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Multiobjective Genetic Algorithms Applied
to Solve Optimization Problems

Alexandre H. F. Dias and Jdao A. de Vasconcelos

Abstract—n this paper, we discuss multiobjective optimization physical condition with the aim of find the (quasi) optimum
problems solved by evolutionary algorithms. We present the non- tradeoff surface.
dominated sorting genetic algorithm (NSGA) to solve this class of
problems and its performance is analyzed in comparing its results
with those obtained with four others algorithms. Finally, the NSGA Il. MULTIOBJECTIVE OPTIMIZATION PROBLEM
is applied to solve the TEAM benchmark problem 22 without con- Mathematically, we can write MOPs as
sidering the quench physical condition to map the Pareto-optimum !
front. The results in both analytical and electromagnetic problems

show its effectiveness. maximize  y=f(z) = {fi(z), f2(2). ..., fu(®)}
Index Terms—Electromagnetics, multiobjective evolutionary al- subjectto g(z) ={g1(=), g2(%), ..., gs(x)} <0
gorithms, nondominated sorting genetic algorithms. h(z) ={hi(x), ha(x), ..., hx(x)} =0
where  z={z1, 2, ...,2n}€X
|. INTRODUCTION y={y, Y2, -, ym} €Y (1)

ANY real-world electromagnetic problems involve ) . _ . N
simultaneous optimization of multiple objectives tha?nd‘” is the vector of decision variableg, is the objective

often are competing. In a multiobjective optimization probler}ﬁec"or’X is the d(_eC|S|0n space, and is called Fhe objective
(MOP), there may not exist one solution that is best withPace. The s_ol_utlon of ,(1) IS usually no unique, but a set
respect to all objectives. Usually, the aim is to determine o4 €aually efficient, noninferior or nondominated solutions,

tradeoff surface, which is a set of nondominated solution poinfd!0Wn as Pareto-optimal set [1]. =~ .
known as Pareto-optimal (PO) or noninferior solutions. In A noninferior solution is one that is not dominated by any

view of the fact that none of the solutions in the nondominat&iner feasible solution. M_at;lema_tlcally, 2'” the; maximization
set is absolutely better then any other, any one of them is %{?‘Pg’ We say that the solutieh dominates:, or" is superior

acceptable solution. The choice of one solution over the otHarE™: 1-€-
requires problem knowledge and a number of problem-related
factors [1]. RV/'L e{l,..., M}, ylz') > y(=*)
One way to solve multiobjective problems is to transform the Adie {1, ..., M}Yy(=") > yi(=?).
original problem in a single-objective one, by weighting the ob- . ) ) ]
jectives with a weight vector. This process allows the use of any!f any _Other‘f in the fef\_5|ble space of design variables does
single-objective optimization algorithm, but the obtained sol{l0t dominatec”, henceg" is a noninferior, nondominated or a
tion depends on the weight vector used in the weighting procegg'reto-optlmal point. Two Pareto-optimal points are indifferent
Genetic algorithms (GAs) work with a population of points, s& €ach other. _ . _
we expect that they can find the Pareto-optimal front easily. The optimization algorithm should be terminated if any one
In this paper, we present the NSGA [2] and we anaerq{the Pareto-optimal solutions is obtained. Butin practice, since
regarding the solution of MOPs. Moreover, we compare its rthere could be a number of Pareto-optimal solutions and the suit-
sults with those obtained by the multiobjective evolutionary afPility of one solution depends on a number of factors, including
gorithms (MOEAs): VEGA [3], NPGA [4] and MOGA [5], and the designer’s choice and problem environment, finding the en-
the classical method of objective weighting refereedP43) tire set of Pareto-optimal solutions may be desired. In the fol-
[1]. We compare its performances in the solution of two anowing section, we describe in details the nondominated sorting
alytical test problems. Finally, we apply the NSGA to solvgenetic algorithm (NSGA).

the TEAM problem 22 without taking into account the quench
Ill. NSGA DESCRIPTION
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Btart NSGA Fitness Sharing:In genetic algorithms, sharing techniques

aim at encouraging the formation and maintenance of stable
subpopulations or niches [7]. This is achieved by degrading the
fitness value of points belonging to a same niche in some space.

Generation of hitial Population

el Consequently, points that are very close to, with respect to some
¢ space (decision spacein this paper), will have its dummy fit-
_,.Evaluate Process ness function value more degraded. The fitness value degrada-
Froni=1 tion of near individuals can be executed using (2) and (3), where
the parameted,; is the variable distance (Euclidean norm) be-
R g R tween two individualg andj, and_ash_ar_ed is the maximum dis-
classified? identification tance allowed between any two individuals to become members
A of a same niche. In additiodf+ is the dummy fitness value as-
YES i signed to individuak in the current front andj’s is its corre-
Ba=Gar1] A ﬁ:ﬁn&“;:;‘fsue sponding shared valué/,,.,, is the number of individuals in the
A

population. For details about niching techniques, see [8]

r0SSOVEl Fitness Sharing

T L
Sh(du = Tshared

2
) ) if dz] < Ushared

)
0, if dz] 2 Oshared
Npop -t
dff =dfi | > Sh(di;)| . (3)
j=1
Fig. 1. Flow chart of NSGA. IV. DESCRIPTION OFP(A), VEGA, MOGA, AND NPGA

The method of objective weighting?()), is probably the

In the ranking procedure, the nondominated individuals gimplest of all classical techniques where multiple objectives are
the current population are first identified. Then, these individombined into one overall objective function. In this method, the
uals are assumed to constitute the first nondominated front wigptimal solution is controlled by a weight vecterand modi-

a large dummy fitness value [2]. The same fitness value is &ping the corresponding weight can change the preference of an
signed to all of them. In order to maintain diversity in the popobjective. The only advantage of using this technique is that the
ulation, a sharing method is then applied. Afterwards, the indimphasis of one objective over the other can be controlled and
viduals of the first front are ignored temporarily and the rest @fe obtained solution is usually a Pareto-optimum solution [1].
population is processed in the same way to identify individuals An early GA application on multiobjective optimization by
for the second nondominated front. A dummy fitness value thgthaffer opened a new avenue of research in this field. The algo-
is kept smaller than the minimum shared dummy fitness of thighm, called vector evaluated genetic algorithm (VEGA), per-
previous front is assigned to all individuals belonging to the nefgrms the selection operation based on the objective switching
front. This process continues until the whole population is clagile, i.e., selection is done for each objective separately, filling
sified into nondominated fronts. Since the nondominated frordgually portions of mating pool [3]. Afterwards, the matting
are defined, the population is then reproduced according to ol is shuffled, and crossover and mutation are performed as
dummy fitness values. usual.

The NSGA was first proposed with a stochastic remainder Fonseca and Fleming [5] proposed a Pareto-based ranking
proportional selection (SRS) procedure. However, it is possilpeocedure (MOGA), where the rank of an individual is equal
to use any other selection technique as roulette wheel or tourttee number of solutions found in the population where its corre-
ment [6]. As the individuals in the first front have higher fithessponding decision vector is dominated. The fithess assignment
value, they always get more copies than the rest of the popsi-determined by interpolating the fithess value of the best in-
lation. This method was intended to search for nondominatdividual (nondominated) and the worst one (most dominated).
regions, and sharing helps to distribute the individuals over thile MOGA algorithm also uses a niche-formation method to
region. By emphasizing nondominated points, NSGA favors tléstribute the population over the Pareto-optimal region based
schemata representing the Pareto-optimum regions [2]. on the objective space.

NSGA implements both aspects of Goldberg’s suggestion inThe niched Pareto genetic algorithm (NPGA) proposed by
the better way [6], i.e., the ranking procedure is performed adorn, Nafpliotis, and Goldberg uses the concept of Pareto
cording to the nondominance definition over the population amthminance and tournament selection in solving MOPs [4].
a uniform distribution of the nondominated is guaranteed usitig this method, a comparison set 8., individuals is ran-

a niche formation technique. Both aspects produce distinct naomly picked from the current population before the selection
dominated points to be found in the population. procedure. In addition, we choose two candidates from the
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current population that will compete to survive to the selectio **
operation. For selecting the winner, these two candidat ,,.

LABELS

are compared with those @, set using a nondomination + o NPGA
criterion as described in Section . R o VEGA
*

08 W& + + PG

V. CRITERION FORPERFORMANCEMEASUREMENTS .

0B

The performance measurement criterion used to evaluate
Pareto fronts produced by the EAs is the coverage relationst
[7]. Given two sets of nondominated solutions, we compute fc o2}
each set the fraction of the solutions that is not covered (n
dominated) by the other. Since this comparison focus on findir %
the Pareto-optimal set, this criterion uses the off-line perfoi-
mance method. The nondominated solution set taken to perfogg 2. Nondominated points for EAs—functidh .
the comparison between all EAs is the summation of nondom-
inated solutions found by each algorithm at each run, after an-
plication of a nondominance criterion. '

'8 LABELS

VI. RESULTS 14 & NPGA

¢ VEGA

Analytical Problems "2 » PO
. 5 © MOGA

Two problemsl’; andI'; were chosen in order to test the .~ O NSGA

multiobjective genetic algorithms discussed in this paper. Tt %8

I'; problem has a convex Pareto-optimal front and is given by os

0.4
jl(ahJ x??"'v*rnJ =1 02

fo(z1, 22y, Tm) = g(x)" (1 -V fl/g(x)) . (4) % o1 02 03 o4 06 06 o7 08 09 ‘

The second probleri, is the nonconvex counterpartkg

Fig. 3. Nondominated points for EAs—functidn .

fl(azl, L2y, a:m) =1
TABLE |
2
fo(z1, 22, 7)) = g(2)" [1 = (f1/9(x)) ] . (5) EA PERFORMANCEMEASUREMENT
In both casesy = 30, z; € [0, 1] and the Pareto-optimal front _B/A | VEGA = MOGA = NSGA &= NPGA P()
is formed withg(z) = 1. The functiong(z) is defined by VEGA - /0 0/ 0/0 0/
MOGA |_100/100 - 90/89 | 100/98 | 100/100
. NSGA | 1007100 |_100/100 - 100/100_|_100/100
NPGA | 1007100 | 90/89 90/88 - 100/100
g(z2, ..o, Tp) =1+ 92 z;/(m —1). (6) P(») | 100/100 | 88/79 87/90 79/89 -
—

The mul.t|object|ve EAS. were exec_uted 30 times for ea EGA. The result for VEGA method is explained by the fact
problem with the same initial population. The results of eac

: . o its selection procedure does not use information of nondom-
execution was stored in an auxiliary vector and at the end the
. e : : .Inated fronts.
nondominance criterion was applied to the points belonging
to the auxiliary vector, resulting a nondominated set that was

taken as outcome. The set of genetic parameters used siglimization in Electromagnetics

Nger = 250, Npop = 100, p. = 0.80, pr, = 0.01, ochared = The TEAM Benchmark Problem 22 was chosen to show the
0.4886 andTy.,, = 10 (for NPGA). The graphic results areapplication of NSGA described in the previous study in solving
shown in Figs. 2 and 3. a multiobjective electromagnetic optimization problem. In this

The direct comparison of the outcomes achieved by the difaper, we search to find the (quasi) Pareto-optimal front of a
ferent multiobjective EA is presented in Table I. Each cell givesiperconducting magnetic energy storage device (SMES) [9].
the percentage of solutions evolved by method B that are ndriie aim is to find the multiple Pareto-optimal points considering
dominated by those achieved by method A for both problEms two objective functions: 1) the first objective considers the stray
andI';. For example, the cell NPGA/MOGA signifies that 90%ield and 2) the second one takes into account the stored energy
of solutions found by NPGA are nondominated by those founidlated to a prescribed value. The constraint conditions are the
by MOGA for I'; problem and 89% in the case of problém  bounds in the design variables. The quench physical condition
These results show that all methods give rise to similar solutiottigt guarantees superconductivity was neglected in this simula-
with a slight superiority for NSGA method, with exception otion [10].
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stray

Mathematically, the multiobjective optimization problem for (6]

the SMES problem was stated as

minimize f={Fy, F>}
2
_ < Bstray ) |Energy - Eref|
- )
Bnormal Eref

whereByormal = 3¥1073(T) and E,o; = 1.8%108(.J).

(@)

The problem was solved considering three design vari-
ables in continuous case with a fixed current density
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equal to 22.5 A/mrh. The nondominated points have been
found using NSGA method (with roulette wheel selection,
Pe = 0.9, pp, = 0.05, Npop = 30 and Ng.; = 50) coupled
with a finite element code for energy and field calculations. The
domain was subdivided in triangular elements of first order.
The results are presented in Figs. 4 and 5.

VIl. CONCLUSION

In this paper, a nondominated sorting genetic algorithm, pro-
posed by K. Deb, is described and compared with four others
algorithms using two test problems. In this comparison, the
NSGA performs better than the others do, showing that it can
be successfully used to find multiple Pareto-optimal solutions.
Its application to the SMES problem show that it is reliable to
solve multiobjective optimization in electromagnetics and that
the TEAM22 Pareto-optimal front must be convex.
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