEEE. Multiple Ant-Colony Optimization for Network
Routing, volume 2241. IEEE, 2002.

[12] Joshua Knowles and David Corne. Instance generators
and test suites for the multiobjective quadratic assign-
ment problem. Technical Report TR/IRIDIA/2002-25,
IRIDIA, 2002. (Accepted for presentation/publication
at the 2003 Evolutionary Multi-criterion Optimization
Conference (EMO-2003)), Faro, Portugal.

[13] Joshua Knowles and David Corne. Towards Land-
scape Analyses to Inform the Design of Hybrid Lo-
cal Search for the Multiobjective Quadratic Assign-
ment Problem. In A. Abraham, J. Ruiz del Solar, and
M. Koppen, editors, Soft Computing Systems: Design,

Management and Applications, pages 271–279, Ams-
terdam, 2002. IOS Press. ISBN 1-58603-297-6.

[14] Joshua Knowles and David Corne. Instance genera-
tors and test suites for the multiobjective quadratic as-
signment problem. In Carlos Fonseca, Peter Fleming,
Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele,
editors, Evolutionary Multi-Criterion Optimization,
Second International Conference, EMO 2003, Faro,
Portugal, April 2003, Proceedings, number 2632 in
LNCS, pages 295–310. Springer, 2003.

[15] In Lee, Riyaz Sikora, and Michael J. Shaw. A ge-
netic algorithm-based approach to fl exible fl ow-line
scheduling with variable lot sizes. IEEE Transactions
on Systems, Man and Cybernetics - Part B, 27:36–54,
February 1997.

[16] Vittorio Maniezzo and Alberto Colorni. The ant
system applied to the quadratic assignment problem.
IEEE Transactions on Knowledge and Data Engineer-
ing, 11:769–778, 1999.

[17] Peter Merz and Bernd Freisleben. Fitness landscape
analysis and memetic algorithms for the quadratic as-
signment problem. IEEE Transactions on Evolution-
ary Computation, 4:337–352, 2000.

[18] Volker Nissen. Solving the quadratic assignment prob-
lem with clues from nature. IEEE Transactions on
Neural Networks, 5:66–72, 1994.

[19] Panos M. Pardalos and Henry Wolkowicz. Quadratic
assignment and related problems. In Panos M. Parda-
los and Henry Wolkowicz, editors, Proceedings of the
DIMACS Workshop on Quadratic Assignment Prob-
lems, 1994.

[20] K. G. Ramakrishnan, M. G. C. RESENDE, and P. M.
PARDALOS. A branch and bound algorithm for the
quadratic assignment problem using a lower bound
based on linear programming. In C. Floudas and P. M.
PARDALOS, editors, State of the Art in Global Opti-
mization: Computational Methods and Applications.
Kluwer Academic Publishers, 1995.

[21] Eric D. Taillard. Comparison of iterative searches for
the quadratic assignment problem. Location science,
3:87–105, 1995.

[22] Jesse Zydallis. Explicit Building-Block Multiobjective
Genetic Algorithms: Theory, Analysis, and Develop-
ment. PhD thesis, Air Force Institute of Technology,
Wright Patterson AFB, OH, March 2003.

