Multi-Objective Methods for Tree Size Control

Edwin D. de Jong* (edwin@cs.brandeis.edu) and Jordan B. Pollack
(pollack@cs.brandeis.edu)

Brandeis University

Department of Computer Science
Waltham, Massachusetts 02454 USA

Received September 18 2002; Revised February 6, 2003

Abstract. Variable length methods for evolutionary computation can lead to a
progressive and mainly unnecessary growth of individuals, known as bloat. First,
we propose to measure performance in genetic programming as a function of the
number of nodes, rather than trees, that have been evaluated.

Evolutionary Multi-Objective Optimization (EMOO) constitutes a principled
way to optimize both size and fitness and may provide parameterless size control.
Reportedly, its use can also lead to minimization of size at the expense of fitness.
We replicate this problem, and an empirical analysis suggests that multi-objective
size control particularly requires diversity maintenance. Experiments support this
explanation.

The multi-objective approach is compared to genetic programming without size
control on the 11-multiplexer, 6-parity, and a symbolic regression problem. On all
three test problems, the method greatly reduces bloat and significantly improves
fitness as a function of computational expense. Using the FOCUS algorithm, multi-
objective size control is combined with active pursuit of diversity, and hypothesized
minimum-size solutions to 3-, 4- and 5-parity are found. The solutions thus found
are furthermore easily interpretable. When combined with diversity maintenance,
EMOO can provide an adequate and parameterless approach to size control in
variable length evolution.

Keywords: Genetic programming, variable size representations, bloat, code growth,
multi-objective optimization, Pareto optimality, interpretability.

1. Introduction

Evolutionary search with variable size representations often leads to
unnecessary growth of individuals (Smith, 1980; Koza, 1992; Blickle &
Thiele, 1994; McPhee & Miller, 1995; Langdon & Poli, 1998; Langdon,
Soule, Poli, & Foster, 1999; Soule & Foster, 1999; Soule & Heckendorn,
2002; Banzhaf & Langdon, 2002). We consider this phenomenon, known
as bloat or code growth, in the context of genetic programming (Cramer,
1985; Koza, 1992, 1994; Banzhaf, Nordin, Keller, & Francone, 1998;
Langdon & Poli, 2002), and will assume that individuals are represented
as trees.

*Current address: Vrije Universiteit Amsterdam, AT Dept. E-mail: edjQcs.vu.nl

';:‘ © 2003 Kluwer Academic Publishers. Printed in the Netherlands.

bloat.tex; 10/02/2003; 13:12; p.1

2 Edwin D. de Jong and Jordan B. Pollack

The accumulative increases in size that bloat produces are problem-
atic for several reasons. First, larger trees are undesirable as solutions,
not merely because they are less convenient to handle and take more
time to execute, but more so because they have been reported to gen-
eralize less well than compact trees (Kinnear, Jr., 1993; Rosca, 1996).
Second, bloat may affect the ability of the search to find individuals of
increasing fitness; if trees largely consist of non-functional parts, then
crossover is more likely to select and combine elements from degraded
genetic material'. Third, and most importantly, when no measures are
taken against bloat, it can increasingly slow down the search process
and thereby effectively limit the total number of individuals that can
be processed (Banzhaf & Langdon, 2002). This means that problems
requiring extensive search processes cannot be addressed. Thus, ade-
quate methods for tree size control are essential in extending the range
of problems that variable size evolution may address.

The most common technique to prevent unlimited growth is simply
to disallow large size individuals by choosing a size threshold. This
measure avoids producing trees of unlimited size, but until this size
threshold is reached, bloat will occur unsuppressed. The genetic mate-
rial that will form the basis of further search may therefore largely con-
sist of material that was produced by bloat. Furthermore, the method
requires a parameter; this introduces inductive bias, as it codes human
expectation for the code size appropriate to a particular problem.

Another way to approach bloat is to start with small individuals
and consider larger individuals systematically, so that a small solution
will be found if it exists. An example of this approach is ADATE
(Olsson, 1995), which combines an iterative deepening search method
with the use of heuristics. For genetic programming however, smaller
solutions cannot be assumed to have been considered. Thus, to reduce
the incorporation of excessive genetic material in the search, a trade-off
between fitness and size must be found.

A possible approach to trade off fitness and size is to use a function
that combines fitness and size to yield a single measure of quality.
However, the space of weighting functions is very large. To reduce the
problem of choosing an appropriate function, the weighting is often re-
stricted to linear functions. The difficulty of finding appropriate weights
for such functions (Soule & Foster, 1999) raises the question of whether
appropriate linear weighting functions exist for this purpose.

An alternative to choosing a fixed weighting is to base the weighting
on actual properties of the evolutionary process. This idea is used

! Nonetheless, such material could also play a useful role in evolution (Angeline,
1994; Nordin, Francone, & Banzhaf, 1996).

bloat.tex; 10/02/2003; 13:12; p.2

Multi-Objective Methods for Tree Size Control 3

by Zhang and Mihlenbein (1995) in Adaptive Parsimony Pressure,
where the size penalty is based among others on the sizes of the best
individuals in recent generations. Luke and Panait (2002) avoid us-
ing a weighting of fitness and size by separating the two objectives,
and selecting for size or fitness in different tournaments using meth-
ods called proportional and double tournament. Interestingly, these
methods point in the direction of multi-objective optimization, as they
resemble early approaches to multi-objective optimization by Schaffer
(1985) and Fourman (1985); see also discussion in (Fonseca & Fleming,
1995). While not using a weighting, the approach does require param-
eters that trade off the relative importance of the two objectives. Our
goal here will be to avoid such parameters too, and strive towards
parameterless size control.

Rather than compressing size and fitness into a single measure of
quality as done in weighting approaches, methods for Ewolutionary
Multi- Objective Optimization (EMOO) treat all objectives separately,
and avoid comparing different objectives (Fonseca & Fleming, 1995;
Coello, 2000; Deb, 2001). This approach to bloat has been taken by
several authors (Langdon, 1996; Rodriguez-Vazquez, Fonseca, & Flem-
ing, 1997; Zitzler & Thiele, 1999; Ekart & Németh, 2001; De Jong,
Watson, & Pollack, 2001).

The promise of multi-objective methods for size control is illustrated
by several successful applications (Langdon, 1996; Zitzler & Thiele,
1999; De Jong et al., 2001). However, the direct use of size and fitness
as objectives can result in a harmful convergence to small size individ-
uals, as found by several authors; see e.g. (Langdon & Nordin, 2000;
Ekart & Németh, 2001). Our aim here is to understand why EMOO
algorithms with this particular choice of objectives are prone to such
problematic convergence. Modifications to the multi-objective method
were suggested in (Ekart & Németh, 2001), but these methods again
required a parameter that regulates the trade-off between fitness and
size, thus introducing problem-dependent parameters. Our goal here is
to understand the cause of the failure, as a step towards the desirable
aim of parameterless size control.

To determine why an evolutionary multi-objective approach to bloat
can be problematic, we investigate the behavior of a basic method for
evolutionary multi-objective optimization. A straightforward applica-
tion of this method to the objectives of fitness and size is found to
strongly focus on the size objective and neglect the fitness objective,
confirming earlier reports. The problem is analyzed, leading to the con-
clusion that diversity maintenance is required. To test this hypothesis,
we make a minimal modification to the algorithm to maintain some
existing diversity, and find that it avoids the over-representation of

bloat.tex; 10/02/2003; 13:12; p.3

4 Edwin D. de Jong and Jordan B. Pollack

small individuals. This approach is then applied to three test problems.
Finally, we describe the FOCUS algorithm, which actively promotes
diversity by making it an additional objective of the search. Results
with using this algorithm to find compact trees are presented.

The structure of this article is as follows. In section 2, causes for
bloat that have been put forward are discussed. Section 3 shows how
bloat can rapidly bring down the number of individuals that can be
processed within a given amount of node evaluations. Section 4 ver-
ifies experimentally that the use of a basic multi-objective method
can lead to a premature convergence to small trees, and an analysis
of this phenomenon suggests that diversity maintenance is required.
This hypothesis is tested in section 5, and the resulting method is
applied to test problems in section 6. Finally, results obtained with
active promotion of diversity using the FOCUS method are reported in
section 7, and section 8 concludes.

2. Explanations of Bloat

Several causes of bloat have been suggested in the literature. First,
the offspring of large trees can be favored by selection because non-
functional code can play a protective role against crossover (Ange-
line, 1994; Blickle & Thiele, 1994; McPhee & Miller, 1995; Nordin
& Banzhaf, 1995). This phenomenon may occur when trees are dis-
arranged (for example by mutation or crossover) and subsequently
selected based on fitness; whenever a tree is created that is as fit as other
population members but less likely to be disrupted due to larger size?,
it will be more likely to be selected in the absence of other factors, and
thus increase the average size of individuals. Considering this form of
bloat, Langdon (1998) also found that a size neutral mutation operator
is more likely to produce children of equal fitness for larger trees.

Second, trees may grow larger due to crossover and subsequent se-
lection due to removal bias (Soule, 1998). Soule defines inviable code
as code that cannot affect the fitness or function of the tree, whatever
code it is replaced with.

Briefly, removal of a subtree is expected to have less impact on fitness
if the subtree is small, while for the replacing subtree no such relation
exists. Thus, trees are expected to grow larger. Since the increase is pro-
portional to the current size of the trees, this mechanism can potentially
produce exponential growth.

2 Note that for mutation, this is not the case when using a fixed per node
probability of mutation.

bloat.tex; 10/02/2003; 13:12; p.4

Multi-Objective Methods for Tree Size Control 5

Third, code growth is expected to occur in general for progressive
search techniques if fitness based selection is used (Langdon & Poli,
1998; Banzhaf & Langdon, 2002), since variable length search prob-
lems typically have more long representations for a given solution than
short ones. Langdon and Poli observed that crossover with fitness-based
selection led to bloat, whereas crossover with random selection did not.
This also depends on the connectivity of the fitness landscape.

Nordin and Banzhaf (1995) observed that the length of the effective
part of programs decreases over time. However, the total length of
the programs in the experiments also increased rapidly, hence it may
be concluded that bloat in these experiments was mainly due to the
growth of ineffective code.

3. Bloat and the Speed of Search

In the following, the influence of bloat on the performance of the search
process is considered in a simple genetic programming experiment. The
algorithm in this experiment is a basic genetic programming method,
described in section 6. The problem is the even 6-parity problem,
described in section 4.1.

Figure 1 shows that tree size increases progressively as a function of
the number of generations. The computational complexity of evaluation
is typically (at least) linear in the number nodes of a tree. Together, this
suggests that without any measure against bloat, sustained evolution
is infeasible because the cost of evaluation increases dramatically with
the number of generations. Depending on implementation, the time
required for generation and selection will typically also increase with
tree size, and thus further slow down the search.

The above point has important implications for the way performance
can be measured in genetic programming. In general, the purpose of
measuring an algorithm’s performance is to determine its efficiency in
finding solutions or approximations thereof. To avoid the influence of
machine-specific details, the amount of computational effort is typically
measured as a function of the number of generations or, equivalently,
the number of fitness evaluations. However, as figure 1 showed, bloat
can greatly influence the amount of function or node evaluations per
fitness evaluation. Therefore, in variable-size evolution, the number
of fitness evaluations spent in achieving a certain performance is no
adequate measure of computational effort spent.

To address this issue, we measure computational effort as a function
of node evaluations instead of tree evaluations. While this method has
been used previously by several authors (Poli, 1997; Banzhaf, Ban-

bloat.tex; 10/02/2003; 13:12; p.5

6 Edwin D. de Jong and Jordan B. Pollack

The Computational Cost of Bloat
100000 T T T

50000

Number of function evaluations per generation

50 100 150 200
Generation

Figure 1. The number of nodes evaluated per generation as a function of the gen-
eration number when no measures are taken against bloat, averaged over 100 runs
(see text). The rapid increase in computational costs per generation imply that an
adequate solution to bloat is required to enable sustained progress.

scherus, & Dittrich, 1998), its use has not yet become widespread. We
propose that it should be used as standard practice when evaluating
methods for variable length evolution. By measuring the amount of
computation in this more fine-grained manner, a far better approxi-
mation of the computational effort is obtained. The proposed method
is easy to implement, and does not cost much computation time when
the number of node evaluations for a tree is simply approximated by its
number of nodes. If it is important to obtain yet higher precision, the
number of nodes actually evaluated can be counted at evaluation time;
if each node is evaluated at least once, costing at least O(1) per node,
even this does not affect the computational complexity of evaluation.
Since the number of nodes only has to be computed once per tree and
will often be a sufficiently accurate indicator of the cost of evaluation,
we will use this measure as the indicator of the computational effort
spent.

4. Premature Convergence of the Multi-Objective
Approach to Small Trees

Multi-objective methods can converge to populations of small individ-
uals of low fitness, meaning convergence took place before high fitness
individuals could be found. In this section, we investigate how such
premature convergence to small trees can occur.

bloat.tex; 10/02/2003; 13:12; p.6

Multi-Objective Methods for Tree Size Control 7

Current methods for Evolutionary Multi-Objective Optimization
(EMOO) are based on Pareto-dominance. For an introduction, see
e.g. (Fonseca & Fleming, 1995; Coello, 2000; Deb, 2001). EMOO as-
sumes that objectives are essentially incomparable, and that compar-
ison of different objectives is to be avoided. Thus, an individual is
only preferred over another if it is at least as good considering all
objectives. By further requiring that an individual cannot be preferred
over one with identical objective values, we arrive at the principle of
Pareto-dominance.

Let individual z have values x; for the n objectives, and let in-
dividual y have objective values y;. Then z dominates y if and only
if:

Vie[ln]:z; >y AN Fie[l.n]:z; >y

Methods for evolutionary multi-objective optimization strive to ap-
proximate the Pareto-optimal set, containing all non-dominated solu-
tions, i.e. individuals that are not dominated by any other individuals.
Thus, when functioning properly, a multi-objective method using fit-
ness and size as objectives produces a tradeoff front of individuals
ranging from small but unfit individuals to highly fit but large indi-
viduals, with many intermediate combinations in between. For each
of the individuals on this front, neither fitness nor size can improve
without decreasing the other objective.

4.1. ALGORITHM DESCRIPTION AND TEST PROBLEM

We aim to investigate the behavior of multi-objective methods when
using fitness and size as objectives. Several sophisticated methods for
evolutionary multi-objective optimization exist, e.g. (Zitzler & Thiele,
1999; Corne, Jerram, Knowles, & Oates, 2001; Deb, Agrawal, Pratab,
& Meyarivan, 2000). Our aim here however is to understand what can
go wrong when applying multi-objective methods to bloat. We will
therefore use a basic multi-objective algorithm, based on the algorithm
described by Fonseca and Fleming (1993). We follow Soule and Foster
(1999) in other properties of the experiment, as described below; see
also table I.

The initial population consists of random trees. The size of a random
trees is selected by drawing its number of internal nodes randomly
from a uniform distribution between 1 and 10. The tree is generated
by starting with a single root node and changing randomly chosen leaf
nodes into nodes with children until the specified number of internal
nodes is reached.

bloat.tex; 10/02/2003; 13:12; p.7

8 Edwin D. de Jong and Jordan B. Pollack

Table I. Properties of the experiment.

| Problem | Even 6-parity |

| Terminal set | The 6 input variables z0..z5 |

| Function set | AND, OR, NAND, and XOR |
Fitness Number input cases handled correctly

(out of 2% = 64)

| Selection | Stochastic remainder without replacement
| Cycle | Generational
| Population size | 500

| Generation of new individuals | 66.6% by crossover, 33.4% by copying

| Number of runs per experiment | 100

|
|
|
| Initial Population | Random trees (see text) |
|
|
|

| Termination | 1,000,000 node evaluations

Starting from an initial population, we create a new generation using
crossover and copying on randomly selected parents, and combine all
individuals into a single set. Crossover randomly selects a node in
each of two trees and exchanges the subtrees rooted at these nodes.
The number of individuals by which each individual z; is dominated,
the domination number 1040, (x;), is determined. Individuals are then
sorted according to their nogom, value. Next, the relative probabilities
of selection are assigned to individuals according to their index in the
sorted list, scaled between zero and one. For groups of individuals that
have equal n0g4om, the resulting values are then averaged, so that they
will have equal probability of selection. To obtain the next population,
we use stochastic remainder selection without replacement (Brindle,
1981). This calculates the desired number of copies for each individual
based on its normalized rank, assigns the whole parts of these numbers,
and uses the fractional parts as the probability that an additional copy
of the individual is added to fill up the next population to the required
size, where each individual is selected at most once.

As a test problem in this experiment, we use the even 6-parity prob-
lem with the operators AND, OR, NAND, and XOR. Later experiments
will employ a more difficult version in which XOR is replaced by NOR.

bloat.tex; 10/02/2003; 13:12; p.8

Multi-Objective Methods for Tree Size Control 9

Solutions to an n-parity problem receive a sequence of n bits as input
and return true (1) if and only if the number of ones in the sequence is
even. The problem is called even parity to distinguish it from the com-
plementary odd n-parity problem, which returns the inverse answers.
The fitness objective is the number of correct cases; the size objective
is minus the number of nodes.

4.2. EXPERIMENTAL ANALYSIS OF CONVERGENCE TO SMALL TREES

We investigate the plain multi-objective algorithm described in the pre-
vious section, using size and fitness as objectives. The average evolution
of populations is shown in figure 2. Starting from a randomly initialized
population, the method is ineffective at improving fitness. It drives
the population towards trees of minimum size, i.e. single nodes, and
consequently the average fitness converges to the baseline fitness of 32.

The left graph shows the distribution of tree sizes in the population
for the first ten generations, averaged over 100 runs. At generation zero,
the tree sizes of the initial population are uniformly distributed over
the odd numbers between 3 and 21 as a result of the initialization of the
population?. Within the first few generations, this distribution rapidly
shifts toward smaller trees. From generation 8 on, the vast majority of
the trees contain just a single node. The graph on the right shows the
distribution of fitness for the same experiment. Although initially some
individuals with higher than baseline fitness exist, and there is even a
slight increase in their frequency during the first three generations, they
are then driven out of the population by the smaller individuals, causing
fitness to converge to the baseline fitness of 32. Since two single-node
parents can only produce offspring of single nodes, this convergence is
permanent.

These findings show that the plain multi-objective method with
fitness and size objectives is not functioning properly, as it does not
lead to different combinations of fitness and size. In the following, the
problematic convergence to small individuals is analyzed to find the
underlying cause, so that it may be addressed.

4.3. EXPLANATION OF THE SHIFT TOWARDS SMALL INDIVIDUALS

We will now examine the shift towards small individuals found for the
plain application of the multi-objective approach to tree size control.
First, selection in multi-objective methods favors non-dominated in-
dividuals over dominated ones. For a discrete fitness measure such as
that used here, this implies that for each fitness represented in the

3 Since all operators are binary, trees cannot have an even number of nodes.

bloat.tex; 10/02/2003; 13:12; p.9

10 Edwin D. de Jong and Jordan B. Pollack

500"
004
a0
20047

1004

Frequency of tree size in population

5004
4004
300
200

1004

Frequency of fitness in population

) 40
Fitness 50
(number of correct cases)

Figure 2. The distribution of tree size (top) and fitness (bottom) using a basic
multi-objective method (see text). Within the first ten generations, the population
converges to individuals of minimum size and baseline fitness.

population, the smallest individuals with that fitness are favored over
larger individuals with the fitness. All such favored individuals are non-
dominated, hence they all have equal probability of being maintained
in the population after selection. This leads to a front of different
combinations of fitness and size. In figure 2, this is visible as the mildly
multi-modal distribution in generations 4 through 7.

Selection A possible explanation for the subsequent disappearance
of the non-minimum size individuals is that due to the variance of
selection (Mahfoud, 1995), also known as genetic drift, the uneven
distribution eventually leads the small individuals to take over the
population; from figure 2, we know that the distribution of the initial

bloat.tex; 10/02/2003; 13:12; p.10

Multi-Objective Methods for Tree Size Control 11

population is indeed highly skewed towards baseline fitness, and the
minimum size for individuals of this fitness is 1.

To test whether this explanation holds, we focus on the effect of
selection by disregarding the generation of new individuals. This is done
by using no crossover but only copying to produce the new generation,
so that the expected distribution of the new generation equals that
of the current population. If the explanation is correct, it would be
expected that after some period of maintaining a non-dominated front,
individuals with fitness 32 and size three will come to dominate the
population. However, this is not what was observed. In the standard
setup shown in figure 2, 99.56% percent of the population is of minimum
size after ten generations, and this converged to 100% by generation
25. In the control experiment, 96% are of the smallest possible size?,
and this figure continued to fluctuate between 95.4 and 96.2% up to
generation 100. Thus, we can conclude that the variance of selection
is not sufficient to account for the disappearance of non-dominated
individuals of non-minimum size.

Generation The effects of selection were found insufficient to ex-
plain the disappearance of non-dominated individuals of non-minimum
size. To investigate the problematic disappearance, we focus on non-
dominated individuals and study their distribution in a new generation
compared to the current population. If newly generated non-dominated
individuals are smaller on average than the existing non-dominated
individuals, then the distribution is expected to shift even without any
effects due to selection, i.e. if all and only non-dominated individuals
are maintained. We investigate this by using an algorithm that simply
maintains all non-dominated individuals. Hence, the population size is
variable. 500 new individuals are generated at each generation, using
crossover in 66.6% or 100% of the cases and copying in the remaining
cases; no mutation is used.

The graph in figure 3 shows the relation between the size of newly
generated non-dominated individuals and the existing non-dominated
individuals. When all generated trees are considered, this relation closely
approximates the identity function y = z. This conforms with expec-
tation, since both crossover and mutation are size neutral. However,
considering non-dominated trees only, newly generated trees are con-
siderably smaller on average than existing ones. Typically, all of the
non-dominated trees have equal chances in selection. Once the pop-
ulation cannot accommodate all non-dominated individuals anymore,
even minimal variance selection will therefore shift the distribution of

4 In the control experiment, the smallest possible size is three, as no new indi-

viduals are generated; this does not affect matters, since it does not make it easier
for larger individuals to be non-dominated.

bloat.tex; 10/02/2003; 13:12; p.11

12 Edwin D. de Jong and Jordan B. Pollack

Effect of generation and selection on tree size

35 T T T T
y=X

—— All trees, 66.6% crossover

—— All trees, 100% crossover

|| —— Non-dominated trees, 66.6% crossover

—— Non-dominated trees, 100% crossover

w
L

N
3]

N

Average size of generated trees

15

15 2 25 3 35
Average size of trees in population

Figure 3. Effect of generation and selection on the size of trees. On average, crossover
and copying have no effect on tree size, as seen by the two lines in the graph approx-
imating the diagonal y = x. However, of these generated trees, the non-dominated
ones are substantially smaller than average for both the 100% crossover and the
66.6% crossover experiment.

tree sizes downwards. Thus, the effects of generation are sufficient to
explain the convergence to small trees.

We believe that the above findings may explain other unsatisfactory
results where a basic multi-objective approach was used with fitness
and size as objectives. Small size is typically easier to achieve than
high fitness, as seen from the high frequency of small trees among
non-dominated individuals. Thus, by searching for non-dominated indi-
viduals, the population shifts towards smaller individuals. The resulting
change in the size distribution of the population causes newly generated
trees to be smaller, reinforcing this effect. This leads to a positive
feedback loop that rapidly brings down the size of the trees. The effect
can rule out the future generation of larger individuals; crossover can
generate trees of twice the size of the largest individual, but this may
not be sufficient to reach a fitness increase that would warrant a place in
the population. Thus, the use of a size objective can lead to degenerate
populations.

Apart from the evaluation advantage for small trees in the current
multi-objective setting, theoretical analysis of linear variable length
evolution has pointed to a bias favoring small trees for crossover in flat
fitness landscapes (Poli & McPhee, 2001).

bloat.tex; 10/02/2003; 13:12; p.12

Multi-Objective Methods for Tree Size Control 13

In the experiments with the basic multi-objective approach to bloat
reported at the beginning of this section (see figure 2), every run
converged within 25 generations to a population in which the largest
individual consists of a single node. We conclude that if multi-objective
methods are to be used for size control, special care must be taken to
maintain diverse populations. In the following section, we will test this
hypothesis by employing a minimally complex diversity maintenance
method.

5. Diversity Maintenance

The previous analysis showed that many of the non-dominated indi-
viduals generated were of small size and baseline fitness. This suggests
that the multi-objective approach to bloat requires diversity mainte-
nance. To test this hypothesis, we will simply reduce the number of
individuals with identical objective values, i.e. identical size and fitness.
The motivation for this is that individuals with identical objective
values are generally less likely to contribute to population diversity
than individuals with different objective values.

A reduction of the number of individuals in a location in objective
space can be achieved by using a modification of the dominance relation
that discounts the ranks of additional individuals in a location. The
result of this measure is that additional individuals in a location will
have lower probabilities of being maintained. Thus, a larger number of
individuals in one location is compensated by smaller probabilities, so
that overall the expected number of individuals will be reduced, and a
spread of the population over different locations is maintained.

The method described above can be implemented within a dom-
inance based selection scheme as follows. For each location on the
front, the first individual zy occupying it has a domination number
Nodom (o) = 0, i.e. it is not dominated by any individuals. The second
individual 7 is only dominated by zg, and hence nogom(z1) = 1, and
so forth. Thus, an individual at some location of the trade-off front
is only dominated by the individuals that precede it: nogom(zi) = i.
The order of individuals is arbitrary, and determined by the position
in the list of individuals that constitute the population. Under this
scheme, any new individual in another non-dominated location will be
preferred over the second individual in an existing location. This means
that selection will give priority to selecting at least one individual from
each location on the front. The next level of priority is assigned to a
second individual from each location, then a third, continuing in this

bloat.tex; 10/02/2003; 13:12; p.13

14 Edwin D. de Jong and Jordan B. Pollack

manner. This balancing scheme establishes a uniform distribution over
the trade-off front when possible.

5.1. EXPERIMENTAL RESULTS WITH DIVERSITY MAINTENANCE

Figure 2 in section 4.2 showed that using the standard multi-objective
method, the population quickly converged to trees of minimum size
and baseline fitness. Figure 4 shows the results of the front balancing
method described in the previous section on the same problem. The
use of diversity maintenance adequately addresses the problem. Rather
than converging to a single size and fitness, the population spreads over
various tree sizes without resulting in bloat, and finds trees of different
fitnesses, including the maximal fitness of 64.

While the 6-parity problem with the AND, OR, NAND, and XOR op-
erators has been described as unlikely to be addressed successfully by
simple genetic programming (Soule & Foster, 1999), these results show
that basic genetic programming (with size control) is able to solve the
problem. We note that the choice of operators is of great influence
on the difficulty of the n-parity problems. A more difficult version is
obtained by not using the XOR operator, and using the NOR operator
instead. While the XOR version of the 6-parity problem can be solved
by trees of 13 nodes, the smallest solution to the NOR version of the
problem that we are aware of, and which will be described, requires
79 nodes. The following section will report on experiments with this
more difficult version of n-parity lacking the XOR operator, and with
two other test problems.

Several features of the multi-objective approach to tree size control
are worth mentioning. The distribution of tree sizes quickly spreads,
but is focused around trees of appropriate size, i.e. the extremes of
bloat and problematic convergence to small trees are both avoided.
Since no parameters that regulate the trade-off between fitness and
size are used, this size is determined by the problem, thus providing
an adaptive form of tree size control. As the runs progress, higher
fitness individuals are found; this is seen as the rightward shift of the
fitness distribution. As higher fitness individuals are found, lower fitness
individuals continue to be represented. Thus, as intended, the multi-
objective method maintains a front of solutions rather than striving
towards a single high fitness individual.

bloat.tex; 10/02/2003; 13:12; p.14

Multi-Objective Methods for Tree Size Control 15

Distribution of tree sizes

\\\,“\fn\\\\\\\\‘

1
i

“\\“‘“&!ﬁ&“i{‘ S

25 “‘“‘““‘i‘l‘?&“ SR>
SIS

B! W
IS

o
1%

Frequency of tree size in population

50 O Generation
Tree size

Distribution of fitness

BooR N N W
o o [=] a o
o o o o o
1 1

7
7
=
V2 Z|
2
=
S
)
g
N

3]
o

Ik “ o “\\‘ 10

N!!f‘,\!!!‘«{lm

‘ ‘ “ "//"/"
Z
LZZZ

o
L

Frequency of fitness in population

oA
s
>

L Z
IKANZZZ 22
DY
’/I"'/’I’/’,’”"”’I"//
40 L7 20

60 Generation
Fitness

Figure 4. Distribution of tree size (top) and fitness (bottom) in the population
for the multi-objective method using front balancing. Even though at each genera-
tion more small and unfit trees than large and fit trees are produced, the method
maintains individuals along the front of fitness and size.

6. Comparison on Three Test Problems

In the previous section, it was seen that problematic results with a basic
multi-objective method were resolved by adding a simple mechanism
for diversity maintenance. This led to balanced populations, adequate
size control, and higher fitness values. In the following, we will test
the resulting approach on three test problems from the literature: 6-
parity, the 11- multiplexer, and symbolic regression, see (Koza, 1992,

bloat.tex; 10/02/2003; 13:12; p.15

16 Edwin D. de Jong and Jordan B. Pollack

1994). The multi-objective method that will be used is the method
described in section 4.1, except that here we simply maintain at most
one individual per location rather than discounting multiple individuals
in a location. As a comparison method, we use basic genetic pro-
gramming without size control. This method is identical to the multi-
objective method, except that evaluation employs the fitness objective
only, rather than fitness and size. Thus, it uses rank-based selection,
where ranks are determined by fitness. Unless otherwise noted, the
properties of the methods are those in table I. For both methods and
all three problems, new individuals are always generated by crossover,
followed by mutation with a probability of 0.1. All experiments consist
of 100 runs of 1,000,000 node evaluations each.

For each combination of method and problem, the population size
has been selected by trying out the sizes 100, 250, and 500 for ten runs
each, and selecting the population size that maximized the average
best fitness at the end of the runs. For the basic genetic programming
method, this resulted in population size 250 for each of the three
problems. For the multi-objective method, it resulted in size 250 for
symbolic regression and size 100 for the remaining two problems.

For the 6-parity problem, the operators AND, OR, NAND, and NOR
are used. This makes the problem considerably more difficult compared
to the version that includes XOR. For symbolic regression, the function
2% — 22 + 22 (Koza, 1994) is used on 20 test points chosen randomly
from [-1, 1]. The function set consists of +, -, /, *, sin, cos, exp,
log, and the terminal set contains the input variable (x) and a random
constant. For the 1l-multiplexer, the function set is AND, OR, NOT,
IF, and 3 of the 11 input variables are address bits.

Figures 5-7 show the development of fitness and tree size for the ge-
netic programming method without size control and the multi-objective
method using size and fitness. For 6-parity and the 11l-multiplexer,
fitness is to be maximized, while for symbolic regression the fitness
represents an error that is to be minimized. Tree size graphs are plotted
as a function of node generations to allow for comparison with the
corresponding fitness graphs.

Concerning tree size, basic genetic programming exhibits bloat on
all three test problems; it reaches sizes well beyond what is required
for correct solutions, thus allowing only a limited number of tree eval-
uations for the given amount of node evaluations. The growth of tree
sizes appears to level off over time, but this is a result of viewing tree
size in terms of the number of node evaluations; as trees grow larger,
the number of generation and selection events per horizontal unit in
the graph decreases.

bloat.tex; 10/02/2003; 13:12; p.16

Multi-Objective Methods for Tree Size Control 17

In contrast with the basic genetic programming method, the multi-
objective approach successfully controls tree size on all three prob-
lems. It does so without making use of parameters that regulate the
trade-off between fitness and size. This indicates that multi-objective
optimization could be an adequate method for controlling tree size.

A further requirement for a successful size control method is that it
should not have a detrimental effect on fitness. As figures 5-7 (right)
show, this requirement is more than satisfied; the multi-objective ap-
proach for size control achieves better fitness for the given amount of
computation on all three test problems. In summary, on all three test
problems, the multi-objective approach not only provides adequate size
control, but also improves the efficiency of the search.

To test the statistical significance of these results, we have performed
a Mann-Whitney test, also known as the Wilcoxon rank sum test, see
e.g. (Conover, 1980). This test has the advantage of not requiring as-
sumptions about the distribution, such as normality. It is applied to the
value (tree size or best fitness) in the last population of each run of an
experiment®. The tree size is significantly lower for the multi-objective
method on all three problems at a significance level of a = 0.0001.
The improved fitness for the multi-objective method is significant for
a = 0.0005 in the 6-parity experiment, and for e = 0.0001 in the sym-
bolic regression and 11-multiplexer experiments. Thus, all differences
are statistically significant.

7. Reducing tree size: active promotion of diversity

If successful, methods for size control may not merely reduce bloat, but
provide a mechanism to find compact solutions. Indeed, reducing un-
necessary elements is often a goal in itself. This is the case for instance
in data mining and knowledge discovery, where the interpretability of
solutions is an important issue. Furthermore, in engineering design,
reducing the amount of material used can improve the quality and
lower the cost of a design.

In this final results section, we will therefore consider to what extent
the multi-objective approach to size control is able to reduce unneces-
sary material and thereby identify compact solutions. We report results
with the rFocus algorithm. This algorithm actively promotes diversity,
rather than simply maintaining some of the existing diversity. This is
achieved by making diversity an additional objective.

® Technically, the Mann-Whitney test determines whether P(X < Y) < 1. With
the additional assumption that a difference between the populations must be in the
location of the distribution, it may be concluded that E(X) > E(Y).

bloat.tex; 10/02/2003; 13:12; p.17

18 Edwin D. de Jong and Jordan B. Pollack

6-Parity problem 6-Parity problem

200 - 39
38
150 37
R
N o P
8 236
2100 E
[} . p
2 e $35
o R m
> .
< s 34
50 "
/ - 33 —
K --- GP no size-control — multi-objective
— multi-objective --- GP no size—control
32
00 2 4 6 8 10 0 2 4 6 8 10
Number of node evaluations x10° Number of node evaluations X 10°

Figure 5. Development of tree size and fitness for the 6-parity problem, averaged
over 100 runs (see text).

11-Multiplexer problem 11-Multiplexer problem

200
--- GP no size-control
— multi-objective
1800
150 e
(] d
N .
@ 01650
[Pid 141
g g
%100 e "E
IS L & 1500
g - @
< /'
50 B
1350
2 — multi-objective
o --- GP no size—control
12
0 4 6 8 10 OG0 2 4 6 8 10
Number of node evaluations % 10° Number of node evaluations % 10°

Figure 6. Development of tree size and fitness for the 11-multiplexer problem.

7.1. MINIMUM SIZE OF n-PARITY SOLUTIONS

The problem we study is the even n-parity problem using operators
AND, OR, NAND, and NOR. We first consider how many nodes are re-
quired for a correct solution. To this end, we describe a procedure that
specifies correct solutions to even m-parity. The construction provides
an upper bound for this minimum size. We have not been able to
prove or disprove whether this bound is tight, or to find bounds for
this or related problems (not allowing repeated use of outputs) in the
literature.

bloat.tex; 10/02/2003; 13:12; p.18

Multi-Objective Methods for Tree Size Control 19

Symbolic regression problem Symbolic regression problem
200 7 1

-- GP no size—control
— multi-objective

150 ’," 0.75
[} Pid
N
«n 7]
3 g
élOO ,‘E 0.5
g g
5] I
E .

,»" | --- GP no size-control
50 ‘ — multi-objective 0.25

’
,
’
’
.
’

C0 2 4 6 8 10 G0 2 4 6 8 10
Number of node evaluations

5 Number of node evaluations x10°

Figure 7. Development of tree size and fitness for the symbolic regression problem.

The principle of the construction is as follows. We divide the se-
quence of input bits in half and apply a parity function to the parity
of each half, where the parities of the halves are obtained by recur-
sively applying the same procedure again. For sub-sequences of size
one, i.e. single bits, the bit itself is used instead of its parity. When this
occurs for precisely one of the two arguments, the outcome would be
inverted, and an odd 2-parity function is used instead of even-parity to
correct this.

Let S be a binary sequence of length |S| = n > 2. S is divided in
half yielding two subsequences L and R with, for even n, length 7 or,
for odd n, lengths "T_l and "TH Then the following recursively defined
function P(S) gives a correct expression for the even-parity of S for
|S| > 2 in terms of the above operators:

S if |S5]=1
P(S) =« O0dd(P(L),P(R)) if |S|> 1A mustinvert(L, R)
Even(P(L), P(R)) otherwise

where
0Odd(A, B) = NOR(AND(A, B), NOR(A, B))
Even(A, B) = OR(AND(A, B), NOR(A, B))

True if |A|=1 A |B|#1
must_invert(4, B) = < True if |[A|#1 A |Bl=1
False otherwise

bloat.tex; 10/02/2003; 13:12; p.19

20 Edwin D. de Jong and Jordan B. Pollack

Table II. Length of hand-constructed solutions to n-parity (see text).

[n Jrl2fs a5 |6 |7 |

| Length | 3 | 7| 19 | 31 | 55 | 79 | 103 |

The length |P(S)| of the expression P(S) satisfies:

_ 1 for |S|=1
|P(S)|_{3+2|P(L)|+2|P(R)| for |S]>1

For n = 2%, > 0, this expression can be shown to equal 2n? — 1.
Table IT gives the lengths of the expressions for the first seven even-n-
parity problems. For |S| = 1, the shortest expression is NOR(S, S); for
|S| > 1, the length is given by the above expression. The rapid growth
with increasing order stems from the repeated doubling of the required
inputs. This makes clear why using a NOR operator makes the problem
more difficult than using XOR.

7.2. THE FOCUS ALGORITHM

We now describe a multi-objective algorithm that combines the active
promotion of diversity with a high degree of elitism. The algorithm aims
to Find Only and Complete Undominated Sets, and is therefore called
FOCUS. This is pursued by keeping all and only those individuals that
are non-dominated with respect to the individuals encountered so far.
The resulting elitism is countered by employing a diversity objective,
measuring each individual’s contribution to population diversity. The
idea is that by explicitly rewarding individuals for diversity, the usual
procedure of maintaining arbitrary low fitness individuals that happen
to be present can be avoided.

The efficiency of FOCUS was compared to genetic programming in
(De Jong et al., 2001). Here, we will describe the algorithm, and con-
sider its ability to find compact solutions.

The population is initialized with m randomly created individuals. A
cycle proceeds as follows. A chosen number of n new individuals is gen-
erated based on the current population using crossover and mutation,
and added to the population. If a new individual already exists in the
population, it is mutated. If the result also exists, it is discarded; oth-
erwise it is added to the population. All individuals are then evaluated.
After evaluation, all population members are checked against all other

bloat.tex; 10/02/2003; 13:12; p.20

Multi-Objective Methods for Tree Size Control 21

population members, and removed if dominated by any of them. As
in section 6, of multiple individuals having the same objective vectors,
only one individual is retained.

The removal of dominated individuals and individuals with equal
objective vectors leads to small population sizes: populations in the
following experiments contain between 5 and 50 individuals on average.
This has a positive effect on the speed of the algorithm as it reduces
the cost of the existence and dominance checks, and furthermore makes
it possible to perform high numbers of generations. The removal of
individuals with equal objective vectors leads to a high degree of elitism,
and may be thought to reduce the potential for exploration. However,
the active promotion of diversity counteracts this effect and explicitly
favors different individuals.

In the experiments, population size parameters of m = n = 300
are used. The probability of crossover is 90% and that of mutation
10%. Random individuals contain between 1 and 20 internal nodes and
are generated as described. The objectives used are fitness, size, and
diversity. For the diversity objective, the following distance measure is
used. The distance between two corresponding nodes is zero if they are
identical and one if they are not. The distance between two trees is the
sum of the distances of the corresponding nodes, i.e. nodes that overlap
when the two trees are overlaid, starting from the root. The distance
between two trees is normalized by dividing by the size of the smaller
of the two trees.

7.3. FINDING COMPACT TREES USING THE FOCUS ALGORITHM

We investigate to what extent the method described above can be used
to find compact solutions to n-parity problems. This is done as follows.
To average over the different runs, we align them at the point where the
first correct solution is found, and monitor the smallest correct solution
from then on. For 3-parity, the results are as follows. The first correct
solution found is of size 30 on average. After finding a first solution,
the algorithm rapidly finds smaller correct solutions: the average size
drops to 22 within on average 4,000 additional fitness evaluations, and
converges to around 20. The smallest tree, found in 12 out of 30 runs,
was 19. As seen from table II, this equals the hypothesized minimum
size for even 3-parity trees. For 4-parity, solutions dropped in size from
an initial 68.5 to 50 in about 10,000 fitness evaluations, and to 41 on
average when runs were continued to around 85,000 evaluations. In 12
of the 30 runs, solutions of hypothesized minimum size (31 nodes) were
found. Finally, using the FOCUS algorithm on the 5-parity problem,
the smallest solution found was of size 55, which again equals the

bloat.tex; 10/02/2003; 13:12; p.21

22 Edwin D. de Jong and Jordan B. Pollack

Figure 8. Solution to 4-parity of hypothesized minimum size (31 nodes) found by
the FOcUs algorithm. The function consists entirely of equivalents of Even and Odd
functions. It can therefore be represented in simplified form, as shown in figure 9
(right).

Odd Odd
X2 Even Odd Even
x0 x1 x1 x3 X0 x2

Figure 9. Hypothesized minimum size solutions to 3-parity (left) and 4-parity (right)
found by the Focus algorithm, shown in simplified form (see text).

hypothesized minimum size. In summary, for all three problems, multi-
objective size control combined with active diversity promotion led to
solutions of the hypothesized optimally compact size.

To determine whether the reduction of bloat improves the intelligi-
bility of solutions, we inspect the hypothesized minimal size solutions
found for the 3-, 4- and 5-parity problems. Figure 8 shows a correct
minimal size solution found for even 4-parity. The top 3 operators
(NOR(NOR(A1,B1) ,AND(A2,B2))) specify the 0dd (A,B) function which
was also used in our construction, provided that A1 = A2 and B1 = B2.
The Odd function can also be built using AND (NAND,OR), and likewise
the Even function can be built using OR(AND,NOR) or NAND(NAND, OR).
By writing occurrences of these constructs as Even(A,B) and 0dd (A,B),
the function can be represented in a more compact manner (fig. 9), and
it is seen that the function is simply a combination of binary Even and
0dd functions. The solution to 3-parity that we have inspected has the
same structure, as shown in the same figure.

bloat.tex; 10/02/2003; 13:12; p.22

Multi-Objective Methods for Tree Size Control 23

OR

A

NOR NOR

A/\

Even Even Odd Odd

N A N I

x0 x4 X1 X2 x3 x0 x4 X1 X2 x3

Figure 10. Hypothesized minimum size solution to 5-parity found by the Focus
algorithm, shown in simplified form. Interestingly, the function employs ternary
Even and 0dd functions. It returns True if the numbers of ones in two subsets of the
variables are both odd (left subtree) or both even (right subtree).

The minimal size solution for 5-parity was again equal to the size
of our hypothesized minimum size construction, but introduces a new
principle. Rather than constructing the function out of binary Even and
0dd functions, the search has produced ternary Even and 0dd functions.
The resulting solution is shown in simplified form in figure 10.

Finally, we note that larger instances of the parity problem can be
addressed by the use of methods that form modules during the search
such as ADFs (Koza, 1994) and GLiB (Angeline & Pollack, 1992).
Therefore, the combination of such methods with multi-objective size
control may provide an interesting direction for further research.

8. Conclusions

Bloat can lead to large and progressive increases in the time required
for the evaluation of individuals. This impacts both the design of search
algorithms and the measurement of their performance. Concerning the
latter, we have proposed the use of node evaluations, rather than tree or
fitness evaluations, as an indicator of computational effort spent when
measuring performance.

The main part of the article studies the use of Evolutionary Multi-
Objective Optimization (EMOO) for size control. It has been observed
that using size and fitness as objectives in an EMOO setup can lead
to a convergence to small size individuals. We have presented an em-
pirical analysis showing that the distribution of newly generated non-
dominated trees is highly skewed towards trees of sizes smaller than
the current average tree size. Thus, repeated replacement of existing

bloat.tex; 10/02/2003; 13:12; p.23

24 Edwin D. de Jong and Jordan B. Pollack

trees by uniformly selected newly generated non-dominated trees will
lead to a decreasing average tree size, as confirmed by experiments.

This finding suggests that multi-objective approaches to bloat re-
quire specific attention to diversity maintenance. To test this explana-
tion, we have taken a basic multi-objective method, and added a mini-
mal mechanism for diversity maintenance. This modification addressed
the problem of premature convergence to small trees, and thereby
supports this conclusion.

To test the efficacy of the resulting approach as a method for size
control, we have performed experiments on three test problems: even 6-
parity with the AND, OR, NAND, and NOR operators, the 11-multiplexer,
and a symbolic regression problem. On all three problems the multi-
objective approach adequately controlled the tree size, and significantly
improved performance as a function of computational expense.

Finally, we present the FOCUS algorithm, which actively promotes
diversity by making it an explicit objective. The FOCUS algorithm
finds solutions of hypothesized minimum size for the difficult NOR-
version of the even n-parity problems up to 5-parity. These results also
demonstrate a valuable side effect of size control, in that the solutions
are easily interpretable. This strongly contrasts with standard genetic
programming, which due to bloat produces solutions that are typically
very difficult to interpret, see (Keijzer, 2002).

We conclude that evolutionary multi-objective optimization in com-
bination with diversity maintenance can provide an adequate and pa-
rameterless approach to tree size control in genetic programming. The
proposed method may also be of use in other forms of evolutionary
computation that employ variable size representations.

A promising direction for further improvement may be to combine
multi-objective size control with more powerful techniques for diver-
sity maintenance, see e.g. (Laumanns, Thiele, Deb, & Zitzler, 2002).
Furthermore, while it will remain necessary to balance fitness and size,
the final selection of a solution will typically be based on fitness. Thus,
performance improvement may be possible by focusing on the high
fitness end of the tradeoff front during evolution.

Acknowledgments

The authors want to thank Maarten Keijzer, Bill Langdon, Sean Luke,
the members of the DEMO-Lab, and the anonymous reviewers for use-
ful comments and suggestions. EdJ gratefully acknowledges a Fulbright
grant and a TALENT fellowship from the Netherlands Organization for
Scientific Research (NWO).

bloat.tex; 10/02/2003; 13:12; p.24

Multi-Objective Methods for Tree Size Control 25

References

Angeline, P. J. (1994). Genetic programming and emergent intelligence.
In K. E. Kinnear, Jr. (Ed.), Advances in Genetic Programming
(pp. 75-98). Cambridge, MA: The MIT Press.

Angeline, P. J., & Pollack, J. B. (1992). The evolutionary induction
of subroutines. In Proceedings of the Fourteenth Annual Confer-
ence of the Cognitive Science Society (p. 236-241). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Banzhaf, W., Banscherus, D., & Dittrich, P. (1998). Hierarchical
genetic programming using local modules. InterJournal Complex
Systems(228). (URL: http://www.interjournal.org)

Banzhaf, W., & Langdon, W. B. (2002). Some considerations on the
reason for bloat. Genetic Programming and FEvolvable Machines,
3(1), 81-91.

Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998).
Genetic Programming — An Introduction: On the Automatic Fvo-
lution of Computer Programs and its Applications. San Francisco,
CA: Morgan Kaufmann.

Blickle, T., & Thiele, L. (1994). Genetic programming and re-
dundancy. In J. Hopf (Ed.), Genetic Algorithms within the
Framework of Evolutionary Computation. Workshop at KI-94
(pp. 33-38). Saarbriicken, Germany: Max-Planck-Institut fur
Informatik (MPI-I-94-241).

Brindle, A. (1981). Genetic Algorithms for Function Optimization. Un-
published doctoral dissertation, University of Alberta, Canada.
(Computer Science Department, Technical Report TR81-2)

Coello, C. A. C. (2000). An Updated Survey of GA-Based Multiobjec-
tive Optimization Techniques. ACM Computing Surveys, 32(2),
109-143.

Conover, W. (1980). Practical Nonparametric Statistics. New York,
NY: Wiley & Sons.

Corne, D. W., Jerram, N. R., Knowles, J. D., & Oates, M. J. (2001).
PESA-II: Region-based selection in evolutionary multiobjective
optimization. In L. Spector, E. D. Goodman, A. Wu, W. B.
Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk,
M. H. Garzon, & E. Burke (Eds.), Proceedings of the Genetic

bloat.tex; 10/02/2003; 13:12; p.25

26 Edwin D. de Jong and Jordan B. Pollack

and Ewvolutionary Computation Conference, GECCO-2001 (pp.
283-290). San Francisco, CA: Morgan Kaufmann.

Cramer, N. L. (1985). A representation for the adaptive generation of
simple sequential programs. In J. J. Grefenstette (Ed.), Proceed-
ings of the First International Conference on Genetic Algorithms
and their Applications (p. 183-187). Hillsdale, NJ: Lawrence
Erlbaum Associates.

De Jong, E. D., Watson, R. A., & Pollack, J. B. (2001). Reduc-
ing bloat and promoting diversity using multi-objective methods.
In L. Spector, E. Goodman, A. Wu, W. Langdon, H.-M. Voigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon, & E. Burke
(Eds.), Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO-2001 (p. 11-18). San Francisco, CA:
Morgan Kaufmann.

Deb, K. (2001). Multi-Objective Optimization Using Ewvolutionary
Algorithms. New York, NY: Wiley & Sons.

Deb, K., Agrawal, S., Pratab, A., & Meyarivan, T. (2000). A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-
Objective Optimization: NSGA-II. In M. Schoenauer, K. Deb,
G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, & H.-P. Schwefel
(Eds.), Parallel Problem Solving from Nature - PPSN VI (Vol.
1917, pp. 849-858). Berlin: Springer.

Ekért, A., & Németh, S. (2001). Selection based on the Pareto
nondomination criterion for controlling code growth in genetic
programming. Genetic Programming and Fvolvable Machines, 2,

61-73.

Fonseca, C. M., & Fleming, P. J. (1993). Genetic Algorithms
for Multiobjective Optimization: Formulation, Discussion and
Generalization. In S. Forrest (Ed.), Proceedings of the Fifth
International Conference on Genetic Algorithms, ICGA-93 (pp.
416-423). San Francisco, CA: Morgan Kaufmann.

Fonseca, C. M., & Fleming, P. J. (1995). An Overview of Evolu-
tionary Algorithms in Multiobjective Optimization. Evolutionary
Computation, 3(1), 1-16.

Fourman, M. P. (1985). Compaction of Symbolic Layout using Ge-

netic Algorithms. In J. J. Grefenstette (Ed.), Proceedings of the
First International Conference on Genetic Algorithms and their

bloat.tex; 10/02/2003; 13:12; p.26

Multi-Objective Methods for Tree Size Control 27

Applications (pp. 141-153). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Keijzer, M. (2002). Scientific Discovery Using Genetic Programming.
Unpublished doctoral dissertation, Danish Technical University,
Lyngby.

Kinnear, Jr., K. E. (1993). Generality and difficulty in genetic pro-
gramming: Evolving a sort. In S. Forrest (Ed.), Proceedings of the
Fifth International Conference on Genetic Algorithms, ICGA-93
(pp. 287-294). San Francisco, CA: Morgan Kaufmann.

Koza, J. R. (1992). Genetic Programming. Cambridge, MA: The MIT
Press.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of
Reusable Programs. Cambridge, MA: The MIT Press.

Langdon, W. B. (1996). Data structures and genetic programming.
In P. J. Angeline & K. Kinnear (Eds.), Advances in Genetic
Programming 2 (p. 395-414). Cambridge, MA: The MIT Press.

Langdon, W. B. (1998). The evolution of size in variable length
representations. In 1998 IEEE International Conference on Evo-
lutionary Computation (pp. 633-638). Piscataway, NJ: IEEE
Press.

Langdon, W. B., & Nordin, J. P. (2000). Seeding GP populations.
In R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin,
& T. C. Fogarty (Eds.), Genetic Programming, Proceedings of
EuroGP-2000 (Vol. 1802, pp. 304-315). Berlin: Springer.

Langdon, W. B., & Poli, R. (1998). Fitness causes bloat: Muta-
tion. In W. Banzhaf, R. Poli, M. Schoenauer, & T. C. Fogarty
(Eds.), Proceedings of the First European Workshop on Genetic
Programming (Vol. 1391, pp. 37-48). Berlin: Springer.

Langdon, W. B., & Poli, R. (2002). Foundations of Genetic
Programmaing. Berlin: Springer.

Langdon, W. B., Soule, T., Poli, R., & Foster, J. A. (1999). The
evolution of size and shape. In L. Spector, W. B. Langdon,
U.-M. O’Reilly, & P. J. Angeline (Eds.), Advances in Genetic
Programming 3 (pp. 163-190). Cambridge, MA: The MIT Press.

bloat.tex; 10/02/2003; 13:12; p.27

28 Edwin D. de Jong and Jordan B. Pollack

Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Com-
bining convergence and diversity in evolutionary multi-objective
optimization. Evolutionary Computation, 10(3), 263—-282.

Luke, S., & Panait, L. (2002). Fighting bloat with nonparametric
parsimony pressure. In H.-P. Schwefel, J.-J. Merelo Guervos,
P. Adamidis, H.-G. Beyer, & J.-L. Ferndndez-Villacanas (Eds.),
Parallel Problem Solving from Nature - PPSN VII. (p. 411 ff.).
Berlin: Springer.

Mahfoud, S. W. (1995). Niching Methods for Genetic Algo-
rithms. Unpublished doctoral dissertation, University of Illinois
at Urbana-Champaign, Urbana, IL. (IIliGAL Report 95001)

McPhee, N. F., & Miller, J. D. (1995). Accurate replication in ge-
netic programming. In L. Eshelman (Ed.), Genetic Algorithms:
Proceedings of the Sizth International Conference, ICGA-95 (pp.
303-309). San Francisco, CA: Morgan Kaufmann.

Nordin, P., & Banzhaf, W. (1995). Complexity compression and evo-
lution. In L. Eshelman (Ed.), Genetic Algorithms: Proceedings of
the Sizth International Conference, ICGA-95 (pp. 310-317). San
Francisco, CA: Morgan Kaufmann.

Nordin, P., Francone, F., & Banzhaf, W. (1996). Explicitly defined
introns and destructive crossover in genetic programming. In
P. J. Angeline & K. E. Kinnear, Jr. (Eds.), Advances in Genetic
Programming 2 (pp. 111-134). Cambridge, MA: The MIT Press.

Olsson, R. (1995). Inductive functional programming using incremental
program transformation. Artificial Intelligence, 74 (1), 55-81.

Poli, R. (1997). Discovery of symbolic, neuro-symbolic and neu-
ral networks with parallel distributed genetic programming. In
3rd International Conference on Artificial Neural Networks and
Genetic Algorithms, ICANNGA’97. Berlin: Springer.

Poli, R., & McPhee, N. F. (2001). Exact schema theorems for gp
with one-point and standard crossover operating on linear struc-
tures and their application to the study of the evolution of size.
In J. Miller, M. Tomassini, P. Lanzi, C. Ryan, A. Tettamanzi,
& W. Langdon (Eds.), Genetic Programming. 4th FEuropean
Conference, EuroGP 2001 (pp. 126-142). Berlin: Springer.

Rodriguez-Vazquez, K., Fonseca, C. M., & Fleming, P. J. (1997). Multi-
objective genetic programming: A nonlinear system identification

bloat.tex; 10/02/2003; 13:12; p.28

Multi-Objective Methods for Tree Size Control 29

application. In J. R. Koza (Ed.), Late Breaking Papers at the
1997 Genetic Programming Conference (pp. 207-212). Stanford
University, CA: Stanford Bookstore.

Rosca, J. (1996). Generality versus size in genetic programming. In
J. R. Koza, D. E. Goldberg, D. B. Fogel, & R. L. Riolo (Eds.),
Genetic Programming 1996: Proceedings of the First Annual
Conference (pp. 381-387). Cambridge, MA: The MIT Press.

Schaffer, J. D. (1985). Multiple objective optimization with vector eval-
uated genetic algorithms. In J. J. Grefenstette (Ed.), Proceedings
of the First International Conference on Genetic Algorithms and
their Applications (pp. 93-100). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Smith, S. (1980). A Learning System based on Genetic Adaptive
Algorithms. Unpublished doctoral dissertation, University of
Pittsburgh.

Soule, T. (1998). Code Growth in Genetic Programming. Unpublished
doctoral dissertation, University of Idaho.

Soule, T., & Foster, J. A. (1999). Effects of code growth and parsimony
presure on populations in genetic programming. Fwvolutionary
Computation, 6(4), 293-309.

Soule, T., & Heckendorn, R. B. (2002). An analysis of the causes of
code growth in genetic programming. Genetic Programmaing and
Evolvable Machines, 3, 283-309.

Zhang, B.-T., & Miihlenbein, H. (1995). Balancing accuracy and
parsimony in genetic programming. FEvolutionary Computation,
3(1), 17-38.

Zitzler, E., & Thiele, L. (1999). Multiobjective Evolutionary Al-
gorithms: A Comparative Case Study and the Strength Pareto
Approach. [EEE Transactions on Ewvolutionary Computation,
3(4), 257-271.

bloat.tex; 10/02/2003; 13:12; p.29

bloat.tex; 10/02/2003; 13:12; p.30

