
An Efficient Design Methodology for the Nondominated 
Sorted Genetic Algorithm-II 

LATE BREAKING PAPER 2003 GENETIC AND EVOLUTIONARY 
COMPUTATION CONFERENCE (GECCO 03), CHICAGO, IL. 

Venkat Devireddy  1, Patrick Reed 2 

1  Department of Industrial and Manufacturing Engineering 
The Pennsylvania State University 

406B,  Sackett Building 
University Park, PA 16802 
Telephone: 814-865-2342 
Email: vkd106@psu.edu  

2  Department of Civil and Environmental Engineering 
The Pennsylvania State University 

212 Sackett Building 
University Park, PA 16802 
Telephone: 814-863-2940 

Fax: 814-863-7304 
Email: preed@engr.psu.edu 

Abstract. Many real world problems require careful balancing of fiscal, 
technical, and social objectives.  Informed negotiation and balancing of 
objectives can be greatly aided through the use of evolutionary multiobjective 
optimization (EMO) algorithms, which can evolve entire tradeoff (or Pareto) 
surfaces within a single run.  The primary difficulty in using these methods lies 
in the large number of parameters that must be specified to ensure that these 
algorithms effectively quantify design tradeoffs. This paper addresses this 
difficulty by introducing a multi-population design methodology that automates 
parameter specification for the Nondominated Sorted Genetic Algorithm-II 
(NSGA-II).  The NSGA-II design methodology is successfully demonstrated on 
four test problems. Using this methodology, multiobjective optimization 
problems can now be solved automatically  with only a few simple user inputs.  

1 Introduction 

This paper seeks to eliminate the need for trial-and-error parameter analysis by 
introducing an automated design methodology for the Nondominated Sorted Genetic 
Algorithm-II [2].  The NSGA-II is the focus of this work because the algorithm has 
been shown to perform as well or better than other second generation Evolutionary 
Multiobjective Optimization (EMO) algorithms on difficult, high order problems [1,2] 
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The NSGA-II design methodology presented in this study builds on previous genetic 
algorithm (GA) design methodologies [5, 4, 6] to  introduce a multi-population 
approach that automates parameter specification while significantly reducing the 
computational effort required to solve multiobjective applications.  The design 
methodology fully exploits the efficiency of the NSGA-II to enable the automatic 
solution of a new class of high order multiobjective applications in which users can 
select, understand, and balance more than two performance criteria [7].  This paper 
summarizes the design methodology and verifies the approach on four EMO test 
problems.  Additionally, this paper investigates the efficiency of using small initial 
populations to evolve Pareto fronts. 
 
This paper is organized in the following manner. Section 2 discusses the design 
methodology  through a series of 3 steps. In Section 3, we present four test problem s 
that have a wide range of properties and have been chosen to demonstrate the 
efficiency of the design method. Section 4 discusses the results of the application of 
the design methodology to the test problems , while in Section 5 the scope for future 
work and the conclusions are discussed. 

2 Three-Step Design Methodology 

This paper demonstrates an efficient 3-step design methodology for the NSGA-II, a 
second generation EMO genetic algorithm [2] . The NSGA-II requires the user to 
specify the four following parameters  
 
• population size  
• probability of crossover  
• probability of mutation 
• run length (number of generations) 
 
The 3-step NSGA-II design method tested in this study reduces the complexity of 
specifying these parameters, minimizes user interaction, and substantially reduces the 
computational effort required to solve multiobjective applications . The design 
methodology assumes that computationally intensive fitness functions for real-world 
applications preclude identifying parameter settings for a distribution of initial 
random number seeds and instead focuses on finding optimal parameter settings for a 
single random number seed.   
 

Step 1 -Preliminary Problem Analysis 

Following the approach of Lobo [4] the initial population N0 is set to an arbitrarily 
small value.  Small populations allow the NSGA-II to search for nondominated 
solutions using a minimum number of function evaluations. Coello et al . [1] have 
shown that EMO algorithms can be used effectively with small population sizes. 
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Successive increases in population size described in Step 3 will automatically adjust 
for an undersized population.  Successive population increases occur until one of the 
two conditions are satisfied: (1) the nondominated front has been sufficiently 
quantified or (2) NSGA-II has used a user specified maximum number of function 
evaluations.  

 
 These stoppin g criteria are specified by requiring the user to answer 3 basic 
questions: 

 
1. What is the minimum percentage change in the number of nondominated solutions, 

ND∆ , for two successive runs to be considered identical? 

2. What is the average time required to evaluate a design, evalT ? 

3. What is the maximum acceptable run time, totT ? 
 
The run length t for each population size tested is estimated to be approximately equal 
to 2l, where l is the length of the binary  strings that represent the designs, as was 
recommended by Thierens et al. [10]. 

Step 2 - Probability of crossover and mutation 

In step 1, initial population size and run termination criteria are specified. In this step,  
the probability of crossover Pc  and the probability of mutation Pm are set. The value of 
Pc is set according to the disruption boundary relationship developed by Thierens  [9], 

                                                    
s

s
Pc

1−
≤   .         (1) 

 
where parameter s is the total number of individuals competing in the tournament 
selection. Equation (1) is intended to protect pertinent building blocks from being 
destroyed due to excessive crossover.  Since the child populations in the NSGA-II are 
selected using binary tournaments (i.e., s = 2), the probability of crossover is equal to 
0.5 or 50 percent. Based on the empirical studies by De Jong [3] and Schaffer et al. 
[8] the value of the probability of mutation Pm is set according                                                 

                                             
N

Pm
1
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Step 3 -Multi population trial runs 

Steps 1 and 2 of this design methodology provide all of the parameters required by the 
NSGA-II to perform trial runs.  In a manner analogous to Lobo  [4] and Reed et al. [5], 
the last step of the design methodology involves automatically initiating trial runs for 
successively doubled population sizes. A minimum of two runs using two 
successively doubled population sizes N0 and 2 N0  are required to determine if the 
nondominated set has been sufficiently captured (i.e., ND∆  ≤   10 percent for this 
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case).  If the second run with population size equal to 2 N0  results in greater than a 

ND∆ percent change in the number of nondominated solutions identified then the 
population size is  again doubled and a third run will be initiated. Offline analysis is 
used to keep an archive of the nondominated solutions identified across all of the trial 
runs. The trial runs for successively doubled populations continue until either the 
nondominated set has been sufficiently captured or the maximum number of function 
evaluations has been reached.  

3 Test Problems 

The design methology developed in this paper was tested on four test problems 
denoted by Test Problem-1 (TP-1), Test Problem-2 (TP-2), Test Problem -3 (TP-3) 
and Test Poblem-4 (TP-4). The four test problems were chosen to demonstrate the 
methods efficiency on convex, nonconvex, and discontinuous solution spaces. TP-4 
was chosen from Coello et al [1] while the rest of the problems were selected from 
Zitler et al. [11]. The test functions are given in Table 1.  

Table 1. Test problems used to demonstrat e the method. 

 
Problem   Objective Functions  

(all are of the minimization type) 
Variable bounds 

TP-1 f1 = x1 , 

f2 =g(x) h( f1(x) , g(x)) 
where  
g(x) = 1 + (9/n-1) ?  xi  for i = 2 to n 
h(f1, g) = 1 – (f1/g)1/2  
n = 30  

0 =  xi  = 1 
 

TP-2 f1 = x1 , 

f2 =g(x) h( f1(x) , g(x)) 
where  
g(x) = 1 + (9/n-1) ?  xi  for i = 2 to n 
h(f1, g) = 1 – (f1/g)2  
n = 30 

0 =  xi  = 1 
 

TP-3 f1 = x1 , 
f2 =g(x) h( f1(x) , g(x)) 
where  
g(x) = 1 + (9/n-1) ?  xi  for i = 2 to n 
h(f1, g) = 1 – (f1/g)1/2 – (x1/g(x))sin(10? x1)  
n = 30 

0 =  xi  = 1 
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TP-4 f1 = x1 , 
f2 = (1 + 10x2)[1 - pa - psin(2?qx1)] 
where, 
p = (x1 /1+10x2), 
q = 4, 

    a = 2 

-?  = (x1 , x2) = ?   

 
All the  problems were solved using an initial population of 10. Problems TP-1, TP-2 
and TP-3 had a string length of 240 while TP-4 had a string length of 30. Using the 
empirical formula that the run length should approximately be equal to twice the 
string length, the run length for TP-1, TP-2 and TP-3 is set to 480 generations while 
in TP-4 it is set to 60. The value of ? ND was set to 10 %. This implies that the search 
could be stopped if the difference between the number of nondominated points in two 
successive runs of the algorithm is less than 10%. The value of ? ND was set uniformly 
for all the test problems though in reality its value may vary depending on the 
application and the user’s discretion. 

 
 

5 Results and Discussions 

The four test problems were successfully  solved using the 3-step method discussed in 
section 2. The results are summarized in Table 2. 
 
The efficacy of the method was verified by comparing the results obtained with those 
obtained using the parameter setting for NSGA-II recommended by Deb [2]. The runs 
were carried out for 250 generations and for a fixed population size of 100. The 
resultant nondominated set was quantified using offline analysis. A probability of 
crossover Pc equal to 0.9 and a mutation probability Pm equal to 0.01 was used in this 
test. Deb’s parameter settings  yielded 256, 240, 71 and 238 nondominated points for 
test problems TP-1, TP-2 ,TP-3 and TP-4 ,respectively. A total of 25,000 functional 
evaluations were required in each of the problems in generating these solutions. 
 
Table 2. Results showing the total number of nondominated points and fitness 
evaluations from implementing our proposed 3-step methodology. 
 

 
 

Number of nondominated points for 
each population 

Population 10 20 40 80 160 320 

Total fitness 
Calculations 

TP-1 
 

253 256   X    14908 

TP-2 238 240   X    14878 

TP-3 69 71 X    14616 
TP-4  4 25 38 213 234 X 19297 
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In TP-1, 253 non dominated points were obtained using an initial population of 10. 
Doubling the population size from 10 to 20 resulted in only a 0.79% increase in the 
number of non dominated solutions evolved, hence the search was terminated and the 
resulant Pareto curve shown in Figure 1.  

 
Fig. 1. Test Problem TP-1                                 Fig. 2.  Test Problem TP-2 

For the nonconvex test problem TP-2, 238 and 240 nondominated points were obtained using  
population sizes of 10 and 20 respectively. Again, we notice that the tradeoff was sufficiently 
quantified using a  very small population. The value of ND∆  in this case is found to be 0.84% . 
Figure 2 shows the final Pareto curve obtained for TP-2 using the 3-step design method. 

The discontinuous Pareto curve for TP-3 is shown in Figure-3. It was evolved using a 
maximum population size of 20 because doubling the initial population resulted in 
only a 3% increase in the number of nondominated solutions. (i.e. an increase from 69 
to 71 nondominated solutions). 
 

  
 

Fig. 3. Test Problem TP-3    Fig. 4. Test Problem TP-4 

Pre-convergence of small populations w as prevented for TP-1, TP-2 and TP-3 
because of the dynamic mutation rate which this method incorporates. Recall that 
mutation rate in the method is set as the inverse of the population and when the 
population is doubled the mutation rate is reduced by half. By starting with a small 
population, the mutation rate is set to a high value (i.e., Pm = 0.1) and the problem of 
pre-convergence is avoided. 
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Test problem TP-4 is also a discontinuous function. It can be seen from Table 2 that  
the initial population is too small, yielding only 4 nondominated solutions. The 
method automatically corrects the problem with subsequent population increases. As 
the population was increased to 80 the search yielded 213 points, representing 5 times 
the number of nondominated solutions obtained using a population size of 40. The 
search for TP-4 terminated with a population of 160 and a 9.9 percent increase in the 
number of nondominated solutions. 

 
These results demonstrate the efficiency of our proposed 3-step method in evolving 
close approximations to the Pareto front. The method was able to sufficiently quantify 
the tradeoffs for the 4 test problems using significantly fewer than the 25,000 function 
evaluations required for Deb’s recommended parameter settings. Test problems TP-1, 
TP-2 and TP-3 were solved using less than 15,000 fitness evaluations indicating a 
relative savings of at least 40% in computational time. Though TP-4 required more 
fitness evaluations than the other problems, it should be noted that it still saved more 
than 20% in computational time. Additionally, the automated design methodology 
proposed in this paper eliminates the need for trial-and-error analysis in applications 
where Deb’s recommended population size of 100 may be too small (e.g., in 
applications with greater than 2 objectives).   
 

5 Conclusions and Future Work 

The method described in this approach builds on the previous parameterless design 
methodologies [5, 4, 6]  by introducing a multipopulation approach that uses 
explicitly small populations to sufficiently quantify  tradeoffs. The simple 3-step 
approach reduces user interaction and eliminates the need for trial-and-error 
parameter analysis. The method has been successfully demonstrated on four test 
problems. 
 
The method utilizes offline analysis , which is a special case of the archiving 
methodologies currently being recommended. Further work will investigate 
interactive archives . Also, we will investigate the method’s sensitivity to random seed 
effects.  
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