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Abstract

This paper describes a hybrid method for supervised
training of multivariate regression systems. The proposed
methodology relies on supervised clustering with genetic
algorithms and local learning. Genetic Algorithm driven
Clustering (GAdC) offers certain advantages related to
robustness, generalization performance, feature selection,
explanative behavior and the additional flexibility of
defining the error function and the regularization
constraints. In this contribution we present the use of
GAdC for prediction of algae distributions. We highlight
one of the advantages of this method namely, the use of
scalars to obtain the sequence in which the prediction of
algae distributions should be calculated. Using this
sequence leads to an improvement of the prediction.

1. Introduction

This paper describes a model for a regression analysis
tool that can be seen as a kind of multi-strategy data
analysis system. GAdC is a hybrid model based on a GA
semi-supervised clustering algorithm [1] augmented with
local learning. The local learning in this method is
supervised in the sense that the prediction quality is
incorporated as a penalty term added to the fitness
function of the Genetic Algorithm (GA). GAdC offers
certain advantages related to robustness, generalization
performance, feature selection, explanative behavior, and
the additional flexibility of defining the fitness function
with or without regularization constraints. This paper
explains the GAdC methodology by discussing in
succession: (i) local learning, (ii) clustering with GAs for
a variable number of clusters and (iii) genetic algorithm
driven clustering. The data analysis task concerns the
environmental problem of determining the state of rivers
and streams by monitoring and analyzing certain
measurable chemical concentrations with the goal of
inferring the biological state of the river, namely the
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density of algae communities. Typical of such real-life
problems (prediction of seven different algae frequency
distributions), the particular data set contains a mixture of
qualitative (river size and its velocity), linguistic (season
when the sample was taken) and numerical measurements
values (chemical concentrations), with much of the data
being incomplete. This paper demonstrates that the GAdC
method is very helpful to improve the quality of the
models needed to make the predictions. Indeed based on
the scalars a good sequence of calculations will be
derived.

2. GAdC methodology

This section presents the GAdC algorithm developed
by the authors and designed for regression analysis.

2.1. Local learning

Local learning [2] belongs to a data analytic
methodology whose basic idea lies behind obtaining the
prediction for a case i (with vector coordinates x;) by
fitting a parametric function in its neighborhood. This
means that these methods are ‘locally parametric’ as
opposed to, for instance, least squares linear regression.
Moreover, these methods do not produce a ‘visible’ model
of the data. Instead they make predictions based on local
models generated on a query point basis. In spite of being
considered a non-parametric regression technique, local
learning does have several ‘parameters’ that must be
tuned in order to obtain good predictive results. One of
the most important is the notion of neighborhood. Given a
query point g, we need to decide which training cases will
be used to fit a local polynomial around the query point.
This involves defining a distance metric over the
multidimensional space defined by the input variables.
With this metric, we can specify a distance function that
allows finding the nearest training cases of any query
point. Still, many issues remain open. Namely, weighting
of the variables within the distance calculation can be



crucial in domains with less relevant variables. Moreover,
we need to specify how many training cases (L) will enter
the local fit (usually known as the bandwidth selection
problem, generally chosen as 3 or 5). Even after having a
bandwidth size specification, we need to weight the
contribution of the training cases within the bandwidth.
Nearer points should contribute more into the local fit.
This is usually accomplished through a weighting
function (distance weighting factor d) that takes the
distance to the query point into account (known as the
kernel function). The outcome (0;) for a case i (with
vector coordinates x;) can now be estimated by local
learning from the target outcomes of its L nearest
neighbors (t) according to:
']
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The first factor in the denominator of the expression
above allows incorporating a distance-weighting scheme.
Introducing the distance weighting factor (d) can control
the specifics. For the traditional least square error
measure, the total regression error becomes
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The correct tuning of all these modelling ‘parameters’
can be crucial for successful use of local learning.

=1

2.2. GA-driven Clustering with a variable cluster
number

Clustering is a classic machine learning problem. The
most popular clustering method is the well-known K-
means algorithm [3]. However, there are a number of
good reasons to consider other clustering methods as well
[4].

One alternative to the K-means clustering algorithm is
to consider a genetic algorithm based clustering method
where the GA determines the cluster centers in order to
reduce the classical cluster dispersion measure (or any
other measure related to cluster performance for that
matter). A collection of N cases is partitioned into K
groups according to:

K X N 2
1503 (Fak-ar |
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Where
J is the cluster dispersion measure (to be minimized),
N is the number of cases,
K is the number of clusters,

& is 1 when case i belongs to cluster k, O otherwise,
x; are the vector coordinates for case i,
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¢y are the vector coordinates for cluster center k (to be

determined).

It is straightforward to implement a genetic algorithm
for “guessing” the cluster centers in order to minimize the
objective function J. A genetic algorithm was
implemented as a floating point GA with uniform cross-
over and uniform mutation [5]. A chromosome of the GA
represents the coordinates of all cluster centers. If the
dimensionality of the data is D (here the number of
descriptors), and there are K cluster centers, there will be
D*K genes. While the choice of mutation and crossover
rates is important for the performance of the GA, it was
found that the GA is fairly robust with regard to the
particular implementation details such as selection and
reproduction schemes. The principal behind genetic
algorithms is essentially Darwinian natural selection.
Selection provides the driving force in a genetic
algorithm, and the selection pressure is critical in it. The
selection directs a genetic algorithm search toward
promising regions in the search space. There are three
basic issues involved in selection phase: sampling space,
sampling mechanism, selection probability. In our
implementation we used an enlarged sampling space, both
individuals from the old population (size p) and offspring
(size A) have the same chance of competing for survival.
This strategy was originally used in evolution strategies
[6]. With this strategy, p individuals and A offspring
compete for survival and the p best out of offspring and
individuals of the old population are selected as
individuals for the new generation. The amount of overlap
defines the amount of individuals from the population that
will be used as parents. Note that not all individuals are
used as parents during each generation step. The sampling
mechanism used to select the parents is called roulette
wheel selection. The basic idea is to determine selection
probability for each chromosome proportional to the
fitness value. To prevent premature convergence, the
fitness values as calculated by means of the fitness
function is scaled before the selection probability is
calculated. In our implementation a linear scaling
mechanism was used. Linear scaling adjusts the fitness
values of all chromosomes such that the best
chromosomes get a fixed number of expected offspring
and thus prevent it from reproducing too many.

Note that so far the number of clusters was pre-
determined. It is now possible to extend GA driven
clustering to allow for a varying number of clusters [4].
Rather than following Bezdek’s suggestions, we had good
success by starting out with a relatively large predescribed
number of clusters and letting the number of clusters vary
by adding a regularization term (i.e., in this case a
penalty/bonus term for empty clusters) to the cluster
dispersion, leading to the following fitness function:

Fitness_Function=J £y N,



In the expression above, y is a “dummy cluster”
penalty/bonus factor and Ng is the number of empty
clusters. A cluster is empty when it has no members. Such
empty or “dummy clusters” do not effectively contribute
to the cluster dispersion anymore. It depends on the
particular application whether a penalty or bonus
approach is more efficient. The choice of the penalty
factor y is determined by trial and error.

2.3. Genetic Algorithm-driven Clustering

So far, a GA was introduced as an alternative to
traditional clustering. The introduction of a dummy
cluster regularization term offers an elegant way to vary
the number of clusters and brings a significant advantage
over traditional clustering methods. Up to this point, there
is no supervised action going on. Combining the two
former methods, we get a powerful prediction method. In
a first step, the whole data set will be clustered and in
each cluster the local learning method will be applied to
calculate the outcome. Furthermore, the clustering itself
will be influenced by the result of the local learning
method. All that is needed in this case is to add an
additional penalty term, related to the error measure, to
the fitness function, according to:

Fitness_Function = J £y N, + o M,

The last term in the expression above represents a
penalty factor proportional to the total regression error
(Mg). The proper choice for the regularization parameter
() is problem dependent and needs to be specified by the
user. o can be determined by trial and error. It was found
that the particular choice for the regularization parameters
is not crucial as long as each of the three terms in the cost
function remains significant.

The GA driven regression clustering algorithm
presented is now an alternative to a traditional artificial
neural network. One useful feature can still be added to
regression clustering: dimension scaling. In the case that
the data space has a very high dimensionality, it is
generally desirable to reduce the dimensionality by
selecting the most relevant features. Rather than
combining the GA based regression clustering method
with a traditional method for feature selection (e.g., by
selecting the most correlated features with the outcomes),
we propose to introduce adaptive scaling factors for each
dimension. An easy way to implement this scheme is to
add a number of genes corresponding to the
dimensionality (D) of the chromosomes. In order to
discourage irrelevant features or dimensions, each
dimension is multiplied by its corresponding scaling
factor. The sum of the scaling factors is normalized to
unity to avoid a trivial solution. The GA automatically
adjusts appropriate scaling factors and the most relevant
features for a particular application are the ones with the
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larger scaling factors. It is also possible to further
generalize this feature selection scheme assigning a
different set of scaling factors to each cluster. An
additional term was added in our implementation for
practical reason. This term (l-cluster penalty) was to
overcome the problem during the training phase that a
cluster would contain only one element for which it would
not be possible to calculate a target value as described
before.

3. Computational results
3.1. Problem statement

Recent years have been characterized by increasing
concern at the impact man is having on the environment.
The impact on the environment of toxic waste, from a
wide variety of manufacturing processes, is well known.
More recently, however, it has become clear that the more
subtle effects of nutrient level and chemical balance
changes arising from farming land run-off and sewage
water treatment also have a serious, but indirect, effect on
the states of rivers, lakes and even the sea. In temperate
climates across the world summers are characterized by
numerous reports excessive summer algaec growth
resulting in poor water clarity, mass deaths of river fish
from reduced oxygen levels and the closure of
recreational water facilities on account of the toxic effects
of this annual algae bloom. Reducing the impact of these
man-made changes in river nutrient levels has stimulated
much biological research with the aim of identifying the
crucial chemical control variables for the biological
processes.

The data used in this problem comes from one such a
study [7]. During the research study water quality samples
were taken from sites on different European rivers of a
period of approximately one-year. These samples were
analyzed for various chemical substances including:
nitrogen in the form of nitrates, nitrites and ammonia,
phosphate, pH, oxygen, chloride. In parallel, algae
samples were collected to determine the algae population
distributions. It is well know that the dynamics of the
algae community is determined by external chemical
environment with one or more factors being predominant.
While the chemical analysis is cheap and easily
automated, the biological part involves microscopic
examination, requires trained manpower and is therefore
both expensive and slow.

The task is the prediction of alga frequency
distributions (fig. 1, AG1) on the basis of the measured
concentrations of the chemical substances and the global
information concerning the season when the sample was
taken, the river size and its flow velocity. The two last
variables are given as qualitative variables.



100
90 W
80
70

8 @

= f

S ol }

g o !

S AN L 1
T Tk LR
Ty I l

e T

case humber

Fig 1: Algal distribution versus case number
~3.2. Solution

The river pollution data set [7] for this study consisted
of 198 cases (after weeding out 2 cases, with most of the
variables as missing data, from the original data set) used
for training. Another set of 140 cases (samples) was used
as blind set. There were 18 descriptors (variables) The
first descriptor (season) was not used in this study. The
remaining 17 descriptors were used. The last 7 descriptors
of each data set are the distribution of different kinds of
algae (AG1, AG2, ... AG7) and represent the outputs to
be predicted. The descriptors used to build a model are the
river size, the fluid velocity (both categorical), and 8
chemical concentrations being nitrogen in the form of
nitrates, nitrites and ammonia, phosphate, oxygen and
others. The values of the categorical descriptors river size
(small; medium; large) and fluid velocity (low; medium;
high) were replaced by numerical values (0.0; 0.5; 1.0).
The remaining missing values were replaced by the mean
of the responding descriptor (pH) or were calculated using
the GAdC methodology.

Seven different models were build (all based on 10
descriptors, see results under sequence ‘none’ in table 1),
one for each outcome (outcomes calculated independently
of former calculated outcomes). The GAdC method
started out with 17 clusters and used local learning by
averring between the 5 nearest neighbors within that
cluster. In the case that there were less than 5 neighbors
within the cluster, all the available training samples for
that cluster were wused. The penalty factor for
misclassification was set to 800 and the bonus factor for
empty clusters was set to 1 (penalty factor to discourage
one element clusters was set to 5). The population size
was set to 100 and the GA ran for 250 generations. The
mutation and crossover probabilities were 0.01 and 0.6
respectively. A simple roulette selection procedure was
followed for reproduction. The mean squared error is the
value calculated for all the algae.

From biological point of view we do know that algae
interact. Based on this fact we proposed to use previous
calculated algae distributions in the prediction of next
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calculations (when we know the values for AG1, we will
use this as an extra input to calculate the values for AG2).
This involves that once the distribution of one algal is
known, we are going to use this information in the
calculations of the other algac. As prove of our
assumption we calculate all values again in the sequence
1234567 (see table 1). The global error drops down
significantly (11%)! As we have to calculate the outcome
of 7 algae, this indicates that there exist 5040 different
sequences.

Table 1: Results

Sequence of Mean squared error
calculation
None 95.3
1234567 84.7
1526743 90.0
1256743 87.3
1265743 85.1
1265734 84.2
1265347 84.4
1265437 84.8
For each outcome (AGi, i =1 ... 7) we make a model

based on the former used inputs and the values of the
other six algae. Now we detect how important the other
algae are in the prediction of this particular algae by
calculating the product (importance indicator) between
the scalar of the algal and the corresponding mean value.
In this way we are able to rank the other algae for a
specific algal. The results are presented in table 2. Based
on this table we suggest to try out following sequences:
1526743; 1256743; 1265743; 12654734; 1265347 and
1265437. The obtained results are represented in table 1.
The global mean squared error decreased 12%.

Table 2: Importance of other algae

AG1 AG2 AG3 AG4
140 AG6 | 3.50 AG1 3.06 AG1 1.53 AGl1
1.39 AG5 | 1.71 AG5 2.20 AG6 1.36 AG2
0.80 AG7 | 1.32 AG6 1.08 AG5 | 1.25 AGS
0.72 AG3 | 0.75 AG3 0.39 AG4 1.05 AG3
0.59 AG2 | 0.66 AG4 0.32 AG7 0.73 AG6
0.36 AG4 [ 0.45 AG7 0.30 AG2 0.55 AG7

AGS AG6 AG7
3.37 AG1 | 1.86 AG1 3.88 AG1
1.92 AG6 | 1.82 AGS 1.27 AG2
1.85 AG2 | 1.39 AG3 1.19 AGS
1.14 AG3 | 1.33 AG2 0.82 AG6
0.58 AG7 | 046 AG4 0.56 AG4
0.50 AG4 | 0.33 AG7 0.28 AG3




4. Conclusions

We presented a hybrid method for supervised training
of multivariate regression systems. In general this method
deals with ill-defined problems having little cases
available each with a high number of variables. One of the
main advantages is that the preprocessing phase can be
very short (no scaling of values!). Furthermore it is easy
to obtain a ranking of the variables depending on their
importance for the prediction obtained. We applied our
hybrid method to a real world environmental problem. In
this problem we have little cases available with a
moderate number of variables. Here we showed that the
scalars are also useful to tell us between which outputs
(algae) exist a “correlation”. Using this information leads
to the building of better models. By determining the
influences between the algae, based on their importance to
predict the outcome of one of them, it is possible to
improve the prediction accuracy.
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