
The Incremental Pareto-Coevolution Archive

Edwin D. de Jong

Decision Support Systems Group, Universiteit Utrecht
PO Box 80.089, 3508 TB Utrecht, The Netherlands

dejong@cs.uu.nl

http://www.cs.uu.nl/∼dejong

Abstract. Coevolution can in principle provide progress for problems
where no accurate evaluation function is available. An important open
question however is how coevolution can be set up such that progress
can be ensured. Previous work has provided progress guarantees either
for limited cases or using strict acceptance conditions that can result
in stalling. We present a monotonically improving archive for the gen-
eral asymmetric case of coevolution where learners and tests may be of
distinct types, for which any detectable improvement can be accepted
into the archive. The Incremental Pareto-Coevolution Archive is demon-
strated in experiments.

1 Introduction

Coevolution [2, 1, 11] can be seen as an approach to the problem of fitness func-
tion design. Using coevolution, the evaluation function itself can be adapted as
part of the evolutionary process. This approach can be of value if the quality
of individuals can be assessed using some form of tests, and evaluating indi-
viduals on all tests is infeasible. For such test-based problems, the identification
of an informative set of tests can reduce the amount of required computation,
while potentially providing more useful information than any static selection of
tests. Several previous authors have explicitly distinguished between the role of
optimizing performance and the role of assessing the performance of other indi-
viduals [11, 14, 13, 12, 9] while a main other view of coevolution is that in which
coevolving individuals form components of a whole [15, 21, 19]. Here, individuals
used for testing will be called tests, while individuals whose performance we wish
to optimize are called learners.

A main question in coevolution is how progress may be guaranteed. Before the
notion of progress in a coevolutionary algorithm can be considered, a solution

concept [10] must be chosen. An example of a solution concept would be the
learner that solves the largest number of tests. However, there may well be
learners that solve tests not solved by such a learner, and may therefore be
valuable. Furthermore, the specific outcomes of a learner against tests represent
valuable information, and can be helpful in exploring a diverse set of learners.

A solution concept that employs all information about learners provided by
tests is given by Pareto-Coevolution. In Pareto-Coevolution [8, 20], tests are

2

treated as objectives in the sense of Evolutionary Multi-Objective Optimization.
The resulting solution concept is the Pareto-front, containing all learners that
are non-dominated as determined by their test outcomes.

Broadly, there are two approaches to the aim of guaranteed progress in co-
evolution. The first approach is to strive towards accurate evaluation; if this can
be achieved, then progress can be guaranteed simply by using an elitist selection
mechanism based on the coevolutionary evaluation function. The second is to
maintain an archive whose quality increases monotonically according to some
performance criterion. The first approach is taken e.g. in [7] with the delphi al-
gorithm; this approach will be discussed briefly below. Here, we will be concerned
with the second, archive-based approach.

1.1 Reliable Progress by means of Accurate Evaluation

One approach to reliable progress in coevolution is to consider how tests can
be evolved that provide accurate evaluation. Several authors have investigated
the accuracy of coevolutionary evaluation [16, 12, 9, 3]. Based on Ficici’s notion
of distinctions [9], it has been shown that coevolution can in principle provide
ideal evaluation [6, 7]. The delphi algorithm is based on this principle, and will
be used in comparison experiments here. For a discussion of the algorithm, its
motivation, and experimental results, the reader is referred to [7].

1.2 Archive-based Methods for Monotonic Improvement

A common technique in coevolution aimed at improving reliability is the use of
an archive. Several archive mechanisms exist that are intended to improve the
reliability of coevolutionary algorithms but do not provide any specific guaran-
tees. Here, since our aim is to study how progress may be guaranteed, we will
be concerned solely with archives that provide some form of progress guarantee.

The process that supplies new individuals to the archive will be referred to as
the generator. The generator will typically use the archive for testing purposes,
but an archive may also be valuable as a basis for generating new individuals.
Any progress guarantee relies on the ability of the generator to produce new
individuals. The aim for an archive is therefore to guarantee that regress is
avoided; if this is guaranteed, then any changes in performance must represent
progress in some aspect, as will be made precise.

A central requirement for a coevolution archive is that is should guarantee
monotonic progress. Apart from this requirement, there are at least three other
characteristics that determine the practical value of the archive:

– Generality Generality reflects the scope of the archive method; an archive
that guarantees progress for all forms of coevolution would be maximally
general.

– Sensitivity An archive is sensitive if it is able to detect small improvements
in the quality of learners. This property applies to both learners and tests. If

3

an archive is sensitive in accepting learners, it can accept many of the learn-
ers that represent improvement, which positively affects both the generation
of new learners and the evaluation of future tests. If an archive is sensitive in
accepting tests, it will subsequently be more likely to detect improvements
made by learners. The property of sensitivity necessarily depends on the so-
lution concept.

– Efficiency An archive is efficient if it consumes a limited amount of re-
sources, notably computation time and storage capacity.

The majority of archives employed in the coevolution literature can be de-
scribed as best-of-generation models, where the archive contains the fittest learn-
ers of the m past generations, and a sample of the archive is used for testing
the current learners [10]. In such setups, tests are selected based on their quality
as learners, rather than on their ability to provide informative evaluation. The
maintenance of individuals performing well against a sample of previous learners
is not by itself sufficient to guarantee progress in coevolution. In the following,
we will discuss methods that do provide a progress guarantee.

Rosin describes the covering competitive algorithm [16], which alternates be-
tween finding a first-player strategy that beats all second-player strategies in
the archive and vice versa. Under the assumption of an unbounded archive, the
covering competitive algorithm guarantees monotonic progress. The algorithm
assumes the existence of a first-player strategy that defeats all second-player
strategies. For many test-based problems however, no learner can simultane-
ously achieve the highest attainable score on all possible tests, as there can be
trade-offs between the different tests.

If the covering competitive algorithm is to be used for a problem featuring
multiple underlying objectives and thus possibly more than one Pareto-optimal
learner, every such learner on the Pareto-front would form a local optimum;
whenever the method finds one learner on the Pareto-front and the tests it solves,
no further progress can be made, and the method will stall. A similar argument
holds for the dominance tournament [18], which was proposed as a method for
tracking progress in coevolution but can also be used as a coevolutionary archive
[10].

Schmitt [17] presents a stochastic model intended to demonstrate that co-
evolution can converge to a global optimum if for at least some species strictly
dominant individuals exist that maximize performance over all possible evalua-
tion environments. Here, the aim will be to guarantee progress under broader,
less strict conditions.

A recent archive mechanism providing a progress guarantee is the Nash mem-

ory [10], which employs the Nash equilibrium as a solution concept. A mixed
strategy Nash equilibrium is a combination of mixed strategies such that no
player can profitably deviate given the strategies of the other players. An at-
tractive feature of the Nash equilibrium as a solution concept is that the set
of learners it represents can be relatively small compared to the Pareto-front,
which is a valuable property for coevolutionary search. A disadvantage is that

4

there can be many Nash equilibria, part of which may be dominated; thus, a
Nash equilibrium does not necessarily achieve the highest outcomes possible.

Given an unbounded memory, the Nash-memory archive can provide mono-
tonic progress for symmetric games, i.e. problems where learners and tests come
from the same space. The Nash memory consists of two sets, N and M. The goal
for N is to approximate the solution concept, and to improve monotonically over
time in doing so. If M is of bounded size, arbitrary strategies may be pruned
from it, and monotonic progress of N is not guaranteed. If M is of unbounded
size however, monotonic progress of N can be guaranteed.

The solution concept employed in this work is that provided by Pareto-
Coevolution, and consists of the Pareto-optimal set that results from using tests
as objectives. This set is the set of all learners than cannot improve their per-
formance on any test without lowering their performance on some other test.

We will consider how monotonic improvement can be achieved for unre-
stricted Pareto-Coevolution. Thus, learners and tests are allowed to be of dif-
ferent types, and the Pareto-optimal set is employed as a solution concept. We
present an algorithm called the Incremental Pareto-Coevolution Archive (IPCA),
and prove that it guarantees monotonic progress. The IPCA is demonstrated in
experiments.

The paper is structured as follows. Section 2 defines the notion of monotonic
progress, and Section 4 discusses some first possibilities for achieving monotonic
progress in Pareto-Coevolution. In Section 4, we present the IPCA algorithm,
which guarantees monotonic progress for Pareto-Coevolution. Experimental re-
sults are described in Section 5, followed by conclusions.

2 Defining Monotonic Progress

To determine whether progress is monotonic, we must be able to compare dif-
ferent approximations of the solution concept. We must therefore specify which
property of a Pareto-front should improve over time. In this paper, we will as-
sume tests are binary. We will say a learner solves a test set if it obtains a
positive score for every test in the set. Thus, the relevant performance criterion
in Pareto-Coevolution is which sets of tests can be solved by some single learner.
If the collection of test sets that can be solved by the learner archive grows
monotonically over time, then monotonic progress is guaranteed.

To determine whether the collection of test sets solved by single learners
grows monotonically, two requirements must be satisfied. First, the collection
may not shrink; if a test set can be solved by a learner at time t, then the
test set must be solved by some learner at any time t′ after t. This guarantees
that regress is avoided. Second, to ensure actual progress, any transition from a
learner archive to its successor must increase the collection of test sets solved.
Thus, the successor of the learner archive must solve some test set that is not
solved by the current archive.

The learner archives obtained over time form a series of approximations of the
solution concept. These approximations will be denoted as L1, L2, . . . Lt, while

5

the test archives obtained over time will be written as T 1, T 2, . . . T t. Formally,
the above requirements can now be stated as follows:

Definition 1 (Monotonic Progress). Let Lt, Lt
′

, T t, and T t
′

be sets of learn-

ers and tests at times t and t′. Then monotonic progress is achieved if for any

t, t′ > t:

1. ∀TS ⊆ T t : [∃L ∈ Lt : solves(L, TS) =⇒

∃L′ ∈ Lt
′

: solves(L′, TS)]

2. ∃TS ⊆ T t
′

: [@L ∈ Lt : solves(L, TS) ∧

∃L′ ∈ Lt
′

: solves(L′, TS)]

First, progress can be guaranteed by keeping all learners and tests. This will
generally be too costly however; a main question therefore is which individuals
may be discarded while still retaining the guarantee of monotonic progress.

3 Monotonic Progress for Pareto-Coevolution

Now that monotonic progress has been defined, we can ask how it may be
achieved by coevolutionary algorithms. A first possibility that may spring to
mind is to maintain the Pareto fronts of learner and test populations, using the
outcomes as objectives. An example shows that this strategy does not guarantee
progress. Suppose a learner solves test A but not B. Then removing dominated
tests results in loss of A. Next, a learner arrives that solves B but not A. Since
A is no longer present, this learner appears to dominate the first learner and will
thus replace it, so that the capacity to solve test A is lost.

The reason why a valuable learner can not be maintained in the above exam-
ple, is that the tests do not provide a stable basis for evaluation; if both tests are
maintained, the two learners are both non-dominated. This observation suggests
that it may be useful to maintain multiple layers of learners and tests. Suppose
that in addition to the non-dominated learners, we maintain all learners that
become non-dominated when the non-dominated learners are removed. Further-
more, to distinguish non-dominated learners from the learners in this second
layer, we maintain all tests that make a distinction [9] between learners from
layer 1 and 2. A test makes a distinction between learners A and B if it assigns
a higher outcome to A than to B. Finally, we maintain tests that cause the out-
come vectors of two learners in a layer to be different, to prevent such learners
from appearing identical. This setup can be generalized to maintain n layers of
learners and the tests that separate them.

An interesting question is whether there is any number of layers n that is
sufficient to avoid regress. This question can be answered negatively; for any n,
a counter-example can be constructed as follows. First take n tests and n + 1

6

learners, and assign the outcomes such that each learner i is dominated by its
successor i + 1; this can be done by letting each learner solve all tests solved
by its antecessor plus one extra test. The learner update procedure will now
result in the removal of the first learner, as it resides in layer n + 1 > n. All
of the remaining learners solve the test solved by learner 1, making this test
superfluous. Next, repeat the following procedure n times: add a new learner
that solves all tests solved by the existing learners, and a new test solved only
by the newly added learner. After each addition, the update procedure causes
the most ancient learner and test to be removed from the archive. After n cycles,
all learners solving the first test will have been discarded. Since the remaining
learners were added after the first test was removed and hence do not solve it, the
ability to solve the first test has been lost, and regress has thus occurred. This
proof sketch demonstrates that no number of layers n is sufficient to guarantee
the avoidance of regress.

4 The Incremental Pareto-Coevolution Archive (IPCA)

In this section, we describe an archive-based algorithm that guarantees mono-
tonic progress for Pareto-Coevolution without simply keeping all learners or
tests. The algorithm is called the Incremental Pareto-Coevolution Archive (IPCA).
IPCA consists of a learner archive and a test archive. The algorithm provides
procedures to decide which newly generated learners and tests will enter the
archive. The learner archive is periodically updated to maintain non-dominated
learners only.

The algorithm operates as follows. A newly generated learner is useful with
respect to a set of learners LS and a set of tests TS if it is not dominated by any
learner in LS, and if there is no learner in LS which has equal outcomes for all
tests in TS:

useful(L, LS, TS) =

@L′ ∈ LS : L′
TS

� L ∧

@L′ ∈ LS : ∀T ∈ TS : G(L, T) = G(L′, T)

where G(L, T) is the outcome of learner L against test T , and � represents
Pareto-dominance. A related function called useful−tests(TG, T t, LG, Lt) iden-
tifies tests in a new generation of tests TG that are required in addition to T t

in order to determine that certain learners in LG are useful with respect to
Lt. Specifically, if a learner is not useful based on T t but is useful based on
T t ∪ T1, T2, . . . Tk ∈ TG, then some or all of T1, T2, . . . Tk are useful tests and
a subset of TG with this same property will be returned by useful − tests.
Additionally, if for any learner L ∈ LG, there is a test T ∈ TG that defeats
the learner and the learner is not defeated by any test in T t, then L and T are
marked as useful.

Using these functions, the IPCA algorithm can be described as follows as
follows.

7

L0 := ∅
T 0 := ∅
t := 0
while ¬done

Lt := non − dominated(Lt, T t)
Lt+1 := Lt

T t+1 := T t

LG := generate− learners(Lt)
TG := generate− tests(T t)
TS := useful − tests(TG,T t, LG, Lt)
T t+1 := T t+1 ∪ TS

for i = 1 : |LG|
if useful(Li, L

t+1, T t+1)
Lt+1 := Lt+1 ∪ Li

end

if Lt+1 6= Lt

t := t + 1
end

Fig. 1. The Incremental Pareto-Coevolution Archive (IPCA). Monotonic progress can
be guaranteed for this archive-based Pareto-Coevolution algorithm.

4.1 Monotonicity and Convergence

The above algorithm is called the Incremental Pareto-Coevolution Archive (IPCA).
The operation of any archive inevitably depends on the new individuals provided
by the generator. The criterion required of a coevolution archive is therefore that
progress can be guaranteed given the arrival of new individuals which occasion-
ally represent progress. This can be guaranteed for example by generating every
possible individual with a non-zero probability.

A proof that the algorithm guarantees monotonic progress as defined by
Definition 1 is provided in the Appendix. If the number of different learners and
tests is finite and all learners and tests are generated with non-zero probability,
then the property of monotonic improvement implies convergence to the global
optimum of the Pareto-front over all possible tests.

5 Experimental Results

To demonstrate the operation of the IPCA, we now investigate its performance
on test problem that requires exploration, and compare performance with the
delphi algorithm.

In compare-on-one [7], learners and tests are n-dimensional real-valued
vectors. A tests assesses a learner on the dimension in which the test itself is
highest. It assigns a score of 1 if the learner is at least as high as the test in this
dimension, and -1 otherwise.

8

In the discretized compare-on-one problem, the value in each dimension of
the learner and test is rounded to the nearest multiple of δ = 0.25 below it before
evaluation, without affecting the genotype. Thus, [0.23, 0.30, 0.47] is mapped to
[0, 0.25, 0.25]. This procedure greatly reduces the amount of gradient present.

To further increase the difficulty of the test problem, a mutation bias of 0.025
on a mutation range of 0.25 is used, meaning mutation adds a value randomly
chosen from [−0.15, 0.1]. This bias towards regress is intended to model the situ-
ation in problems of practical interest, where the variation operator is typically
more likely to produce regress than progress.

The generator that supplies candidate learners and tests to IPCA produces
offspring using crossover (50%) and mutation (50%). With probability 0.1, it uses
an archive member as a parent. The generator maintains a learner and test pop-
ulations, both of size 10. The objectives for learners are their outcomes against
tests and the distinctions between tests. The learner objectives are based on the
union of the current population and new generation of tests. The objectives for
the tests are analogous, namely their outcomes against and distinctions between
individuals in the current population and new generation of learners, resulting
in a symmetric setup.

For each objective achieved by an individual, a score is assigned that equals
one over the number of other individuals that achieve the objective, as in com-

petitive fitness sharing [16]. The sum of an individual’s scores on the n outcome
objectives and on the n2 distinction objectives, where n is the size of the pop-
ulation plus the new generation, are added to yield a single total score for the
individual.

The highest scoring individuals of the new generation are lined up with the
lowest scoring individuals of the current population. Then k is determined as the
highest number for which the summed scores of the first k generation members
is still at least as high as that of the first k population members. The lowest
scoring k population members are discarded and replaced by k randomly selected
individuals from the new generation, thus yielding an explorative generator.

The performance criterion is the lowest value among all dimensions of an in-
dividual; if this value increases, progress is made on all dimensions. Performance
is plotted as a function of the number of actual generations, and averaged over
50 runs.

Figure 2 shows the behavior of the delphi algorithm on both the standard
and discretized compare-on-one problem with mutation bias. While delphi

achieves stable progress on the standard compare-on-one problem, it fails on
the discretized version of the problem. This is expected given the operation of the
method; since new individuals can only be accepted into the population if they
dominate an existing individual, the method cannot make progress on problems
where exploration is required before such improvements can be identified.

Figure 2 shows the behavior of the IPCA on the same two problems. While
IPCA improves slower than delphi on the continuous problem, it does make
reliable progress, as expected. Moreover, IPCA makes substantial and reliable
progress on the discretized problem as well. The main limitation of IPCA is

9

0 2500 5000 7500 10000
0

10

20

Delphi on standard and discretized compare−on−one

Generations

M
in

im
um

 v
al

ue

Delphi
Delphi, discretized
Delphi+crossover, discretized

0 2500 5000 7500 10000
0

2

4

6

IPCA on standard and discretized compare−on−one

Generations

M
in

im
um

 v
al

ue

standard
discretized (delta=0.25)

Fig. 2. Left: Performance of the delphi algorithm on the standard and discretized
compare-on-one problem. delphi works well on the standard version but fails on
the discretized version, also when using crossover in 50% of the cases. Right: The
Incremental Pareto-Coevolution Archive (IPCA) makes consistent progress on both
versions of the problem by virtue of its monotonic progress guarantee.

the size of the test archive; as Figure 3 (left) shows, the learner archive, which
consists of the current approximation of the Pareto-front, is stable and small in
size, while the test archive grows steadily over time as no individuals are pruned.

As a control experiment we apply two more standard coevolution algorithms
to the problem. The first method is the generator used with IPCA without the
archive itself. The second is a symmetric competition coevolutionary algorithm
where the tests use their outcomes against the learners as objectives, vice versa.
Both methods result in quick regress rather than progress; see Figure 3 (right).
Apparently, the methods are insufficiently selective to cope with the mutation
bias, which makes regress likely unless the replacement of individuals is highly
selective and based on an informative set of tests.

An interesting question is whether and how the test archive may be pruned
while retaining reliable progress. In a follow-up paper, we investigate a layered
variant of IPCA called LAPCA [5]. While a layered approach cannot guarantee
monotonic progress, as discussed in section 3, the method can produce sustained
progress on the discretized compare-on-one problem with small and stable
learner and test archives. This method may be of some practical interest, but the
question of how archive sizes may be limited at a minimal reduction of reliability
remains an important open issue. The analysis of the underlying objectives or
structure of a test-based problem [7, 4] may bring insight into this matter.

6 Conclusions

The Incremental Pareto-Coevolution Archive (IPCA) has been presented. The
archive consists of a learner archive maintaining non-dominated individuals, in

10

0 2500 5000 7500 10000
0

25

50

75

Discretized compare−on−one

Generations

A
rc

hi
ve

 s
iz

e

Test archive
Learner archive

0 2500 5000 7500 10000
−4

−2

0

2

4
Discretized compare−on−one

Generations

M
in

im
um

 v
al

ue

IPCA
IPCA without archive
symmetric competition

Fig. 3. Left: Sizes of the learner and test archives for IPCA. Since no tests are pruned,
the test archive grows over time. Right: Comparison of IPCA with two control methods
(see text). Due to the mutation bias, unreliable coevolution methods can regress, and
only reliable methods can make sustained progress on the problem.

combination with an incrementally informative test archive. IPCA guarantees
monotonic progress for Pareto-Coevolution.

IPCA is both general, in that asymmetric problems involving learners and
tests can be addressed, and sensitive, as any nondominated learner and any test
revealing new qualities of learners are accepted into the archive.

We have presented experiments based on the discretized three-dimensional
compare-on-one problem with mutation bias. This problem requires explo-
ration, and its mutation operator is biased towards regress. The Incremental
Pareto-Coevolution Archive was found to produce sustained progress on this
challenging test problem. An important remaining open question is how archive
sizes may be limited at a minimal reduction of reliability.

Acknowledgements

The author wishes to thank the reviewers for detailed and thoughtful comments,
and the Decision Support Systems Group at Utrecht University for a pleasant
and fruitful research environment.

Appendix: Proof of Monotonic Progress

In the following, we prove that the Incremental Pareto-Coevolution Archive
(IPCA) algorithm described in Section 4 guarantees monotonic progress as de-
fined by Definition 1. The definition specifies two requirements for any t and

11

t′ > t:

1. ∀TS ⊆ T t : [∃L ∈ Lt : solves(L, TS) =⇒

∃L′ ∈ Lt
′

: solves(L′, TS)]

2. ∃TS ⊆ T t
′

: [@L ∈ Lt : solves(L, TS) ∧

∃L′ ∈ Lt
′

: solves(L′, TS)]

To show that monotonic progress is made over time, it is sufficient to prove that
monotonic progress is made from one time-step to the next, i.e. t′ = t + 1. This
will now be shown.

Ad 1). We must show that given an L ∈ Lt that solves TS, there must be
some L′ ∈ Lt+1 that solves TS. We distinguish between two cases: (A) L is
retained, or (B) L is removed from the archive. In the first case, the requirement
is satisfied by L itself. In the second case, the only situation in which a learner
can be removed from the archive is if it is dominated by another learner. Let us
denote this latter learner by L′. Then:

∀T ∈ T t+1 : G(L′, T) ≥ G(L, T)

Since TS ⊆ T t ⊆ T t+1, this shows that the requirement also holds for the second
case.

Ad 2). The algorithm only makes a transition from time-step t to t + 1 if
learners have actually been added to the archive. A learner L′ is only added to
the archive if it satisfies the useful relation. Thus, there must be some L′ ∈ Lt+1

for which

@L ∈ Lt+1 : L
T

t+1

� L′ ∧

@L 6= L′ ∈ Lt+1 : ∀T ∈ T t+1 : G(L′, T) = G(L, T)

Let TS be the set of tests solved by L′: TS = {T ∈ T t+1|solves(L′, T)}. Assume
∃L ∈ Lt such that ∀T ∈ TS : solves(L, T). Given the second clause of the above
relation, we know that there must be some T ∈ TS for which G(L, T) 6= G(L′, t).
Since tests are binary and L′ by definition solves all tests in TS, this implies
L does not solve T . This contradicts our assumption, and therefore @L ∈ Lt :
∀T ∈ TS : solves(L, T), which completes our proof.

References

1. Robert Axelrod. The evolution of strategies in the iterated prisoner’s dilemma.
In Lawrence Davis, editor, Genetic Algorithms and Simulated Annealing, Research
Notes in Artificial Intelligence, pages 32–41, London, 1987. Pitman Publishing.

2. Nils Aall Barricelli. Numerical testing of evolution theories. Part I: Theoretical
introduction and basic tests. Acta Biotheoretica, 16(1–2):69–98, 1962.

12

3. Anthony Bucci and Jordan B. Pollack. A mathematical framework for the study of
coevolution. In Foundations of Genetic Algorithms (FOGA-2002), San Francisco,
CA, 2003. Morgan Kaufmann.

4. Anthony Bucci, Jordan B. Pollack, and Edwin D. De Jong. Automated extraction
of problem structure. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO-04, 2004.

5. Edwin D. De Jong. Towards a bounded Pareto-Coevolution archive. In Proceedings
of the Congress on Evolutionary Computation, CEC-04, 2004.

6. Edwin D. De Jong and Jordan B. Pollack. Learning the ideal evaluation func-
tion. In E. Cantú-Paz et al., editor, Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO-03, pages 274–285, Berlin, 2003. Springer.

7. Edwin D. De Jong and Jordan B. Pollack. Ideal evaluation from coevolution.
Evolutionary Computation, 12(2), 2004.

8. Sevan G. Ficici and Jordan B. Pollack. A game-theoretic approach to the simple
coevolutionary algorithm. In M. Schoenauer et al., editor, Parallel Problem Solving
from Nature, PPSN-VI, volume 1917 of LNCS, Berlin, 2000. Springer.

9. Sevan G. Ficici and Jordan B. Pollack. Pareto optimality in coevolutionary learn-
ing. In Jozef Kelemen, editor, Sixth European Conference on Artificial Life, Berlin,
2001. Springer.

10. Sevan G. Ficici and Jordan B. Pollack. A game-theoretic memory mechanism for
coevolution. In E. Cantú-Paz et al., editor, Genetic and Evolutionary Computation
– GECCO-2003, volume 2723 of LNCS, pages 286–297, Chicago, 12-16 July 2003.
Springer-Verlag.

11. D. W. Hillis. Co-evolving parasites improve simulated evolution in an optimization
procedure. Physica D, 42:228–234, 1990.

12. Hugues Juillé. Methods for Statistical Inference: Extending the Evolutionary Com-
putation Paradigm. PhD thesis, Brandeis University, 1999.

13. Ludo Pagie and Paulien Hogeweg. Evolutionary consequences of coevolving targets.
Evolutionary Computation, 5(4):401–418, 1998.

14. Jan Paredis. Coevolutionary computation. Artificial Life, 2(4), 1996.
15. Mitchell A. Potter and Kenneth A. De Jong. Cooperative coevolution: An architec-

ture for evolving coadapted subcomponents. Evolutionary Computation, 8(1):1–29,
2000.

16. Christopher D. Rosin. Coevolutionary Search among Adversaries. PhD thesis,
University of California, San Diego, CA, 1997.

17. Lothar M. Schmitt. Theory of coevolutionary genetic algorithms. In Minyi Guo and
Laurence Tianruo Yang, editors, Parallel and Distributed Processing and Applica-
tions, International Symposium, ISPA 2003, pages 285–293, Berlin, 2003. Springer.

18. Kenneth O. Stanley and Risto Miikkulainen. The dominance tournament method
of monitoring progress in coevolution. In Alwyn M. Barry, editor, GECCO 2002:
Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Com-
putation Conference, pages 242–248, New York, 8 July 2002. AAAI.

19. Richard A. Watson. Compositional Evolution: Interdisciplinary Investigations in
Evolvability, Modularity, and Symbiosis. PhD thesis, Brandeis University, 2002.

20. Richard A. Watson and Jordan B. Pollack. Symbiotic combination as an alternative
to sexual recombination in genetic algorithms. In M. Schoenauer et al., editor,
Parallel Problem Solving from Nature, PPSN-VI, volume 1917 of LNCS, Berlin,
2000. Springer.

21. R. Paul Wiegand. An Analysis of Cooperative Coevolutionary Algorithms. PhD
thesis, George Mason University, Fairfax, Virginia, 2003.

