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Abstract - After adequately demonstrating the
ability to solve different two-objective optimization
problems, multi-objective evolutionary algorithms
(MOEAs) must now show their efficacy in handling
problems having more than two objectives. In this
paper, we suggest three different approaches for sys-
tematically designing test problems for this purpose.
The simplicity of construction, scalability to any num-
ber of decision variables and objectives, knowledge
of exact shape and location of the resulting Pareto-
optimal front, and ability to control difficulties in
both converging to the true Pareto-optimal front and
maintaining a widely distributed set of solutions are
the main features of the suggested test problems. Be-
cause of these features, they should be found useful in
various research activities on MOEAs, such as testing
the performance of a new MOEA, comparing differ-
ent MOEAs, and having a better understanding of
the working principles of MOEAsSs.

I. Introduction

Most earlier studies on multi-objective evolutionary algo-
rithms (MOEAs) introduced test problems which were either
simple or not scalable. Some test problems were too compli-
cated to visualize the exact shape and location of the result-
ing Pareto-optimal front. Schaffer’s (1984) study introduced
two single-variable test problems (SCH1 and SCH2), which
have been widely used as test problems. Kursawe’s (1990)
test problem KUR was scalable to any number of decision
variables, but was not scalable in terms of the number of ob-
jectives. The same is true with Fonseca and Fleming’s (1995)
test problem FON. Poloni et al.’s (2000) test problem POL
used only two decision variables. Viennet’s (1996) test prob-
lem VNT has a discrete set of Pareto-optimal fronts, but was
designed for three objectives only. Similar shortcomings pre-
vail in the existing constrained test problems (Veldhuizen,
1999; Deb, 2001).

However, in 1999, the first author introduced a system-
atic procedure of designing test problems which are simple
to construct and are scalable to the number of decision vari-
ables (Deb, 1999). In these problems, the exact shape and
location of the Pareto-optimal solutions are also known. The
basic construction used two functionals g and h with non-
overlapping sets of decision variables to introduce difficulties
towards the convergence to the true Pareto-optimal front and
to introduce difficulties along the Pareto-optimal front for an
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MOEA to find a widely distributed set of solutions, respec-
tively. In the recent past, many MOEAs have adequately
demonstrated their ability to solve two-objective optimization
problems. With the suggestion of a number of such MOEAs,
it is time that they must be investigated for their ability to
solve problems with more than two objectives. In order to
help achieve such studies, it is therefore necessary to develop
scalable test problems with arbitrary number of objectives.
Besides testing an MOEA’s ability to solve problems with
many objectives, the proposed test problems can also be used
for systematically comparing two or more MOEAs.

In the remainder of the paper, we first describe the es-
sential features needed in a test problem and then suggest
three approaches for systematically designing test problems
for multi-objective optimization algorithms. Although most
problems are illustrated for three objectives (for an ease of
illustration), the test problems are generic and scalable to an
arbitrary number of objectives.

II. Desired Features of Test Problems

Here, we suggest that the following features must be
present in a test problem suite for adequately testing an
MOEA: (i) test problems should be easy to construct, (ii) test
problems should be scalable to have any number of decision
variables, (iii) test problems should be scalable to have any
number of objectives, (iv) the resulting Pareto-optimal front
(continuous or discrete) must be easy to comprehend, and
its shape and location should be exactly known, and (v) test
problems should introduce controllable hindrance to converge
to the true Pareto-optimal front and also to find a widely dis-
tributed set of Pareto-optimal solutions.

I11. Different Methods of Test Problem Design

We discuss a number of different ways to systematically de-
sign test problems for multi-objective optimization: (i) mul-
tiple single-objective functions approach, (ii) bottom-up ap-
proach, and (iii) constraint surface approach.

The first approach is the most intuitive one and has been
implicitly used by early MOEA researchers to construct test
problems. In this approach, M different single-objective func-
tions are used to construct a multi-objective test problem. To
simplify the construction procedure, in many cases, different
objective functions are simply used as different translations of
a single objective function. For example, the problem SCH1
uses the following two single-objective functions for minimiza-
tion (Schaffer, 1984): (i) fi(z) = z? (i) fo(z) = (z — 2)2.



Since the optimum z*D for f1 is not the optimum for fo
and vice versa, the Pareto-optimal set consists of more than
one solution, including the individual minimum of each of
the above functions. All other solutions which make trade-
offs between the two objective functions with themselves and
with the above two solutions become members of the Pareto-
optimal set. Veldhuizen (1999) lists a number of such test
problems. It is interesting to note that such a construction
procedure can be extended to higher-objective problems as
well (Laumanns, Rudolph, and Schwefel, 2001). Although
it may look simple, the resulting Pareto-optimal set may be
difficult to comprehend in such problems.

IV. Bottom-Up Approach

In this approach, a mathematical function describing the
Pareto-optimal front is assumed in the objective space and an
overall objective search space is constructed from this front to
define the test problem. Let us assume that we would like to
have a Pareto-optimal front where all objective functions take
non-negative values and the desired front is the first quadrant
of a sphere of radius one (as shown in Figure 1). With the
help of spherical coordinates (8, v, and r = 1), the front can
be described as follows:

fi6,7) = cosbeos(y+m/4),
f2(6’7) = cosGsin(’y+7r/4), (1)
f(6,7) = sin,

where 0<0<7/2, —w/4<~y<7/4

It is clear from the construction of the above surface that if
all three objective functions are minimized, any two points on
this surface are non-dominated to each other. Now, if the rest
of the objective search space is constructed above this surface,
we shall have a problem where the unit sphere constitutes the
Pareto-optimal front. A simple way to construct the rest of
the search space is to construct surfaces parallel to the above
surface. This can be achieved by multiplying the above three
functions with a term, which takes a value greater than or
equal to one:

Minimize f1(0,v,7) = (1 + g(r)) cosf cos(y + 7/4),
Minimize f2(8,7,7) = (1 + g(r)) cos §sin(y + w/4),
Minimize f3(8,7,7) = (1 + g(r))siné,
0<f<m/2, —m/d<y<m/4,
(2)
As described earlier, the Pareto-optimal solutions for the
above problem are as follows: 0 < 6* < 7/2, —7w/4<~*<
w/4, g(r*) = 0. Figure 2 shows the overall objective search
space with any function for g(r) with 0 < g(r) < 1.
Although the above three-objective problem requires three
independent variables, the decision search space can be higher
than three-dimensional. The three variables used above (6,
v, and r) can all be considered as meta-variables and each of
them can be considered as a function of n decision variables
of the underlying problem:
0 =06(zx,...  Zn)y, T =71(T1,...,Tn).

,xn), 'Y:’Y(xl,

The functions must be so chosen that they satisfy the lower
and upper bounds of 8, v and g(r) mentioned in equation 2.
The above construction procedure can be used to introduce
different modes of difficulty described earlier.

A. Difficulty in converging to the Pareto-optimal front

The difficulty of a search algorithm to progress towards the
Pareto-optimal front from the interior of the objective search
space can be introduced by simply using a difficult g func-
tion. It is clear that the Pareto-optimal surface corresponds
to the minimum value of function g. A multi-modal g function
with a global minimum at ¢* = 0 and many local minima at
g* = v; value will introduce global and local Pareto-optimal
fronts, where a multi-objective optimizer can get stuck to.
Moreover, even using a unimodal g(r) function, variable den-
sity of solutions can be introduced in the search space. For
example, if g(r) = r®! is used, denser solutions exist away
from the Pareto-optimal front.

B. Difficulties across the Pareto-optimal front

By using a non-linear meta-variable mapping, some portion
of the search space can be made to have more dense solutions
than the rest of the search space. In order to create a variable
density of solutions on the Pareto-optimal front, the 6 and ~
functions must be manipulated. In trying to solve such test
problems, the task of an MOEA would be to find a widely
distributed set of solutions on the entire Pareto-optimal front,
despite the natural bias of solutions in certain regions on the
Pareto-optimal front.

C. Test Problem Generator

The earlier study (Deb, 2001) suggested a generic multi-
objective test problem generator, which belongs to this
bottom-up approach. For M objective functions, with a
complete decision variable vector partitioned into M non-

overlapping groups
_ T
T = (X1,X2,...,XM-1,XM) ,

the following function was suggested:

Minimize f1(x1),

Minimize fol(fol); (3)
Minimize fa(x) = g(xam)h (f1,..., fu-1,9),

subject to x; e R¥sl, fori=1,2,..., M.

Here, the Pareto-optimal front is described by solutions which
are global minimum of g(xas) (with g*). Thus, the Pareto-
optimal front is described as far = g*h(f1, fo, ..., fu—1). In
the bottom-up approach of test problem design, the user can
first choose an h function in terms of the objective function
values. For example, a disjoint set of Pareto-optimal front
can be constructed by simply choosing a multi-modal A func-
tion as done in the case of two-objective test problem de-
sign (Deb, 1999). Figure 3 illustrates a disconnected set of



Fig. 1. First quadrant of a unit sphere
as a Pareto-optimal front.

Pareto-optimal surfaces (for three-objectives), which can be
generated from the following generic h function:

M-1

fuea) =2M = ) (2fi +sin(3nfi)).  (4)

i=1

h(f1, f2, -

Once the h function is chosen, a g function can be chosen to
construct the entire objective search space. Once appropri-
ate h and g functions are chosen, fi to far—1 can be chosen
as functions of different non-overlapping sets of decision vari-
ables.

D. Advantages and disadvantages of the bottom-up approach

The advantage of using the above bottom-up approach is that
the exact form of the Pareto-optimal surface can be controlled
by the developer. The number of objectives and the variabil-
ity in density of solutions can all be controlled by choosing
proper functions. Since the search space is constructed from
an identical functional, the search space is structured.

V. Constraint Surface Approach

The constraint surface approach begins by predefining a
simple overall search space:

Minimize  fi(x),

Minimize  fu(x),
Subject to fi(L) < fi(x) < fi(U) fori=1,2,..., M.
(5)

It is intuitive that the Pareto-optimal set of the above prob-
lem has only one solution (the solution with the lower bound
of each objective (fl(L) Q(L), ey I(L))T. The problem is now
made more interesting by adding a series of constraints (linear
or non-linear):

gj(f17f2,"';fM)20:

Each constraint practically eliminates some portion of the
original rectangular region systematically. Figure 4 shows the
resulting feasible region after adding the following two linear
constraints:

g1 = f1 —+ fé —0.5 22 0,

for j=1,2,...,J. (6)

g=fi+fo+f3—08>0.

Pareto-optima
patches
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Fig. 2. Overall search space is bounded Fig. 3. A disjoint set of Pareto-optimal
by the two spheres.

regions.

The objective of the above problem is to find the non-
dominated portion of the boundary of the feasible search
space. Difficulties can be introduced by using varying density

Pareto-optimal front

Fig. 4. Two constraints eliminate a portion of the cube.

of solutions in the search space. This can be easily achieved by
using non-linear functionals for f; with the decision variables.
Interestingly, there exist two-variable and three-variable con-
strained test problems in Tanaka (1995) and in Tamaki (1996)
using the above concept.

A. Advantages and Disadvantages

The construction process here is much simpler compared
to the bottom-up approach. Using this procedure, differ-
ent shapes (convex, non-convex, or discrete) of the Pareto-
optimal region can be generated.

However, the resulting Pareto-optimal front will, in gen-
eral, be hard to express mathematically and to comprehend
visually. Another difficulty is that since the Pareto-optimal
front will lie on one or more constraint boundaries, a good
constraint-handling strategy must be used with an MOEA.

VI. Performance Metrics

A number of performance metrics for MOEA studies have
been discussed in Veldhuizen (1999) and Deb (2001). The
latter study has classified the metrics according to the aspect
measured by them and suggested three different categories:
(i) metrics that evaluate closeness to the Pareto-optimal front,
(ii) metrics that evaluate diversity in obtained solutions, and
(iii) metrics that evaluate both the above. Most of the exist-
ing metrics require a pre-specified set of Pareto-optimal (refer-



ence) solutions P*. The obtained set ) is compared against
P*. Although almost all metrics for convergence suggested
in the context of two-objective problems can be applied to
problems having more than two objectives, most existing per-
formance metrics for evaluating the distribution of solutions
can not be used in higher-objective optimization problems.
This is because the calculation of diversity measure in higher
dimensions is not straightforward and often computationally
expensive. Further research in this direction is necessary to
develop better performance metrics.

VII. Test Problem Suite

Using the latter two approaches of test problem design dis-
cussed in this paper, we suggest here a representative set of
test problems.

A. Test Problem DTLZ1

As a simple test problem, we construct an M-objective prob-
lem with a linear Pareto-optimal front:

cem-1(1+ g(xm)),

Minimize (x) = %wm& ..
) (1 —zm-1)(1+g(xm)),

fi
Minimize fa(x) = fz122- -+

faroi(x) =

Minimize

31(1 = 22)(1+ g(xn)),
Minimize fa(x) = 2(1 — z1)(1 + g(xar)),
subject to 0<z; <1, fori=1,2,...,n

(7)
The functional g(xas) requires |xas| = k variables and must
take any function with g > 0. We suggest the following:

g(xm) =100 | [xar| + D (2i —0.5)% — cos(20m(x; — 0.5))
[ M (8)

The Pareto-optimal solution corresponds to z; = 0.5 (z; €
xn) and the objective function values lie on the linear hyper-
plane: fozl fm = 0.5. A value of £k = 5 is suggested
here. In the above problem, the total number of variables
isn = M +k—1. The difficulty in this problem is to converge
to the hyper-plane. The search space contains (11* — 1) local
Pareto-optimal fronts, each of which can attract an MOEA.
NSGA-II with a population size of 100 is run for 300 genera-
tions using a real-parameter SBX crossover operator (7. = 15)
and a variable-wise polynomial mutation operator (7, = 20).
The crossover probability of 1.0 and mutation probability of
1/n are used. The performance of NSGA-II is shown in Fig-
ure 5. Similar results were also btained using SPEA2 (Zitzler,
Laumanns, and Thiele, 2001) and are not reported here.

The problem can be made more difficult by using other
difficult multi-modal g functions (using a larger k) and/or
replacing z; by non-linear mapping z; = N;(y;) and treating
y; as decision variables.

_ tion of solutions (k =

Fig. 5. The NSGA-II population on test problem DTLZI.

B. Test Problem DTLZ2

This test problem has a spherical Pareto-optimal front as in
Figure 1:

Minimize fi(x) = (1 4 g(xam)) cos(z17/2) - - - cos(xpr—17/2),
Minimize fa(x) = (1 + g(xam)) cos(x17/2) - - - sin(xpr—17/2),
Minimize fa(x) = (1 + g(xn)) sin(z17/2),
0<z;<1, fori=1,2,...,n,
where g(xm) =32, ex,, (Ti — 0.5)>.
(9)
The Pareto-optimal solutions corresponds to z; = 0.5

(z; € xum) and all objective function values must satisfy the
Enl\f:l( fi)? = 1. As in the previous problem, the distribu-
|xaz| = 10) obtained with NSGA-II
is poor. This function can also be used to investigate an
MOEA’s ability to scale up its performance in large number
of objectives.

C. Test Problem DTLZ3

In order to investigate an MOEA'’s ability to converge to the
global Pareto-optimal front, we suggest using the above prob-
lem with the g function given in equation 8. This introduces
many local Pareto-optimal fronts, on which an MOEA can get
attracted. NSGA-II population after 500 generations could
not converge to the global Pareto-optimal front (results are
not shown here for brevity).

D. Test Problem DTLZ4

In order to investigate an MOEA’s ability to maintain a good
distribution of solutions, we modify problem DTLZ2 with a
different meta-variable mapping: z; — z{. The parameter
a = 100 is suggested here. This modification allows a dense
set of solutions to exist near the fas-fi plane. NSGA-II pop-
ulation at the end of 200 generations are shown in Figure 6.
For this problem, the final population is dependent on the ini-
tial population, as shown in the figure for three independent
NSGA-II runs.



Fig. 6. The NSGA-II population on test problem DTLZA4.
Three different simulation runs are shown.

E. Test Problem DTLZ5

The mapping of ; in the test problem DTLZ2 can be replaced
with 6; = ey (1+29(r)z:), for @ = 2,3,...,(M — 1),
and g(xm) = 3, ex,, x2! is used. This problem will test
an MOEA'’s ability to converge to a degenerated curve and
will also allow an easier way to visually demonstrate (just by
plotting fas with any other objective function) the perfor-
mance of an MOEA. The size of xu vector is chosen as 10.
The population after 500 generations of NSGA-II is shown
in Figure 7. The lack of convergence to the true front in

fs

0 000000 o5

0.5

Fig. 7. The NSGA-II population on test problem DTLZ5.

this problem causes NSGA-II to find a dominated surface as
the obtained front, whereas the true Pareto-optimal front is
a curve. Similar performance is also observed with SPEA2.
F. Test Problem DTLZ6

This problem is constructed based on equation 3:

Minimize fi(x1) = 1,

Minimize

fu—1(xpm-1) = vp-1,
Minimize fM(x :(1+g(xM))h(f11f27""fM—lag)y
_ 9
where g(xum) =1+ x>, cx,, Ti>
h=M =M [ (1+sin3n£))]
subject to 0<xz; <1, fori=1,2,...,n.

(10)

This test problem has 2M~! disconnected Pareto-optimal
regions in the search space. The functional g requires k =
|xns| decision variables and the total number of variables is
n=M+k—1. We suggest k = 20. This problem will test
an algorithm’s ability to maintain subpopulation in different
Pareto-optimal regions. For brevity, we do not show any sim-
ulation results here.

G. Test Problem DTLZ7

Here, we use the constraint surface approach to construct the
following test problem:
fi(x) = g Yol e, j=1,...,M

J (] Zi=lG-D) T T = 5 fh
9i(%) = far(x) +4£j(x) ~1>0, forj=1,...,(M
gum(x) = 2fm(x) + min%} [fi(x) + fi(x)] =1 >0,

i

0<z <1,

Min.
s.t.

fori=1,...,n.

(11)
Here, we suggest n = 10M. In this problem, there are a
total of M constraints. The Pareto-optimal front is a com-
bination of a straight line and a hyper-plane. The straight
line is the intersection of the first (M — 1) constraints (with
fi = fo =+ = fu—1) and the hyper-plane is represented
by the constraint grs7. MOEAs may find difficulty in finding
solutions in both the regions in this problem and also in main-
taining a good distribution of solutions on the hyper-plane.
Figure 8 shows NSGA-II population after 500 generations.

Fig. 8. The NSGA-II population of non-dominated solutions
on test problem DTLZ7.

Although some solutions on the true Pareto-optimal front
are found, there exist many other non-dominated solutions in
the final population. These redundant solutions lie on the ad-
joining surfaces to the Pareto-optimal front. Their presence



in the final non-dominated set is difficult to eradicate in real-
parameter MOEAs. Figure 9 demonstrates this matter. With

Pareto-optimal
line

Fig. 9. The shaded region is non-dominated with Pareto-
optimal solutions A and B.

respect to two Pareto-optimal solutions A and B in the figure,
any other solution in the shaded region is non-dominated to
both A and B. The figure clearly demonstrates the fact the
although a solution may not be on the true Pareto-optimal
front (the straight line in the figure), it can exist in a set of
non-dominated solutions obtained using an MOEA. In such
problems (as in DTLZ5 or DTLZT), the obtained set of so-
lutions may wrongly find a higher-dimensional surface as the
Pareto-optimal front, although the true Pareto-optimal front
may be of smaller dimension. Another study (Kokolo, Kita,
and Kobayashi, 2001) has also recognized that this feature
of problems can cause MOEAs difficulty in finding the true
Pareto-optimal solutions. However, it is worth highlighting
here that with the increase in the dimensionality of the ob-
jective space, the probability of occurrence of such difficulties
is higher.

VIII. Conclusions

In this paper, we have suggested three approaches for sys-
tematically designing test problems for multi-objective opti-
mization. The first approach simply uses a different, mostly-
translated single-objective function as an objective. The sec-
ond approach (we called a bottom-up approach) begins the
construction procedure by assuming a mathematical formu-
lation of the Pareto-optimal front. Such a function is then
embedded in the overall test problem design so that two dif-
ferent types of difficulties of converging to the Pareto-optimal
front and maintaining a diverse set of solutions can also be
introduced. The third approach (we called the constraint sur-
face approach) begins the construction process by assuming
the overall search space to be a rectangular hyper-box. There-
after, a number of linear or non-linear constraint surfaces are
added one by one to eliminate portions of the original hyper-
box. A number of test problems have been suggested and at-
tempted to solve using two popular state-of-the-art MOEAs
for their systematic use in practice.
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