Omni-Optimizer: A Procedure for Single and
Multi-Objective Optimization

Kalyanmoy Deb and Santosh Tiwari

Kanpur Genetic Algorithms Laboratory (KanGAL)
Indian Institute of Technology Kanpur
Kanpur, PIN 208 016, India
{deb,tiwaris}@iitk.ac.in
http://www.iitk.ac.in/kangal

Abstract. Due to the vagaries of optimization problems encountered
in practice, users resort to different algorithms for solving different opti-
mization problems. In this paper, we suggest an optimization procedure
which specializes in solving multi-objective, multi-global problems. The
algorithm is carefully designed so as to degenerate to efficient algorithms
for solving other simpler optimization problems, such as single-objective
uni-global problems, single-objective multi-global problems and multi-
objective uni-global problems. The efficacy of the proposed algorithm
in solving various problems is demonstrated on a number of test prob-
lems. Because of it’s efficiency in handling different types of problems
with equal ease, this algorithm should find increasing use in real-world
optimization problems.

1 Introduction

With the advent of new and computationally efficient optimization algorithms,
researchers and practitioners have been attempting to solve different kinds of
search and optimization problems encountered in practice. One of the difficul-
ties in solving real-world optimization problems is that they appear in different
forms and types. Some optimization problems may have to be solved for only
one objective, some other problems may have more than one conflicting objec-
tives, some problems may be highly constrained, and some may have more than
one optimal solutions. When faced with such problems, a user first analyzes the
underlying problem and chooses a suitable algorithm for solving it. This is be-
cause an algorithm efficient for finding the sole optimum in a single-objective
optimization problem cannot be adequately applied to find multiple optimal
solutions present in another optimization problem. To solve different kinds of
problems, a user needs to know different algorithms, each specialized in solving
a particular class of optimization problem.

In this paper, we propose and evaluate a single optimization algorithm for
solving different kinds of function optimization problems often encountered in
practice. The proposed omni-optimization algorithm adapts itself to solve dif-
ferent kinds of problems — single or multi-objective problems and uni or multi-
global problems. The motivation for developing such a generic procedure came

from the generic programming practices. For example, if a programming task is
to develop a code for adding a few integers, a generic approach would be to use
the following strategy.

Add a few integers:

begin
print ‘enter number of integers to be added’, read n
sum = 0

for 1=1 ton
print ‘enter integer i’, read ali]
sum = sum + al[é]
print ‘Sum =’ sum
end

Interestingly, the same code can be used for adding any number of integers ini-
tially defined by the variable n. If n = 1 is used (thereby trying to add only one
number to zero), the code degenerates to printing the same integer as the out-
come of the addition. On a similar vein, a generic optimization procedure should
find optimal solutions for a multi-objective optimization problem and the same
procedure should degenerate to solving a single-objective optimization problem
if only one objective function is used. Similarly, our proposed approach can find
multiple optimal solutions, if present in a problem, and will automatically de-
generate to find the sole optimum of a uni-global optimization problem.

The proposed omni-optimizer is carefully designed to have various properties
needed for solving different kinds of optimization problems and is also found to
be computationally efficient. The simulation results on 12 test problems show
the usefulness of the proposed algorithm and suggest more such studies in the
near future.

2 Function Optimization Problems

A function optimization problem may be of different types, depending on the de-
sired goal of the optimization task. The optimization problem may have only one
objective function (known as a single-objective optimization problem), or it may
have multiple conflicting objective functions (known as a multi-objective opti-
mization problem). Some problems may have only one global optimum, thereby
requiring the task of finding the global optimum?!. Other problems may contain
more than one global optima in the search space, thereby requiring the task of
finding multiple such global optimal solutions. Although in some optimization
tasks, there may be a need of finding the local optimal solutions in addition to
finding global optimum solutions, in this study we only concentrate in finding
the global optima (one or more) of one or more objective functions.

! However, in robust optimization tasks, instead of finding the global optimum, the
emphasis is on finding a solution which is less sensitive to local perturbation of
variables.

We consider the following constrained M-objective (M > 1) minimization
problem:
Minimize (f(x), f2(%), . . far(x))
Subject to g;(x) >0, j=1,2,...,J,
he(x) =0, k=1,2,...,K, 1)
:cz(L) <z < :cz(U), 1=1,2,...,n.

A n-variable solution vector x which satisfies all constraints and variable bounds
shown above is called a feasible solution. The optimality of a solution depends
on a number of KKT optimality conditions which involve finding the gradients
of objective and constraint functions [2,6,11].

Here, we suggest an omni-optimizer which is capable of finding one or more
near-optimal solutions for the following four types of optimization problems in
a single simulation run of the algorithm:

1. Single-objective, uni-global optimization problems (the outcome is a single
optimum solution),

2. Single-objective, multi-global optimization problems (the outcome is multi-
ple optimal solutions),

3. Multi-objective, uni-global optimization problems (the outcome is multiple
efficient points each corresponding to a single Pareto-optimal solution), and

4. Multi-objective, multi-global optimization problems (the outcome is multiple
efficient points some of which may correspond to multiple Pareto-optimal
solutions).

It is intuitive that the fourth type of optimization problem mentioned above is
the most generic one. If designed carefully, an algorithm capable of solving the
fourth type of problems can be made to solve other three types of problems in
a degenerate sense. The developed algorithm should be capable of solving any
of the above problems to its desired optimality without explicitly foretelling the
type of problem it is handling. In the following section, we present one such
omni-optimizer, which adapts itself to an efficient algorithm automatically for
solving any of the above four types of problems.

3 Omni-Optimizer

The optimization algorithm starts with an initial population Pg of size NV and an
iteration counter ¢ is initialized to zero. In each iteration, a bigger population R,
is constructed by two random orderings of the same population P;. Thereafter,
two binary-tournament selection operations are performed to select two parent
solutions. The tournament selection operator prefers feasible solutions over infea-
sible solutions (constraint handling), non-dominated solutions over dominated
solutions (multiple objective handling) and less-crowded solutions over more-
crowded solutions (maintenance of diversity). The two parent solutions are then
recombined and mutated to obtain two offspring solutions. Any standard genetic
operator for each of these operations can be used here. The offspring solutions
are included in the offspring population Q.

An elite-preservation is performed by combining both parent P, and offspring
Q: populations together and then by ranking the combined population from best
class of solutions to the worst. This way, a good parent solution is allowed to
remain in the subsequent population, in case enough good offspring solutions
are not created. The ranking procedure uses a modified domination principle
(e-domination) to classify the entire combined population into different classes.
The best solutions of the population are stored in F, the next-best solutions
are stored in F» and so on.

Now, to create the next population Py of size N, we start accepting classes
from the top of the list (F; onwards) and stop to the class (Fy,) which cannot
be completely accommodated to Pyy; due to size restriction. Then, based on
crowding of the solutions of Fr in both objective and decision variable space,
we select only those many solutions which will fill the population P;;q. This
completes one iteration of the proposed omni-optimizer.

Readers familiar with the elitist non-dominated sorting GA (NSGA-II) [5]
may find the proposed omni-optimization procedure similar to that of NSGA-II
with some differences. Thus, the proposed procedure is expected to solve multi-
objective optimization problems in a manner similar to NSGA-II. The proposed
procedure is also capable of solving other kinds of optimization problems men-
tioned in the previous section. Later, we shall discuss how this procedure degen-
erates to solve single-objective uni-global and multi-global problems. Here, we
first present the omni-optimization procedure as a pseudo-code.

The omni-optimization procedure:
begin
Initialize(Pg)
t = 0 // iteration counter
repeat
R; = Shuffle(P;) U Shuffle(P;)
fori = 1 to N—1 step 2
// two selection operations
parentl = tournament (R;(2i — 1), R;(27))
parent2 = tournament (R;(2i + 1), Ry (2i +2))
// crossover and mutation operators
(offspringl, offspring2) = variation(parentl, parent2)
Q: (i) = offspringl
Q: (i + 1) = offspring2
R, = P, UQ // elite preservation
(F1, Fa, ...) = ranking(R;) // best class F; and so on
Py =0
j = 1 // class number
while |Pt+1 U Fjl S N
Piy1 = P41 U F; // include classes from best
crowd_dist(F;) // crowding distance of each soln.
J = Jj+1
L = j // last class to be included partially

rem = N - |Pygy1| // remaining solutions to be filled
sorting(crowd_dist(Fr)) // sort Fr in decreasing order
of crowding distance
Piy1 = Pyyg U Fr(l:irem) // include top solutions
t = t+1 // increment iteration counter
until (termination)
end

The operator shuffle (P;) makes a random ordering of the population mem-
bers of P;. The tournament (a,b) operator compares two solutions a and b and
declares the winner. The following algorithm is used for this purpose:

winner = tournament(a,b)
begin
if a is feasible and b is infeasible, winner = a
else if a is infeasible and b is feasible, winner = b
else if both a and b are infeasible,
winner = (if CV(a) < CV(b)) ? a : b
else if both a and b are feasible,
if a dominates b, winner = a
else if b dominates a, winner = b
else if crowd_dist(a) > crowd_dist(b), winner
else if crowd_dist(a) < crowd_dist(b), winner
else winner = random_choose(a,b)

nou
T P

end

The function CV(a) calculates the overall normalized constraint violation of
solution a, as follows: CV(a) = ijl (gj(a))+ZkK:1 |hr(2)|, where (-) is a bracket
operator [2]. Here, the solution a dominates the solution b for an M-objective
minimization problem, if following conditions are met:

1. fa< fPforalli=1,2,..., M,
2. f2 < f? for at least one i € {1, M}.

This is the usual domination principle used in multi-objective optimization [11,
4]. The random_choose(a,b) selects a or b randomly. The procedure for com-
puting the crowding distance metric crowd_dist () is discussed later.

The variation operator takes two solutions and performs genetic operations
(such as crossover followed by mutation) and creates two offspring solutions.

The ranking(R;) ranks the population R; into different classes (from best
to worst) depending on how good the solutions are. The following pseudo-code
can be used for this purpose:

(F1, F2, ...) = ranking(Ry)
begin
k = 1 // class counter

repeat

Fp =0
for ¢ = 1 to |Rsl
for j = 1 to [Ryl and j # i
if R;(j) e-dominates R;(i), break
if (j = IR¢l) // Ry(4) is e-nondominated
Fr = Fr U Rye(1)

R; = R \ Fy
k= k+1
until (all 2N solutions are classified)

end

It is not necessary that the repeat-until loop as described above continues till all
2N solutions are classified; the loop can be terminated as soon as the last class
(L) which can be partially accommodated is encountered.

Solution a e-dominates another solution b if the following conditions are true
in an M-objective minimization problem:

1. fa<fPforalli=1,2,..., M,
2. f2 < fP —¢; for at least one i € {1, M}.

Here, ¢; is a quantity calculated from a user-defined parameter §, described in
equation 2. Figure 1 shows the region which is e-dominated by solution a in a
two-objective minimization problem. For simplicity, we use only one user-defined

L f, X,
e 5
/ w |
8 | T i |
zi‘e}ﬁ L - !
I L Loy | Q | ‘
‘ € i N C}) i I 77:7@
1 fq i S — f, . roXy
T left ri ght left ri ght
of i of i of i of i

Fig.1. The e-dominance
criterion. Point a e-
dominates the shaded
region.

Fig. 2. Objective space and variable space crowding dis-
tance computations.

parameter ¢ as follows:
& = 6(f" = fi"), (2)

where fM2% and f™i? are the maximum and minimum value of the i-th objective
in the population. After the ranking operation, the population is expected to be
ranked from best solutions (class F) in a decreasing order of importance.

The crowd_dist(F;) calculates a metric value of a solution in F; providing
an estimate of the neighboring members of F; in both the objective and the
decision variable space. The following pseudo-code describes the procedure:

crowd_dist (F;)

begin
// initialize all distances to zero
for ¢ = 1 to |Fjl
crowd_dist_obj(t) = 0
crowd_dist_var (i) = 0

// objective space crowding
form = 1 to M
for i = 1 to |Fjl
if ¢ is a minimum solution in m-th objective
crowd_dist_obj (i) = o
else crowd_dist_obj(i) += normalized_obj (i)
// decision variable space crowding
for j = 1 ton
for i = 1 to |F,l
if ¢ is a boundary solution in j-th variable
crowd_dist_var (i) += 2xnormalized_var (7)
else crowd_dist_var(i) += normalized_var (i)
// normalize distances and compute population average
for ¢ = 1 to |Fyl
crowd_dist_obj(¢) = crowd_dist_obj(i)/M
crowd_dist_var (i) = crowd_dist_var(i)/n
avg_crowd_dist_obj = Ei:1:|F,-\ (crowd_dist_obj(4))/IF;l
avg_crowd_dist_var = Zi:1:|F]-\ (crowd_dist_var(i))/|F;l
// if above average, assign larger of the two distances,
// else assign smaller of the two distances
for i = 1 to |Fyl
if crowd_dist_obj(i) > avg_crowd_dist_obj or
crowd_dist_var (i) > avg_crowd_dist_var
crowd_dist () =
max (crowd_dist_obj (i) ,crowd_dist_var(i))
else crowd_dist(i) =
min(crowd_dist_obj (i) ,crowd_dist_var(i))

end

To calculate the normalized obj (i) of a solution i for the m-th objective,
we first sort the population members in increasing order of the objective value
and then calculate

fm(right of i) — fi,(left of 1)

f;nnax _ fTr;Llin

3)

normalized obj(i) =

Similarly, the normalized var(i) for the j-th variable is computed as follows:

zj(right of) —z;(left of 3)
pmax _ .,L.min (4)
j j

normalized var(i) =

Figure 2 illustrates the computation of objective space and decision variable
space crowding distance. Note that if a solution is a boundary solution in the
objective space, an infinite distance is assigned so as not to lose the solution.
On the other hand, if a solution is a boundary solution in the decision variable
space, the numerator in Equation 4 can be replaced by (z;(right of i) —z;(i))
or (xj(¢) — z;(left of)), as the case may be. Since this computes only a
one-sided difference, the quantity is multiplied by a factor of two.

The sorting(A) sorts the population members of A into a decreasing order
of crowding distance measure. Thus, the top-most member of the ordering has
the maximum distance measure and the bottom-most member of the ordering
has the least distance measure.

3.1 Computational Complexity

The ranking procedure involves O(M N?) computations, although a faster im-
plementation can be achieved in O(N log™ =2 N) computations [10,9] for M >
2. The crowd dist procedure involves O(M N log N) computations for calcu-
lating crowd_dist_obj values and O(nN log N) computations for calculating
crowd dist_var values. Thus, an efficient implementation of the algorithm re-
quires an iteration-wise complexity of O(N log™ =2 N) or O(nN log N), whichever
is larger.

3.2 Single-Objective, Uni-Global Optimizer

Now, let us analyze how the proposed omni-optimizer degenerates to different op-
timization algorithms of importance. First, we consider solving a single-objective
minimization problem having one global optimum.

Here, the number of objectives is one, or M = 1. The tournament selection
procedure described above degenerates to a constrained-tournament selection
operator proposed in [3]. A check for dominance between two solutions degen-
erates to finding if a solution is better than the other or not. In the absence of
constraints, the above procedure reduces to choosing the better of the two, and
in case of a tie, the more diverse solution is chosen.

After the offspring population is created, it is combined with the parent pop-
ulation P, as it is done in standard single-objective EAs, such as in CHC [7] or in
(£+A)-ES [13]. The ranking procedure with a small € parameter will assign each
population member into a different class and the selection of N members from
the combined population of size 2N degenerates to choosing the best N solu-
tions of the combined parent-offspring population, a procedure followed in both
CHC and (p+ A)-evolution strategies. If each class has only one or two members,
the crowding distance computation assigns an infinite distance to them, thereby

making no effect of crowding distance to the optimization procedure at all. How-
ever, in the presence of more than two solutions in a class which becomes the
last class (class L) to be partially accepted, the extreme and sparsed solutions in
the variable space are preferred. But we argue that such a decision, even though
a low probability event, does not make much of a difference in obtaining the sole
optimum of the problem.

Thus, if the underlying problem is a single-objective problem with one global
optimum, the procedure is very similar to a standard EA procedure which uses
tournament selection, genetic variation operators and an elite-preservation strat-
egy along with a diversity preserving operator.

3.3 Single-Objective, Multi-Global Optimizer

Often, there exist problems which have more than one global minimum solutions.
The proposed omni-optimizer degenerates to finding multiple such global minima
in a single simulation run.

The procedure becomes similar to the previous case, except that now there
may exist multiple solutions in the top class (F}), even towards the end of a
simulation when the proposed method captures multiple optimum solutions. In
such cases, the ranking procedure will put all such solutions in one class and the
crowd dist operation degenerates to a variable space crowding alone (since all
these solutions will have identical function value or function values with a max-
imum difference of €). In EA literature, such a variable space crowding operator
emphasizing distant solutions in the variable space to remain in the population
(often called a niching procedure) [8,12] is used for finding multiple global op-
timum solutions. It is interesting to note how the proposed omni-optimization
procedure degenerates to such a niching strategy automatically when there exist
a number of global optimal solutions in a problem. Contrary to other niching
methods, the proposed strategy does not require any additional parameter de-
scribing the niche size and it automatically adapts itself to find multiple optima
offered by a problem.

3.4 Multi-Objective Optimizer

In the presence of multiple objectives where each efficient solution in the objec-
tive space corresponds to a single Pareto-optimal solution in the decision space,
the omni-optimization procedure degenerates to NSGA-II procedure [5] with the
following modifications:

1. The e-dominance criterion is used for classifying solutions into different fronts
in the ranking procedure.

2. Both objective space and variable space crowding is performed for maintain-
ing diversity among solutions of a single front.

The first modification makes the size of the non-dominated fronts larger than
the non-dominated fronts obtained using the usual domination criterion. Since

the selection begins from the top class and continues to worse classes, this modi-
fication does not make much of a difference in its working from that in NSGA-II.
Due to the inclusion of variable-space niching in the omni-optimizer, the distri-
bution of solutions is expected to be better in both objective and variable spaces.
However, a similar emphasis to that in NSGA-II has been followed in retaining
extreme objective solutions, thereby ensuring a wide range of solutions in the
objective space.

3.5 Multi-Objective, Multi-Global Optimizer

There exist some problems in which each efficient point in the objective space
corresponds to a number of Pareto-optimal solutions in the decision variable
space. In such problems, the task of an optimizer would be to find multiple such
Pareto-optimal solutions corresponding to each efficient point. The proposed
omni-optimizer can find such multiple solutions in a single simulation run.

The working of the proposed algorithm in such problems is similar to that in
the previous case, except that in the crowd_dist operation, all such multiple so-
lutions will be emphasized. These solutions will have identical objective function
values, thereby making the crowd dist_obj values to be zero (unless they are
the extreme solutions), but their crowd_dist_var values will be non-zero. Since
a solution’s crowding distance value is chosen as the maximum of the two crowd-
ing distance values, these solutions will inherit the crowd dist_var values. Thus,
non-dominated solutions in a particular front can survive due to their sparsity
either in the objective space or in the decision variable space. This allows not
only sparsed efficient solutions to remain in the population, but any multiplicity
of such efficient solutions in the decision variable space are also equally likely to
survive in the population.

4 Simulation Results

In this section, we present simulation results of the omni-optimizer on various
test problems chosen from the literature. In all problems, we use simulated binary
crossover operator (with 7. = 20) and the polynomial mutation (with 7,, = 20)
[4] to handle real-valued variables. A crossover probability of 0.8 and a mutation
probability of 1/n is used. For all problems, we use § = 0.001.

4.1 Single-Objective, Uni-Global Test Problems

We choose 20-variable Rastrigin’s function and 20-variable Schwefel’s function.
In both functions, there are many local minima, but there is only one global
minimum and the corresponding function value is zero. Table 1 shows the best,
median and worst number of evaluations needed in 10 runs of the proposed omni-
optimizer to arrive at function value smaller than f*. The seven-variable, four-
constraint problem 5 described in [3] is solved next. With a population of size 70,
the omni-optimizer is run for 5,000 generations and the best, median, and worst

Table 1. Results of omni-optimizer on single-objective, uni-global problems.

Function f(x) n| Range |N|Target Func. Eval.

f Best|Median| Worst
Rastrigin|>"_, @7 + 10(1 —|20| [—10,10] |20| 0.01 |19,260] 24,660| 29,120
cos(2mx;))
Schwefel [418.9829n —|20{[—500, 500]|50| 0.01 [54,950| 69,650|103,350

Do misin |z

function values of 10 runs are found to be 680.216, 680.254, and 680.433, respec-
tively. The best-known solution, as reported in [3], was f(x) = 680.630 obtained
for an identical number of function evaluations. For the welded beam design
problem [3] having four variables and five non-linear inequality constraints, the
omni-optimizer with a population size of 80 finds objective values of 2.381, 2.385,
and 2.387 as best, median and worst of 10 runs of 4,000 generations each. The
best result reported earlier with identical number of function evaluations also
had a function value of 2.381.

4.2 Single-Objective, Multi-Global Test Problems

We consider two test problems in this category. The first problem is a single-
variable problem having 21 different global optimal solutions.

Minimize f(z) = sin®(72), x € [0,20]. (5)
Here, we use a population of size 100. Figure 3 shows the obtained solutions

after 200 generations. It is clear that all 21 global minimum solutions are found
by the omni-optimizer.

Il

i

A OO0 O N 00 ©

f(x) = sin?(x)

N W

o

0 10 12 14 16 18 20 Xq

Fig. 3. All 21 minima are found for the Fig. 4. All four minima are found for the
sin?(x) problem. Himmelblau’s function.

The second problem is the well-known Himmelblau’s function [2]:
Minimize f(z1,2) = (#] + 22 —11)* + (21 +25-7)%, —20 < 31,25 < 20. (6)

There are four minima, each having a function value equal to zero. Here, we use
a population of size 100. Figure 4 shows the obtained solutions at the end of 100
generations. It is clear that the omni-optimizer is able to find all four minima
in a single simulation run, similar to that reported in the literature [1] using a
specialized niched EA.

4.3 Multi-Objective, Uni-Global Test Problems

We choose unconstrained two-objective test problems — 30-variable ZDT2 and
10-variable ZDT4, and constrained problems CTP4 and CTP8 [4]. Also, we con-
sider a three-objective test problem DTLZ4. For all problems, we use a popula-
tion of size 100, except in DTLZ4 we use a population of size 300. Figures 5 till 9
show the corresponding efficient points obtained by the omni-optimizer. Due to
different complexities of the problems, we have chosen to run till 100, 250, 7,000
and 100 generations, respectively, for ZDT2, ZDT4, CTP4 and CTPS8. In the

1,(%)
1,(%)

X,
0 I I I I I I I I I 2
0O 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

f1(x) 102

Fig. 5. Efficient points for ZDT?2. Fig. 6. Efficient points for ZDT4.

Feasi bl e regi on

0.5

constrained T
front h

‘ ‘
0 02 04 06 08 1
f.(x)

Fig. 7. Efficient points for CTP4. Fig. 8. Efficient points for CTP8.

Fig. 9. Efficient points for DTLZ4.

case of CTP4, the results are shown after 7,000 generations due to algorithm’s
sluggishness to reach the efficient points through the narrow feasible tunnels (see
Figure 7).

4.4 Multi-Objective, Multi-Global Test Problem
We design the following problem:
Minimize fi(z) = Y, sin(nz;),

L & (7)
Minimize fa(z) = Y cos(nz;),
1=
0<z;<6, i=12,...,n.

—=

Here, both objectives are periodic functions with period of 2. The efficient fron-
tier corresponds to the Pareto-optimal solutions z; € [2m + 1, 2m + 3/2], where
m is an integer. We choose n = 5. For every efficient point in the objective
space there are in general 3 x 5! = 360 Pareto-optimal solutions in the decision
variable space. We choose a population of size 1,000 and run the algorithm for
500 generations to capture as many Pareto-optimal solutions as possible. It is
interesting to note that both algorithms find the entire range of efficient points
in the objective space, as shown in Figures 10 and 11. However, the variable
space plots show a different scenario. The lower diagonal plots in Figure 12 show
the performance of the omni-optimizer and the upper diagonal plots show that
of the original NSGA-IL It is clear that multiple global solutions for different
combinations of x; variables are obtained using the omni-optimizer. Since no
variable space crowding was considered in the original NSGA-II, not all global
combinations are found.

5 Conclusions

The optimization literature deals with single and multi-objective optimization
problems and uni-global and multi-global problems differently.

T T T T T T T T 0 T T T T T T T T
With variable space niching | ~05 B Without variable space niching |
(Omni-optimizer) ' (NSGA-11)

T (X)
o
ol
L

T, (X)

-45

I8 00l co)0arenn,
-5 -45 -4 -35 -3 -25 -2 -15 -1 -05 0
f,) £,

Fig.10. Efficient points using omni- Fig. 11. Efficient points using NSGA-II.
optimizer.

s s B 4 s . 7 s R 4 4
.
s X 1 s . ‘s . s PN .
2 - 2 2 2 2
| ') ' .
o 1 2 3 4 5 6 OD 1 2 3 a 6 o 1 2 3 4 5 6 o 1 2 3 a 6 UD 1 2 3 4 5 6
6 6 6 €

7 7 s . 4 . R 4 s
. . . . '
s 7 Vd . x_2 s - EN - . N
. s) s 2
RS g Ve A . A 1
o 1 2z 35 4 5 & ‘0 1 2 3 4 5 & o 1 2z 3 4 5 e S 2 R T 6
6 3 6 3 6
A Y S A 4 s s R 4 . 4
a 4 4 4 4
I A I e %3 ‘Y . .
2 2 2 2)
| P P N L . :
o1z 3 4 s e % 1 2 3 41 5 & ¢ 1 2 3 4 5 s % 1 P
. o o .
A S Y S A e . 7 . . T/
' . ' . '
s 7 7 7 7 . rd s x4 s -
2 2 2 2 2
. rd ') ' rd rd . P e re) s
S S S O SO Y S S
6 3 6 3 6
s VAV A R A 4 s 7z 7 A S 4 .
‘ . ‘ . .
. P S A P P PV -
2 2 2 2 2 -
. 4 I . 7 7 R 7’ Vd R rd 4 A
o1z 3 4 s e % 1 2 R o 2 3 4 s % 1 2 3 4 5 & [T

Fig. 12. Pareto-optimal solutions with omni-optimizer (left) and NSGA-II (right). The
axes in a (¢, j)-plot correspond to variables z; and z;.

In this paper, for the first time, we present an omni-optimizer which is de-
signed to solve different types of optimization problems usually encountered in
practice: multi-objective, multi-global problems requiring to find multiple ef-
ficient solutions each corresponding to multiple Pareto-optimal solutions. The
algorithm is designed in a way so that it degenerates to an efficient procedure
for solving an optimization problem with a simpler task of finding a single global
minimum in a single-objective optimization problem or multiple global minima
in a single-objective optimization problem or multiple efficient solutions in a
multi-objective optimization problem. Proof-of-principle simulation results on
11 different test problems and one welded-beam design problem indicate the ef-
ficacy of the proposed omni-optimizer, suggest immediate further evaluation of
the procedure, and stress the importance of more such studies in the near fu-
ture. More research is needed to compare the proposed approach with dedicated
single and multi-objective optimization procedures and on more synthetic and
real-world problems.

References

1. K. Deb. Genetic algorithms in multi-modal function optimization. Master’s thesis,
Tuscaloosa, AL: University of Alabama, 1989.

2. K. Deb. Optimization for Engineering Design: Algorithms and Ezamples. New
Delhi: Prentice-Hall, 1995.

3. K. Deb. An efficient constraint handling method for genetic algorithms. Computer
Methods in Applied Mechanics and Engineering, 186(2-4):311-338, 2000.

4. K. Deb. Multi-objective optimization using evolutionary algorithms. Chichester,
UK: Wiley, 2001.

5. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182-197, 2002.

6. M. Ehrgott. Multicriteria Optimization. Berlin: Springer, 2000.

7. L. J. Eshelman. The CHC adaptive search algorithm: How to have safe search
when engaging in nontraditional genetic recombination. In Foundations of Genetic
Algorithms 1 (FOGA-1), pages 265283, 1991.

8. D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal
function optimization. In Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, pages 41-49, 1987.

9. M. T. Jensen. Reducing the run-time complexity of multiobjective EAs. IEEE
Transcations to Evolutionary Computation, 7(5):503-515, 2003.

10. H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set
of vectors. Journal of the Association for Computing Machinery, 22(4):469-476,
1975.

11. K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer, Boston, 1999.

12. A. Pétrowski. A clearing procedure as a niching method for genetic algorithms.
In IEEFE 3rd International Conference on Evolutionary Computation (ICEC’96),
pages 798-803, 1996.

13. H.-P. Schwefel. Evolution and Optimum Seeking. New York: Wiley, 1995.

