
MULTIOBJECTIVE SYNTHESIS OF

LOW-POWER REAL-TIME

DISTRIBUTED EMBEDDED

SYSTEMS

Robert P. Dick

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

ELECTRICAL ENGINEERING

November 2002

c
�

Copyright 2002 by Robert P. Dick.

All rights reserved.

Abstract

This dissertation presents methods for automating the synthesis of embedded sys-

tems, i.e., special-purpose computers. In addition, it describes a method for analyzing

the manner in which real-time operating system use influences embedded system power

consumption.

After introducing the embedded system synthesis problem and summarizing previ-

ous work in the field, we present four evolutionary algorithms that simultaneously opti-

mize the different costs of embedded systems, e.g., price, power consumption, response

time, and area, while ensuring that hard real-time constraints are met. These algorithms

generate multiple solutions that present tradeoffs between different architectural costs.

Each algorithm targets a different embedded system domain. The first algorithm synthe-

sizes distributed embedded systems. The second synthesizes systems-on-chip composed

of intellectual property cores that may come from different vendors. It does clock selec-

tion, floorplanning block placement, and bus topology generation. The third synthesizes

distributed client-server systems in which the bandwidth of client-server communica-

tion is tightly constrained, e.g., wireless embedded systems. It incorporates a novel

scheduling method tailored to embedded systems with multiple clients for each server.

The fourth synthesizes embedded systems that may contain reconfigurable processors.

In addition, we present a method of analyzing the effects of real-time operating system

usage on the overall performance and power consumption of embedded systems.

iii

Acknowledgments

First, I would like to thank my advisor, Niraj Jha. We closely collaborated on all

the work presented in the body of this dissertation. He has all the traits of an excel-

lent research advisor; he is intelligent, diligent, methodical, careful, imaginative, and

even-tempered. I appreciate the corrections and suggestions offered by my dissertation

readers: Niraj Jha, Sharad Malik, and Anand Raghunathan. In addition, Keith Vallerio

helped me with numerous administrative and research problems while I was writing this

dissertation.

I would like to thank Zhen Luo for modifying his design rule checking software [1]

in order to collect metal density information from a number of layouts. This informa-

tion was used to build the system-on-chip synthesis benchmarks described in Sections

6.8 and 7.10.2. It also reinforced my view that one can relate global routing layer metal

density to floorplanner quality. I appreciate Zhigang Pan’s help in answering the ques-

tions I asked while implementing his, and Jason Cong’s, wiring delay model [2] for use

in the work described in Section 7.7. I thank David Dobkin for his suggestions during

design of the bus topology generation algorithm described in Section 7.8. He helped

me to look at the problem from an unconventional perspective. I-Jong Lin’s suggestions

helped in developing the clock frequency selection algorithm (Section 7.10.1).

In addition to Niraj Jha, Anand Raghunathan and Ganesh Lakshminarayana collab-

orated on the real-time operating system power consumption analysis work described

in Chapter 10. Much of this work was done during my term as an employee of NEC

Computer and Communications Research Laboratories. I would like to thank Dr. Leslie

French, from NEC C&C Research Labs, for helpful discussions on real-time operating

systems and his assistance with the Ethernet interface example. David Rhodes, Wayne

iv

Wolf, and I collaborated on the parametric task graph and resource database project

described in Appendix A.

I would like to thank André Tits for correcting a multiobjective optimization termi-

nology error in Section 4.5 and Forrest Brewer for encouraging me to describe a method

of supporting streaming data communication within the task set model in Section 3.5.

Niraj Jha, Sun-Yuan Kung, Margaret Martonosi, Sharad Malik, Larry Peterson, and

Andrew Yao gave competent instruction and advice about numerous engineering prob-

lems. I was glad to have the opportunity to discuss research with Jiong Luo, Li Shang,

Tat Kee Tan, Shaojie Wang, Keith Vallerio, Yuan Xie, and Lin Zhong. Sarah Griffin,

Sheila Gunning, and Karen Williams helped me deal with the university’s bureaucracy.

In addition, Sheila and Karen advised me as if I were a younger brother.

Financial support for my work at Princeton University was provided by an NSF

Graduate Fellowship, NSF Grant Number MIP-9423574, a grant from NEC C&C Re-

search Labs, Princeton University’s George Van Ness Lothrop Fellowship in Engineer-

ing, Army CECOM, and DARPA under contract number DAAB07-00-C-L516.

v

vi

Contents

Abstract iii

Acknowledgments iv

1 Introduction 1

1.1 Embedded system design automation 3

1.2 Multiobjective embedded system design 5

1.3 Power consumption . 6

1.4 Dissertation overview . 8

2 Past work 11

2.1 Hardware-software co-design research 12

2.2 Hardware-software co-synthesis . 15

3 Definitions 21

3.1 Hardware-software co-synthesis decisions 22

3.2 Problem taxonomy . 22

3.3 Constraint specifications: Multi-rate task sets 24

3.4 Multi-rate task sets for real-time systems 26

3.5 Modification of the task set model for

pre-computation and streaming . 29

vii

3.6 Processing elements (PEs) . 30

3.7 Communication resources . 31

4 Optimization algorithms 33

4.1 Solving NP-hard problems . 33

4.2 Simulated annealing . 38

4.3 Genetic algorithms . 40

4.4 Parallel recombinative simulated annealing (PRSA) 43

4.5 Multiobjective optimization . 43

5 Synthesis of Low-Power Heterogeneous Distributed Systems 49

5.1 Requirements for the optimization algorithm 50

5.2 Specialized hardware resources . 51

5.3 Solution representation . 53

5.4 Optimization algorithm . 56

5.5 Clusters . 57

5.6 Initialization and genetic operators . 61

5.7 Solution evaluation . 65

5.7.1 Scheduling . 65

5.7.2 Task graph copies . 69

5.7.3 Cost calculation . 71

5.7.4 Constraint violation . 72

5.8 Ranking and reproduction . 73

5.9 Experimental results . 75

5.9.1 Price optimization . 76

5.9.2 Multi-objective power and price optimization 82

5.10 Conclusions . 86

viii

6 Enhanced Low-Power Heterogeneous Distributed Systems Synthesis 87

6.1 Communication and memory model 88

6.2 Optimization infrastructure . 89

6.3 Multidimensional locality preserving crossover 91

6.4 Guided task assignment mutation . 94

6.5 Initialization . 100

6.6 Cost calculation . 101

6.7 Solution cache . 102

6.8 Benchmarks . 103

6.9 Experimental results . 106

6.9.1 Multiobjective optimization for the E3S benchmarks 106

6.9.2 Price-only optimization for examples from the the literature . . 107

6.10 Conclusions . 113

7 Intellectual Property Core-Based System-on-Chip Synthesis 115

7.1 Motivation . 116

7.2 IP core model . 117

7.3 Algorithm overview . 118

7.4 Clock selection . 120

7.5 Tie prioritization . 128

7.6 Floorplan block placement . 129

7.7 Wiring delay and power consumption model 131

7.8 Bus topology generation . 132

7.8.1 Motivation . 132

7.8.2 Definitions and assumptions 133

7.8.3 Overview . 134

7.8.4 Efficiency . 137

ix

7.9 Cost calculation . 138

7.10 Experimental results . 139

7.10.1 Clock selection . 140

7.10.2 Feature comparisons . 141

7.10.3 Multiobjective optimization for the E3S benchmarks 146

7.11 Conclusions . 148

8 Wireless Low-Power Client-Server System Synthesis 149

8.1 Problem formulation . 151

8.2 Motivating example . 153

8.3 Scheduling and client-server pipelining 157

8.4 Cost calculation . 166

8.5 Experimental results . 167

8.5.1 Multiobjective optimization for the E3S benchmarks 167

8.6 Conclusions . 172

9 Synthesis of Dynamically Reconfigurable Embedded Systems 173

9.1 Motivation . 174

9.2 FPGA model . 175

9.3 Scheduling . 177

9.4 Experimental results . 181

9.5 Conclusion . 186

10 Analysis of Energy Consumption in Embedded Operating Systems 187

10.1 Introduction . 188

10.2 Related work and contributions . 191

10.3 Motivation for RTOS energy analysis 193

10.3.1 Anti-lock braking example 194

x

10.3.2 Commodity trading agent example 196

10.3.3 Ethernet interface example . 199

10.4 Energy analysis infrastructure . 201

10.4.1 Inputs and outputs . 201

10.4.2 System overview . 205

10.4.3 System details . 209

10.4.4 Extending our approach to other embedded systems 210

10.5 Results and case studies . 212

10.6 Conclusions and recommendations 220

11 Comparisons with Related Work 223

12 Contributions and Conclusions 227

A Task Graphs for Free 231

A.1 Introduction . 231

A.2 Task set generation . 233

A.3 Database generation . 239

A.4 Conclusions . 241

B Implementation 243

Bibliography 245

xi

xii

Chapter 1

Introduction

An embedded system is a computer within a host device, when the host device, it-

self, is not generally considered to be a computer. For example, the computers within

automobiles, medical devices, and range finders are embedded systems. In most appli-

cations, well-designed, correctly functioning embedded systems are almost invisible to

their users. Although consumers might be pleased that their cars automatically adjust

their engine timing to achieve the best non-pinging performance possible with the cur-

rently available gasoline, they are unlikely to consider the fact that an embedded system

makes this possible. It is also unlikely that most realize embedded systems are responsi-

ble for 30% of the price of the average car [3] and that microprocessors, alone, account

for 10% of the price [4].

We are surrounded by embedded systems. When I wake up in the morning, the

first thing I hear is the speaker of my digital alarm clock, activated by an embedded

system. I get out of bed and put my breakfast in the microwave, allowing its water vapor

sensing embedded system to perfectly cook my cereal. I call my parents and sister on

my cell phone, a wireless client-server embedded system. The call is routed through a

telecommunications infrastructure composed of numerous high-performance embedded

systems. I get into my car, filled with embedded systems (15 in the average car [5]), and

drive to my office, in which I am surrounded by embedded systems (in the copier, in my

1

2

���
���
���
���
������
������

������
���
�����
�����
�����
�����

16−bit

8−bit

4−bitBillions of
U.S. dollars

���
���
���
���

	�	
	�	
	�	
	�	
�

�

�

�

�

�

�

�

�

�

�

������
������
������
������
������
��������
�����
��
��

�����
�����
�����
�����
�����

�����
�����
�����
�����
��

���
�������
�������
�������
�������

���
���
���
���

���
���
���
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
���
����������

���
���
���
���
���

���
���
���
���
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
��������
�����
�����
�����

 � �
 � �
 � �
 � �
 � �

!�!�!
!�!�!
!�!�!
!�!�!
!�!�!"�"�"

#�#�#$�$�$�$
$�$�$�$
$�$�$�$

%�%�%�%
%�%�%�%
%�%�%�%

&�&
&�&
&�&
&�&
&�&

'�'
'�'
'�'
'�'
'�'(�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(

)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
��*
��*
��*

+�+�+
+�+�+
+�+�+

,�,�,
,�,�,
,�,�,
,�,�,
,�,�,

-�-�-
-�-�-
-�-�-
-�-�-
-�-�-.�.�.

/�/�/0�0�0�0
0�0�0�0
0�0�0�0
0�0�0�0
0�0�0�0

1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1

2�2�2
2�2�2
2�2�2
2�2�2
2�2�2

3�3�3
3�3�3
3�3�3
3�3�3
3�3�34�4�4

5�5�56�6�6�6
6�6�6�6
6�6�6�6
6�6�6�6
6�6�6�6
6�6�6�6

7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7

8�8
8�8
8�8
8�8
8�8

9�9
9�9
9�9
9�9
9�9:�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:

;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<

=�=�=
=�=�=
=�=�=
=�=�=
=�=�=
=�=�=

>�>
>�>
>�>
>�>
>�>

?�?
?�?
?�?
?�?
?�?@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@@�@
@�@

A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
B�B�B
B�B�B
B�B�B
B�B�B
B�B�B
B�B�B
B�B�B
B�B�B
B�B�B
B�B�B

C�C�C
C�C�C
C�C�C
C�C�C
C�C�C
C�C�C
C�C�C
C�C�C
C�C�C
C�C�C

D�D�D
D�D�D
D�D�D
D�D�D
D�D�D
D�D�D

E�E�E
E�E�E
E�E�E
E�E�E
E�E�E
E�E�E
F�F�F

G�G�G
H�H�H�H
H�H�H�H
H�H�H�H
H�H�H�H
H�H�H�H
H�H�H�H
H�H�H�H
H�H�H�H
H�H�H�H
H�H�H�H
H�H�H�H

I�I�I�I
I�I�I�I
I�I�I�I
I�I�I�I
I�I�I�I
I�I�I�I
I�I�I�I
I�I�I�I
I�I�I�I
I�I�I�I
I�I�I�I

’90 ’91 ’92 ’93 ’94 ’95 ’97’96 ’98 ’99 ’00

Year

0

2.5

5

7.5

10

12.5

15

17.5

J�J�J
J�J�J
K�K�K
K�K�K
L�L�LL�L�LL�L�L
M�M�MM�M�MM�M�M
N�N�N�N
N�N�N�N
O�O�O�O
O�O�O�O

16−bit

8−bit

4−bitBillions of
parts

P�P�P
P�P�P
P�P�P
P�P�P
P�P�P
P�P�P
P�P�P

Q�Q
Q�Q
Q�Q
Q�Q
Q�Q
Q�Q
Q�QR�R�RR�R�RR�R�RR�R�RR�R�RR�R�RR�R�RR�R�RR�R�RR�R�RR�R�R

S�SS�S
S�SS�S
S�SS�S
S�SS�S
S�SS�S
S�ST�T�T�TU�U�U

V�V�V
V�V�V
V�V�V
V�V�V
V�V�V
V�V�V
V�V�V
V�V�V

W�W�W
W�W�W
W�W�W
W�W�W
W�W�W
W�W�W
W�W�W
W�W�WX�X�XX�X�XX�X�XX�X�XX�X�XX�X�XX�X�XX�X�XX�X�XX�X�XX�X�XX�X�XX�X�XX�X�X

Y�Y�YY�Y�YY�Y�YY�Y�YY�Y�YY�Y�YY�Y�YY�Y�YY�Y�YY�Y�YY�Y�YY�Y�YY�Y�YY�Y�YZ�Z�Z�Z
Z�Z�Z�Z
[�[�[�[
[�[�[�[

\�\
\�\
\�\
\�\
\�\
\�\
\�\
\�\
\�\

]�]
]�]
]�]
]�]
]�]
]�]
]�]
]�]
]�]^�^
^�^^�^
^�^^�^
^�^^�^
^�^^�^
^�^^�^
^�^^�^
^�^^�^

_�__�_
_�__�_
_�__�_
_�__�_
_�__�_
_�__�_
_�__�_
�`�`�`
`�`�`
a�a�a
a�a�a

b�b�b
b�b�b
b�b�b
b�b�b
b�b�b
b�b�b
b�b�b
b�b�b
b�b�b
b�b�b

c�c�c
c�c�c
c�c�c
c�c�c
c�c�c
c�c�c
c�c�c
c�c�c
c�c�c
c�c�cd�d�dd�d�dd�d�dd�d�dd�d�dd�d�dd�d�dd�d�dd�d�dd�d�dd�d�dd�d�dd�d�dd�d�dd�d�dd�d�dd�d�dd�d�dd�d�d

e�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�e
f�f�f�f
f�f�f�f
g�g�g�g
g�g�g�g

h�h�h
h�h�h
h�h�h
h�h�h
h�h�h
h�h�h
h�h�h
h�h�h
h�h�h
h�h�h

i�i�i
i�i�i
i�i�i
i�i�i
i�i�i
i�i�i
i�i�i
i�i�i
i�i�i
i�i�ij�j�j

k�k�k
l�l�l�lm�m�m�m

n�n
n�n
n�n
n�n
n�n
n�n
n�n
n�n
n�n
n�n

o�o
o�o
o�o
o�o
o�o
o�o
o�o
o�o
o�o
o�op�p
p�pp�p
p�pp�p
p�pp�p
p�pp�p
p�pp�p
p�pp�p
p�pp�p
p�pp�p
p�pp�p
p�pp�p
p�pp�p
p�pp�p
p�pp�p
p�pp�p
p�pp�p
p�p

q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
r�r�r
r�r�r
s�s�s
s�s�s

t�t�t
t�t�t
t�t�t
t�t�t
t�t�t
t�t�t
t�t�t
t�t�t
t�t�t
t�t�t

u�u
u�u
u�u
u�u
u�u
u�u
u�u
u�u
u�u
u�uv�v�v

w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
w�ww�w
x�x�x�x
x�x�x�x
y�y�y
y�y�y

z�z�z
z�z�z
z�z�z
z�z�z
z�z�z
z�z�z
z�z�z
z�z�z
z�z�z
z�z�z

{�{
{�{
{�{
{�{
{�{
{�{
{�{
{�{
{�{
{�{|�|�|

}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
}�}}�}
~�~�~�~
~�~�~�~
~�~�~�~

�����
�����
�����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
���

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
���
�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
���

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
���

���
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

’90 ’91 ’92 ’93 ’94 ’95 ’96 ’97 ’98 ’99 ’00

Year

0

1

2

3

4

5

Figure 1.1: Estimated global microcon-
troller sales in billions of U.S. dollars [4].

Figure 1.2: Estimated global microcon-
troller sales in billions of parts [4].

calculator, in the printer, and in the vending machine). I use these embedded systems

because they make my life better: they make it easier to communicate with those I love,

they help me to schedule my time, they improve the speed and safety of travel, they help

me to manage information, and they assist me with hundreds of other tasks. Embedded

systems make it possible for me to carry out these tasks perfectly without investing the

time and energy necessary to become a specialist in hundreds of different skills.

Many consumers value embedded systems. It naturally follows that the size of the

embedded systems market is large. Microcontrollers are processors typically used in

embedded systems. They may differ from general-purpose processors by having more

input/output support integrated on-chip or by having smaller caches. They may be less

Chapter 1: Introduction 3

expensive, have lower power consumption, or be designed for specialized tasks. Al-

though embedded systems are composed of many other electronic components in ad-

dition to microcontrollers, information about the microcontroller market gives some

insight into the embedded systems market. Figures 1.1 and 1.2 give dollar and part vol-

umes for sales of 4-bit, 8-bit, and 16-bit microcontrollers. These figures indicate that the

size of the microcontroller market is substantial (approximately $16 billion in the year

2000) and growing rapidly. Note that microcontrollers only account for a portion of the

costs of embedded systems; the embedded system market is substantially larger than the

microcontroller market.

In 1998, approximately 250 million 32-bit and 64-bit embedded microprocessors

were sold [5], [6]. Even though this number is much higher than that for personal com-

puters, workstations, and supercomputers (100 million [5]), it is dwarfed by the number

of 4-bit, 8-bit, and 16-bit microcontrollers sold that year (approximately four billion as

shown in Figure 1.2).

1.1 Embedded system design automation

Embedded system designers have difficult jobs. Customers have stringent expec-

tations for embedded systems, some of which are listed in Figure 1.3. The first two

characteristics in Figure 1.3 imply that embedded system designers need to carefully

test their designs to confirm that the designs contain no errors and that every hard dead-

line is met. Any error has the potential to reduce the profitability of a product. The

rigorous design required to meet customer expectations is time-consuming and expen-

sive. A designer might be able to decrease the probability that an embedded system

will miss real-time deadlines by using faster and more expensive processors. However,

this conflicts with the third and fourth characteristics: people want inexpensive and cool

4

1. Software or hardware errors are not acceptable. Although many people toler-
ate it when a general-purpose operating system crashes, this sort of behavior
is not acceptable for an anti-lock brake system. Many embedded systems
have tasks with hard real-time deadlines. Missing a hard deadline is an error.

2. Embedded systems should not require bug fixes or upgrades. Expecting cus-
tomers to change the software or hardware in their cars is unreasonable. Em-
bedded systems are generally more difficult to upgrade than general-purpose
applications. If a designer discovers a software error in an embedded sys-
tem after it has been shipped, correcting that error in the field is likely to be
more difficult than upgrading the software of a general-purpose application.
Correcting hardware errors is even more difficult.

3. An embedded system should be sold at a lower price than competing products,
i.e., price competition can be intense. Numerous competitors exist in many
embedded systems market segments, e.g., mobile communication devices,
home appliances, automobiles, and consumer electronics.

4. Power consumption should be low. High power consumption increases the
price, weight, and volume of the cooling systems and energy sources used
by an embedded system. This is particularly important for portable battery-
powered embedded systems.

Figure 1.3: Customer expectations for embedded systems.

products with long battery lifespans. Each favorable attribute of an embedded system

design conflicts with other favorable attributes, making it necessary to consider tradeoffs

between them.

The incompatible expectations listed above conspire to make an embedded system

designer’s job difficult and unpredictable. A CMP Media LLC survey of 1,100 embed-

ded system developers in 2001 indicated that the majority of their projects were running

late, with a four-month lag the norm. The majority also failed to achieve even half of

their expected performance [7]. We advance the following conjecture:

Chapter 1: Introduction 5

The unpredictability of the embedded system design process is due to the

predominance of manual, ad-hoc embedded system design.

According to Napper, “Embedded system design is largely the same as it was 20

years ago, when 8-bit microcontrollers were the state of the art” [8]. Consumer expec-

tations have increased the demands on embedded systems. However, design automation

software has not kept pace with the resulting increase in embedded system complexity.

Automation has the potential to help designers keep pace with increasing problem

complexity. Its value has been demonstrated in a number of lower-level disciplines. As

shown in Table 1.1, design automation has followed the historical trend from automation

of low-level stages of the design process toward automation of increasingly high-level

stages of the design process. High-level stages of the design process generally have

more ambiguous problem definitions than low-level stages. Embedded system synthesis

and hardware-software co-synthesis are still open problems. As they become increas-

ingly well-defined and solved, embedded system designers will finally have a practical

alternative to ad-hoc design.

1.2 Multiobjective embedded system design

As noted in the previous section, embedded systems have numerous attributes de-

signers attempt to optimize, e.g., power consumption, price, and speed. It is frequently

possible to improve one attribute only at the cost of another. This implies that, in order

to understand the interplay between different embedded system costs, a designer needs

to consider different alternative architectures.

The process of exploring the embedded system design space is equivalent to design-

ing and analyzing numerous different embedded systems. Doing this manually would

be time-consuming and expensive. Co-synthesis algorithms automatically synthesize

6

embedded system architectures. However, the vast majority of existing co-synthesis al-

gorithms are capable of optimizing only one system cost: price. The few co-synthesis

algorithms that attempt to minimize other costs either do so in an informal way, replace

all but one cost with constraints, or combine multiple costs into a single cost with a

weighting sum. Each of these approaches has significant disadvantages, as discussed

in Section 4.5. In our research, we have taken care to avoid these disadvantages by

developing a truly multiobjective approach to embedded system synthesis.

1.3 Power consumption

Although embedded system power consumption is only one cost among many, it has

become increasingly important in recent years. In the past, embedded system power

consumption was frequently ignored, or modeled in extremely coarse and inaccurate

ways. However, proliferation of portable embedded systems during the past few years

has focused attention on the reduction of power consumption. Numerous embedded sys-

tems (e.g., cellular phones, personal digital assistants, clocks, and games) are portable.

It is important that they be light and compact. High power consumption implies high

heat dissipation. Embedded systems with high heat dissipation require bulky cooling

devices, e.g., heat sinks or fans. In addition, a portable embedded system with high

power consumption requires bulkier batteries in order to have the same run time as a

lower-power embedded system. Although portability is not a factor for stationary em-

bedded systems, high power consumption is still a disadvantage. It increases the price

of running and cooling the embedded system.

Chapter 1: Introduction 7

Table 1.1: Design tools development [9]

1950-1965 Manual design
1965-1975 Layout Editors

Automatic routers (for PCB)
Efficient partitioning algorithm

1975-1985 Automatic placement tools
Well-defined phases of circuit design

Significant theoretical development in all phases
1985-1990 Performance-driven placement and routing tools

Parallel algorithms for physical design
Significant development in underlying graph theory

Combinatorial optimization problems for layout
1990-present Over-the-cell routing tools

Three-dimensional interconnect based physical design
Synthesis tools mature and gain widespread acceptance

System level

Behavior level

Register-transfer level

Logic level

Layout level

Transistor level

Power reduction opportunities Power analysis iteration times

10-20X

2-5X

20 - 50%

seconds - minutes

minutes - hours

hours - days

In
cr

ea
si

ng
 p

ow
er

 s
av

in
gs

D
ec

re
as

in
g

de
si

gn
 it

er
at

io
n

tim
es

Figure 1.4: Benefits of high-level power analysis and optimization. Used with permis-
sion [10].

8

Power optimization has followed the same general trend as design automation (see

Table 1.1 and Figure 1.4). Initially, power consumption was optimized only at the tran-

sistor and gate levels. As time progressed, researchers began considering power con-

sumption at the register-transfer and behavioral levels. A few researchers have recently

started optimizing power consumption at the system level. Although formulating con-

crete problem definitions at this level of the design process is more difficult than at the

lower levels, the potential for power consumption reduction is greater [10]. In our work,

we have taken care to consider the impact of system-level design decisions on power

consumption.

1.4 Dissertation overview

In Chapter 2, we survey the work of other embedded system synthesis research

groups. In Chapter 3, we provide definitions that are useful when discussing hardware-

software co-synthesis and embedded system synthesis, formalize the basic hardware-

software co-synthesis problem, and describe the evolutionary optimization framework

we use to solve this problem. Chapter 4 describes and classifies optimization algorithms

that may be used for hardware-software co-synthesis and embedded system synthesis.

In Chapters 5–9, we describe our algorithms to synthesize low-power heterogeneous

distributed systems (5 and 6), embedded systems-on-chip (7), client-server embedded

systems (8), and distributed embedded systems containing dynamically reconfigurable

hardware (9). We present experimental results produced by the software implementa-

tions of each of these algorithms. In Chapter 10, we describe our real-time operating

system power analysis framework. Chapter 11 contrasts our work with closely related

work of other researchers. We summarize our contributions and present conclusions

in Chapter 12. Appendix A describes TGFF, a tool that may be used to automatically

Chapter 1: Introduction 9

generate task sets and resource databases. Appendix B gives details about the software

implementations of our hardware-software co-synthesis and embedded system synthesis

algorithms.

10

Chapter 2

Past work

Hardware-software co-design is the concurrent design of the hardware and soft-

ware portions of a computer system. Most of the work in this field targets embedded

systems [11]. Hardware-software co-synthesis is the automated design of a hardware-

software computer system. Hardware-software co-synthesis algorithms generally target

embedded systems. A number of authors have surveyed the co-design and co-synthesis

fields [12]–[18].

Although our work relies on and draws from, or advances, research in numerous

fields (e.g., asynchronous design, computer graphics, evolutionary algorithms, inter-

face synthesis, physical design, real-time operating systems, reconfigurable computing,

scheduling, simulated annealing, wireless communication), it is most strongly tied to

hardware-software co-design and hardware-software co-synthesis. This chapter pro-

vides a survey of previous work in these fields. Summaries of related research in other

fields are deferred until the relevant sections in the following chapters of this disserta-

tion.

11

12

2.1 Hardware-software co-design research

This section provides a survey of previous work in the field of hardware-software

co-design. Although the software described in this section does not automatically syn-

thesize embedded systems, it assists designers in determining the resources used in an

embedded system, and the ways in which they are used. Although it requires a designer

in the loop, some of the following software assists in the management of implementa-

tion details that are often ignored or modeled in an abstract way in hardware-software

co-synthesis systems. In other words, many hardware-software co-design tools tackle

less ambitious problems than hardware-software co-synthesis tools but solve them in a

way that may sooner be practical for designers to use.

Some researchers have examined the manner in which constraints on an embed-

ded system are specified. Dasarathy described a way to represent and validate timing

constraints in embedded systems [19]. Gong et al. developed an algorithm that automat-

ically refines constraint specifications after manual partitioning [20].

Others have focused on performance analysis of hardware-software systems. Calvez

and Pasquier developed an event monitor to analyze the performance of an existing

hardware-software system [21]. It is often useful to evaluate the performance of an

embedded system that has been designed but not yet built. The simulation of hardware-

software systems can be time-consuming. As a result, a number of researchers have

focused on simulator acceleration. Benner et al. devised a way of rapidly simulat-

ing application-specific integrated circuits (ASICs) by using field programmable gate

arrays (FPGAs) [22]. Coumeri and Thomas accelerated the simulation of hardware-

software systems by running hardware and software simulators on separate proces-

sors [23]. Hines and Borriello designed a hardware-software co-simulator that changes

its level of detail in order to speed up simulation when accuracy is not essential, while

Chapter 2: Past work 13

maintaining accuracy when necessary [24]. Kuttner described a method of rapidly pro-

totyping hardware-software systems by synthesizing and simulating processors [25].

Rowson and Sangiovanni-Vincentelli designed an event-based simulator that sacrifices

superfluous details to improve simulation speed [26]. [26]. Thomas et al. used separate

Unix processes to simulate hardware and software described in Verilog [27].

Researchers have worked on automating the communication-oriented portions of

embedded system design. Castelluccia et al. developed software to automatically com-

pile efficient protocol code from an abstract specification [28]. Freund et al. auto-

mated the assignment, bus scheduling, and protocol optimization of communication

events [29]. Jirachiefpattana and Lai provided utilities to verify protocol descriptions

and translate them between different languages [30]. Smith and De Micheli automated

the generation of synchronous interfaces between different hardware elements described

with a hardware description language [31].

Some work does not cleanly fit into any of the major co-design categories. Adé et al.

developed an algorithm to compute the minimal buffer memory required for deadlock-

free satisfaction of multi-rate data flow graph specifications [32]. Coelho et al. auto-

mated the process of determining whether old software will function correctly on a new,

modified, version of hardware [33]. Gogniat et al. developed a parametric hardware ar-

chitecture template that is sufficiently general for some special-case applications [34].

Hadjiyiannis et al. developed software that automatically generates an assembler, given

a high-level description of a machine [35].

Many researchers have built hardware-software co-design infrastructures that assist

a designer in partitioning an embedded system implementation between hardware and

software. The ASAR project is a collection of tools and languages that assist a designer

14

in a number of tasks, e.g., specifying the behavior of real-time systems, generating sys-

tolic arrays, describing reactive systems, and generating pipelined signal-processing ar-

chitectures [36]. Bolsens et al. developed a co-design tool that allows interactive re-

finement of an embedded system specification [37]. The design may be partitioned

among multiple heterogeneous processors. Buck et al. built a general signal process-

ing co-design infrastructure [38]. Chiodo et al. automated the analysis of manually

partitioned embedded system specifications [39]. Chou and Borriello described trans-

formations and partitioning of embedded system specifications written in a hierarchical

state transition language [40]. Hu et al. described the hierarchical refinement of an au-

tomotive powertrain architecture [41]. They used increasingly detailed analysis during

refinement, as the number of potential solutions decreased. Ismail et al. developed an

interactive hardware-software partitioning tool that represents architectures with an ex-

tended finite-state machine model [42]. Kalavade and Lee built a manual partitioning,

automatic analysis, system for digital signal processing applications [43]. Passerone et

al. developed a virtual prototyping infrastructure in which they represented tasks with

finite-state machines [44]. They used a homogeneous timing model for hardware and

software to allow rapid migration of tasks between the two.

A number of companies sell tools to assist in hardware-software co-design. Most

of these are co-simulation software packages for use in co-verification. Co-simulation

or, more formally, hardware-software co-simulation, is the process of simulating the

interacting hardware and software portions of an embedded system. Generally, the soft-

ware’s behavior is specified using a programming language and the hardware’s behavior

is specified using a hardware description language (HDL). Although it is possible to

use conventional simulators running on general-purpose processors to do co-simulation,

this approach is sometimes too slow to be used for co-verification. Co-verification is the

process of confirming that the hardware and software portions of an embedded system

Chapter 2: Past work 15

function correctly together. Co-simulation tools can be used for co-verification only if

they are fast enough to allow a significant portion of an embedded system’s functional-

ity to be exercised in a reasonable amount of time. As a result, a number of companies

accelerate co-simulation by using special-purpose hardware, e.g., field programmable

gate array (FPGA) based hardware emulation engines.

The Virtual Component Codesign (VCC) tools, from Cadence Design Systems, Inc.,

allow the simulation and modeling of hardware components described in VHDL or Ver-

ilog, and algorithms described in C, C++, or a specialized signal processing description

language. The N2C Design System, from CoWare, Inc., provides a co-simulation envi-

ronment for hardware described in Verilog or VHDL. In addition, hardware described

in their C and C++ variants can be rapidly simulated through the use of an executable

specification. These hardware simulators interface with processor simulators from other

vendors. The Seamless hardware-software co-verification environment, from Mentor

Graphics, integrates a collection of instruction set simulators for popular embedded pro-

cessors and logic simulators. Mentor Graphics also sells the Platform Express system-

on-chip co-simulation environment. Virtual-CPU Pro, from Summit Design, Inc., allows

processor descriptions to be written in C or C++ and rapidly simulated without the use

of a logic simulator. The Eagle tools, from Synopsys, Inc., link together hardware sim-

ulators from numerous vendors. However, these products suffered from performance

problems and Synopsys recently discontinued their sale.

2.2 Hardware-software co-synthesis

In this section, we survey past work in the field of hardware-software co-synthesis.

Work in this field tackles the ambitious problem of automatically synthesizing embed-

ded systems without guidance from a designer.

16

A substantial amount of research has focused on a version of the co-synthesis prob-

lem in which only a few processing elements (PEs) are allowed (typically one general-

purpose processor and one ASIC), or the communication model is too simple to repre-

sent many real embedded systems. Ambrosio and Hu developed a hardware-software

partitioning algorithm that uses very high-level estimates of the probability that an archi-

tecture can be scheduled [45]. Chatha and Vemuri developed an iterative improvement

algorithm to partition task graphs between a single hardware coprocessor and a general-

purpose processor [46]. Eles et al. developed simulated annealing and tabu search

hardware-software partitioning algorithms [47]. Ernst et al. developed an algorithm

that iteratively migrates embedded system functionality from software to hardware [48].

Gajski et al. developed an algorithm that allows a designer to manually or automatically

partition an embedded system specification between different processors [49]. Gupta

and De Micheli developed an iterative improvement algorithm to partition real-time em-

bedded systems between a co-processor and a general-purpose processor [50]. Henkel

and Ernst developed a dynamic granularity simulated annealing algorithm for hardware-

software partitioning [51]. Kalavade and Lee designed a constructive algorithm that

partitions a system specification between hardware and software by traversing a list of

tasks [52]. It dynamically changes the relative weights of speed and area in the optimiza-

tion criterion. Karakehayov developed an algorithm to automatically partition embed-

ded system specifications among homogeneous distributed processors [53]. Knudsen

and Madsen used dynamic programming to minimize the execution time of a single

general-purpose processor, single ASIC embedded system under an area constraint or

minimize the area under an execution time constraint [54]. Koroušić-Seljak and Cool-

ing optimized task assignments with a genetic algorithm [55]. Lee and Shin solved the

homogeneous task assignment problem, with consideration of communication, for ho-

mogeneous arrays or trees [56]. They transformed this problem to the minimum-cut,

Chapter 2: Past work 17

maximum-flow problem and solved it in polynomial time. Liu and Wong developed

an iterative improvement algorithm that integrates hardware-software partitioning and

scheduling [57]. The algorithm migrates tasks from up to two general-purpose pro-

cessors to an ASIC. Potkonjak and Rabaey formulated the ASIC algorithm selection

problem in a fashion similar to the classical task assignment problem [58]. They used a

constructive algorithm to optimize throughput or price. Saha et al. developed a genetic

algorithm for hardware-software partitioning [59]. Towlsey efficiently solved the het-

erogeneous distributed system assignment problem for execution time minimization in

the absence of hard real-time deadlines [60]–[62]. Vahid et al. explained the advantages

of functional partitioning over structural partitioning [63]. These authors also described

a way of functionally partitioning a system-level specification between hardware and

software [64].

Recently, researchers have started to consider the heterogeneous distributed embed-

ded system problem without tight limits on resource allocations. Axelsson compared

the solutions produced by three different types of algorithms when run on a simpli-

fied version of the hardware-software co-synthesis problem: a tabu search algorithm,

a simulated annealing algorithm, and a genetic algorithm [65]. See Chapter 11 for a

critique of this work. Bender solved this problem with mixed integer linear program-

ming (MILP) [66]. He used a linear weighting sum to combine execution time, pro-

cessor prices, and communication resource prices. He claimed optimality. However,

his approach must use a sub-optimal heuristic pre-processing stage to have any chance

of solving complicated (realistic) problems in a reasonable amount of time. Dave et

al. used a constructive algorithm to solve the classical multi-rate distributed system co-

synthesis problem. This work was extended to target low-power embedded systems [67],

18

hierarchical embedded systems [68], and embedded systems containing dynamically re-

configurable processors [69]. Hsiung developed a hardware-software co-synthesis al-

gorithm for massively parallel homogeneous software applications in which a small set

of solutions is enumerated [70]. Solutions that do not satisfy the specified constraints

are eliminated. Jeong et al. developed a hardware-software co-synthesis algorithm that

allows the use of incrementally, dynamically reconfigurable hardware [71]. Karkowski

and Corporaal allocated and partitioned an ANSI-C specification among homogeneous

processors on a single chip [72]. Kuchcinski used constraint logic programming to min-

imize the price of an embedded system under time constraints [73]. The computational

complexity of his algorithm may be arbitrarily reduced, as long as one is willing to

tolerate sub-optimal solutions. We believe this is the most formal existing approach

to solving a problem similar to the hardware-software co-synthesis problem that, at

the same time, remains computationally tractable. Lee et al. developed an A � search

algorithm in order to optimize embedded system resource allocations [74]. This algo-

rithm uses earliest deadline first scheduling integrated with a load balancing assignment

algorithm borrowed from behavioral synthesis. It does not model inter-task dependen-

cies. Oh and Ha developed an iterative algorithm targeting the heterogeneous distributed

system co-synthesis problem [75]. See Chapter 11 for a more detailed discussion of

this work. Prakash and Parker developed a MILP solver for the distributed hardware-

software co-synthesis problem [76]. Schwiegershausen and Pirsch developed a MILP

solver for the heterogeneous distributed system synthesis problem [77]. Srinivasan and

Jha developed a heuristic constructive algorithm that synthesizes fault-tolerant real-time

distributed embedded systems [78]. Teich et al. applied an evolutionary algorithm to

the co-synthesis problem. They repaired bad solutions instead of avoiding their cre-

ation [79]. Their algorithm optimized period and price in the absence of hard real-time

constraints. See Chapter 11 for a more detailed comparison between our work and this

Chapter 2: Past work 19

algorithm. Wolf developed a fast greedy iterative improvement for the classical co-

synthesis problem [80]. His algorithm may be used to model communication. However,

in the presence of non-zero communication times, this algorithm is no longer guaran-

teed to produce the minimal cost solutions that meet deadlines. Yen and Wolf also

developed an iterative improvement algorithm for the hardware-software co-synthesis

problem [81].

A few researchers have focused on improving the way embedded system constraints

are expressed to hardware-software co-synthesis systems. Xie and Wolf described an

iterative improvement hardware-software co-synthesis algorithm that allows the use of

conditionals within task graphs [82]. Kordon and Kaim developed a hierarchical com-

municating state machine model for large distributed systems [83]. They generated code

and Petri nets from this model in order to facilitate implementation and verification of

the embedded system.

Some researchers have found ways of preprocessing embedded system specifications

in order to allow the co-synthesis algorithm to arrive at better results in less time. Hou

and Wolf described a task clustering method to speed co-synthesis and, under some cir-

cumstances, improve solution quality [84]. Knudsen and Madsen used a coarse-grained

control/data flow graph to build a specification suitable for hardware-software partition-

ing [85]. They did transformations, selected a task granularity, and conducted commu-

nication analysis on the graph.

Others have worked on specifying and computing timing information. Dasdan, et

al. explained a method for determining maximum execution rates starting from a gener-

alized task graph specification [86]. Gupta described a sophisticated method for speci-

fying timing constraints for embedded systems [87]. Hu and Sambandam developed a

co-synthesis algorithm that treats timing behavior as a multi-valued approximation and

produces multiple solutions that trade off different components of the timing behavior,

20

e.g., feasibility probability and price [88]. Rhee et al. developed a timing tool that com-

putes conservative execution times of tasks on a reduced instruction set computer, taking

into account pipelining and cache effects [89].

Communication between PEs, or between the hardware and software portions of an

embedded system, has drawn the attention of a few authors. Benner and Ernst devel-

oped a simulated annealing co-synthesis algorithm that focuses on the communication

process timing model and protocol [90]. Chou et al. synthesized the interface between

the hardware and software portions of an embedded system [91]. They simulated the

embedded system before, during, and after synthesis. Rhodes and Wolf developed a co-

synthesis algorithm featuring a detailed communication model that takes into account

real-time operating system preemption costs [92].

Others have worked on analyzing the performance and cost of implementing tasks on

different processors and ASICs. Li and Malik devised an algorithm to derive the worst-

case performance of software [93]. Rabaey and Guerra described a method for making

rough estimates of the complexities of implementing simple digital signal processing

algorithms on ASICs [94]. Xie and Wolf developed a way of automatically estimating

the performance of different ASICs used as PEs in co-synthesis, and optimizing their

implementations [95].

Chapter 3

Definitions

This chapter provides definitions that will be useful when describing our hardware-

software co-synthesis and embedded system synthesis algorithms. In this dissertation,

we use the units conventions of the International System of Units (SI) and International

Electrotechnical Commission (IEC), i.e., b is the symbol for bits, B is the symbol for

bytes, k is the symbol for
�����

, Ki is the symbol for ���	� , and Mi is the symbol for ��
�� .

Section 3.1 explains the architectural decisions a hardware-software co-synthesis al-

gorithm must make. Section 3.2 gives a taxonomy of the different classes of problems

within the hardware-software co-synthesis and embedded system synthesis research ar-

eas. Sections 3.3, 3.4, and 3.5 define, and explain enhancements to, multi-rate task sets.

This type of specification is used to represent problem constraints in our algorithms, and

by other researchers working in hardware-software co-synthesis. Sections 3.6 and 3.7

describe basic models for the computation and communication resources used within

embedded systems. This chapter should give the reader a more formal understanding

of the co-synthesis problem, and our models for embedded system problem constraints

and resources. The definitions presented in this chapter will later be expanded to suit

different problem domains.

21

22

3.1 Hardware-software co-synthesis decisions

There are three decisions that must be made during synthesis of distributed hetero-

geneous systems. This section describes these decisions.

� Allocation: Determine the quantity of each type of resource, e.g., processing

elements or communication resources, to use.

� Assignment: Select a resource to execute each task and communication event.

� Scheduling: Determine the time at which each task and communication event

occurs.

In addition to making these three decisions, a hardware-software co-synthesis algo-

rithm must evaluate embedded system performance. The costs of an architecture, e.g.,

price, speed, area, and power consumption, must be computed.

Each of the three decisions, listed above, influences others. Therefore, attempting to

consider a decision in isolation, or without feedback from subsequent decisions, is likely

to result in poor quality solutions. We have taken care to allow incremental feedback in

our algorithms.

Some authors use terms that differ from ours when referring to the decisions made

by embedded system synthesis algorithms. Allocation is sometimes used to refer to the

decisions we separate into allocation and assignment. Others use binding or mapping

as synonyms for what we call assignment.

3.2 Problem taxonomy

In this section, we define and classify embedded system synthesis problems. To

solve the homogeneous system synthesis problem, one must decide upon an allocation

Chapter 3: Definitions 23

Communication
Synthesis

HW−SW PartitioningHomogeneous

Heterogeneous

Figure 3.1: Taxonomy of hardware-software co-synthesis problems.

of identical processors, an assignment of tasks to processors, and a schedule for these

tasks. The heterogeneous system synthesis problem is similar to the homogeneous sys-

tem synthesis problem. However, the types of processors in the allocation may differ

from each other. The hardware-software partitioning problem allows only two different

processors, of different types, in the allocation. To solve the communication synthesis

problem, it is necessary to determine a communication resource allocation and assign

communication events to communication resources.

As shown in Figure 3.1, algorithms capable of solving the heterogeneous system

synthesis problem are also generally capable of solving the homogeneous system syn-

thesis problem and the hardware-software partitioning problem. Some communication

synthesis algorithms also tackle the heterogeneous system synthesis problem, the ho-

mogeneous system synthesis problem, or the hardware-software partitioning problem,

although communication synthesis algorithms need not do processing element alloca-

tion, assignment, and scheduling.

In the multi-rate system synthesis problem, cyclic specifications may contain tasks

with different intervals of time between subsequent executions. Algorithms that can

24

handle the multi-rate problem can also handle a single rate problem, in which all tasks

have the same period. Synthesis algorithms that can handle problems containing data

dependencies are also capable of handling problems without data dependencies, i.e.,

problems containing only independent tasks.

Our algorithms solve problems that are supersets of the classical hardware-software

co-synthesis problem or, more formally, the heterogeneous multi-rate distributed system

synthesis problem with communication synthesis and data-dependent tasks.

3.3 Constraint specifications: Multi-rate task sets

There are a number of methods that may be used to specify the behavior of real-time

embedded systems. Many of these representations constrain the allocations and assign-

ments that will ultimately be used for implementation, and are therefore not suitable

for use in a synthesis algorithm that needs the freedom to generate its own allocations,

assignments, and schedules. State machine based representations can naturally repre-

sent the behavior of reactive embedded systems that do not execute complicated algo-

rithms. In addition, they’re suitable for use in synthesis because they do not constrain

implementation. However, they have historically had the problem of state explosion,

e.g., in order for a finite state machine (FSM) to represent two concurrent � -state sub-

systems, �
 states are required. Some FSM variants have been developed to reduce

this problem [96], [97]. However, timing analysis is often difficult for these variants.

Many other representations exist, each of which has its own advantages and disadvan-

tages [98]–[101]. In our system synthesis work, we have modeled embedded system

behaviors and timing constraints with muti-rate task sets. This is a natural model for

data flow and signal processing behaviors. It is amenable to detailed timing analysis.

Chapter 3: Definitions 25

deadline = 15

deadline = 23
T3

T4

T1 T5

T0

3 kb2 kb

4 kb4 kb

6 kb

period = 39

deadline = 10

Figure 3.2: Task graph.

This is especially useful for synthesis of hard real-time embedded systems: it allows a

synthesis algorithm to guarantee that hard real-time constraints will be met.

Multi-rate task sets may be used to specify some of the requirements a designer

places upon an embedded system. A task graph, as shown in Figure 3.2, is a directed

acyclic graph in which each node is associated with a task and each edge is associated

with a scalar indicating the amount of data that must be transferred between the two

connected tasks. Each task may only begin executing after all of its data dependencies

have been satisfied. Thus, in Figure 3.2, task T4 may only begin execution after tasks

T1 and T5 have each completed execution and transferred two and three kilobits of data,

respectively, to task T4.

26

Embedded system synthesis research generally assumes coarse-grained tasks, i.e.,

each task is complicated enough to require numerous microprocessor instructions. The

period of a task graph is the amount of time between the earliest start times of its con-

secutive executions. A node with no outgoing edges is called a sink node. A deadline,

the time by which the task associated with the node must complete its execution, may

exist for any node. The deadline of a task graph is the maximum of all the deadlines

specified in it. Our task graph model supports hard and soft deadlines. Hard deadlines

may not be violated. Soft deadlines need not be met, but violating them is undesirable.

If a task should finish executing as soon as possible, it may be given a soft deadline at

time zero. A multi-rate task set contains one or more task graphs, each of which may

have a different period. The hyperperiod of a multi-rate task set is the least common

multiple of the periods of the task graphs within the task set.

3.4 Multi-rate task sets for real-time systems

In this section, we consider the advantages and disadvantages of using representa-

tions that are closely related to multi-rate task sets for constraint specification in real-

time distributed embedded systems.

Some researchers are dissatisfied with multi-rate tasks sets for specifying constraints

in real-time distributed embedded systems [102]. It is sometimes claimed that multi-

rate task sets are too simple and need to be more expressive in order to allow embedded

systems to be realistically modeled. Although the claim that they are simple is correct,

researchers sometimes propose adopting extensions from constraint representations that

are used to represent problems without hard real-time constraints. However, many of

these extensions have significant drawbacks when applied to hard real-time systems. In

Chapter 3: Definitions 27

this section, these drawbacks are described. In addition, we note one extension that has

value when used to specify real-time systems.

Some constraint specification formats are more general than task sets [39], [103],

[104]. Such formats might better represent constraints without hard real-time deadlines.

However, many of these representations add nothing to a synthesis system targeting

hard real-time problems. In other words, when the multi-rate task set representation is

extended to handle many apparently interesting generalizations, the extensions must be

bounded to allow synthesis of embedded systems that are guaranteed to meet hard real-

time constraints. This results in a representation that can be losslessly converted back to

a classical multi-rate task set.

If one starts from a multi-rate task set and introduces unbounded loops between start

and deadline nodes, it becomes impossible to guarantee that down-stream deadlines in

the graphs are met. If one constrains the specification by requiring a bound on the num-

ber of times a loop may be executed, then it becomes possible to guarantee that deadlines

are met. However, one must guarantee that sufficient time is available, in the schedule,

to host the worst-cast number of executions. This leaves one with a representation that

is more complicated than a multi-rate task set but provides no advantage. One could

achieve the same goal by unrolling loops in a pre-pass transformation into conventional

task sets. This transformation would increase the time required for explicit scheduling

by approximately the same amount as using a bounded loop representation.

If one starts from multi-rate task sets, introducing a representation for fine-grained

parallelism internal to tasks may seem useful in order to allow some tasks to be dy-

namically split among numerous processors. However, one could pre-process such a

graph, splitting nodes conservatively based on the properties of the resources available

and thereby convert it, in a mildly lossy way, back into a conventional task graph.

28

If one starts from multi-rate task sets and introduces communication between nodes

in task graphs with different periods, one can losslessly transform such a modified task

set into a conventional task set by unrolling the task graphs into the hyperperiod and

adding the new communication events. There is another straightforward change required

involving start node offsets. For scheduling algorithms that unroll to the multi-rate hy-

perperiod [105], the resulting increase in scheduling time would not be dramatic.

If one starts from multi-rate task sets and introduces tasks that may start executing

before their incoming data have arrived, this format can be transformed into a conven-

tional task set by splitting each such task into a zero-duration parent task that accepts

the pre-start arc, and a normal-duration child task that must be assigned to the same

processing element as the parent task and that accepts the post-start arc.

If one starts from multi-rate task sets and introduces internal conditionals, it is nec-

essary to reserve sufficient time in the schedule to ensure that the more time-consuming

task, and down-stream tasks, can execute. We know of no lossless transformation from

a task set with conditionals into a classical task set. Unlike a number of other task

set enhancements, conditionals make task sets more expressive, even for hard real-time

systems. Eles et al. describe scheduling of conditional task graphs in embedded system

synthesis [103]. Their specifications support conditionals. Xie and Wolf developed an

embedded system synthesis algorithm that allows task sets to contain conditionals [82].

Their algorithm detects mutually exclusive tasks instead of enumerating all condition

combinations. Ziegenbein et al. described a way of representing correlations between

the execution of tasks and a small set of execution modes [104]. Although their ap-

proach may allow some types of embedded systems to be represented more directly than

would be possible with conditionals, it does not substantially reduce the complexity of

conducting real-time system synthesis; constraint specifications to which this approach

Chapter 3: Definitions 29

J J1/3

J3/3

J2/3

b) pre− and post−
computation

K

J2/3

J1/3

J3/3

K1/3

K2/3

K3/3

K1/3

K2/3

K3/3

a) conventional

0 kb

3 kb

3 kb

c) streaming

9 kb 0 kb

0 kb

9 kb
0 kb

0 kb

0 kb

3 kb

0 kb

0 kb

Figure 3.3: (a) conventional model and task assignment grouping to model (b) pre-
computation and post-computation, as well as (c) streaming data communication.

may practically be applied cannot contain a number of condition combinations that is

exponential in the number of graph nodes.

3.5 Modification of the task set model for

pre-computation and streaming

Our algorithms support a task graph model that allows the assignments of multiple

tasks within the same task graph to be tied to the same processing element. This makes it

possible to model pre-computation and post-computation [76], as well as course-grained

streaming data communication. Figure 3.3a illustrates a conventional communication

event between task J and task K. Task J completes execution, 9 kb of data are trans-

ferred from task J to task K, then task K executes. In Figure 3.3b, tasks J and K are

30

each split into three sub-tasks. All a task’s sub-tasks have their assignment tied to the

same processing element, as indicated by the dashed box containing them. This enables

pre-computation and post-computation. For example, sub-task K1/3 can execute before

sub-task K2/3’s input data have arrived (pre-computation), and sub-task J2/3 can trans-

mit output data before sub-task J3/3 has completed execution (post-computation). Fig-

ure 3.3c shows a similar use of task assignment tying to model streaming data communi-

cation. In this example, instead of first completing task J’s execution before conducting

one 9 kb communication event, the communication is split into three 3 kb chunks that

occur during task J’s execution. After each of task J’s subtasks (J1/3, J2/3, and J3/3)

completes execution, a 3 kb communication event may occur. Note that this streaming

data model can easily be made more fine-grained by breaking a task into more subtasks.

However, making the streaming data representation more fine-grained will result in an

increase in the CPU time required for scheduling.

3.6 Processing elements (PEs)

A PE executes tasks. Our hardware-software co-synthesis and embedded system

synthesis algorithms model many types of PEs: general-purpose processors, digital

signal processors (DSPs), application-specific integrated circuits (ASICs), multiproces-

sor integrated circuits (ICs), intellectual property (IP) cores, and FPGAs. However, in

this definition, we will describe only the general model for general-purpose processors,

DSPs, and ASICs. The features peculiar to multiprocessor ICs, IP cores, and FPGAs

will be described in the chapters devoted to the algorithms that use them: Chapters 5, 7,

and 9.

A solution may contain multiple instances of the same type of PE. Our algorithms

require databases that describe the relationships between tasks and PEs. Characterizing

Chapter 3: Definitions 31

a PEs in this manner requires that the designer know the input vectors that elicit the

worst-case execution time for each task-PE pair. Alternatively, one may use worst-case

performance analysis tools to determine an upper-bound on execution time, without

requiring a specific input vector [89], [106]. In addition, the average power consump-

tion for each task-PE pair must be known or estimated. The power consumption of

general-purpose and application-specific processors can be estimated by using models,

simulation, and explicit analysis [10], [107]–[111].

The following information establishes the relationships between tasks and PEs:

� A two-dimensional array indicating the worst-case execution time of each task on

each PE.

� A two-dimensional array indicating the average power consumption of each task

on each PE.

In addition to these arrays, each PE has a price, I/O energy per communicated bit,

and idle power consumption. PEs may be buffered, in which case they can communi-

cate and compute at the same time, or unbuffered, in which case communication and

computation may not overlap in time. In the case of buffered communication it is, of

course, still necessary for a task’s incoming data to arrive before it can begin execution.

3.7 Communication resources

Communication resources have the following attributes: controller price, bits per

packet, transmission time per bit, power consumption during operation, number of con-

tacts, and idle power consumption. The number of contacts a communication resource

supports is the number of integrated circuits (ICs) it can connect, i.e., a communication

32

resource with two contacts is a point-to-point communication resource and a commu-

nication resource with more than two contacts is a bus. The method of deriving these

attributes depends on the type of architecture being synthesized. For example, in a dis-

tributed system, the parameters of a communication bus can be determined from the bus

specifications, as well as the controller datasheets. If one is targeting a system-on-chip,

the behavior of the on-chip busses can be derived from the fabrication process param-

eters and floorplan using a wire delay and power consumption model, as described in

Section 7.7. Each task graph edge must be assigned to a communication resource. The

worst-case communication time and average power consumption of an edge are linearly

dependent on the integer number of packets transferred via its communication resource.

There may be more than one communication resource connected to a PE instance. In

previous distributed computing work, it is commonly assumed that communication be-

tween tasks that are assigned to the same IC consume an insignificant amount of time

and power. We also make this assumption in our distributed system synthesis algorithms.

However, we use a detailed wire delay model in our system-on-chip (SOC) synthesis al-

gorithm. If an architecture contains two communicating tasks that execute on separate

ICs, the architecture is invalid if there are no communication resources connecting the

ICs.

Chapter 4

Optimization algorithms

This chapter presents preliminary concepts that will later be used in the description

of our evolutionary optimization framework. Section 4.1 gives a brief survey of meth-

ods for solving NP-hard problems. Sections 4.2 and 4.3 describe two problem-solving

heuristics that are closely related to the optimization infrastructure used in our evolution-

ary optimization algorithms. This class of algorithms, parallel recombinative simulated

annealing algorithms, are described in Section 4.4. In Section 4.5 we explain some of

the challenges of solving multiobjective problems, and explain how parallel recombina-

tive simulated annealing algorithms can be adapted to simultaneously optimize multiple

costs.

4.1 Solving NP-hard problems

This section gives an introduction to the classes of algorithms that may be used to

solve the hardware-software co-synthesis problem and system synthesis problem.

Hardware-software co-synthesis, and embedded system synthesis, contain multiple

NP-complete, and therefore NP-hard, problems within them. Worse yet, these problems

are interdependent. Allocation/assignment and scheduling are each known to be NP-

complete for distributed systems [112]. Any instance of an NP-complete problem can

33

34

be converted to an instance of any other NP-complete problem in an amount of time that

is, at worst, polynomially dependent on the size of the instance. For decades, clever peo-

ple have searched for solutions to NP-complete problems that requite time polynomially

dependent on the size of the problem instance. However, nobody has ever published

an algorithm that optimally solves an NP-complete problem in, at worst, polynomial

time. As a result, most algorithm designers operate under the conjecture that finding a

guaranteed-optimal solution to an NP-complete problem requires an algorithm that may

take an amount of time exponentially dependent on the size of the problem instance. If

one can be sure to encounter only very small problem instances, it is practical to use

potentially exponential-time algorithms, e.g., A � [113], dynamic programming [114],

mixed integer linear programming [115], branch-and-bound [116], or one of the triv-

ial exhaustive searches. However, if one might encounter large problem instances, the

above conjecture implies that one must settle for an algorithm producing solutions that

are not guaranteed to be optimal.

Approximation algorithms may be used to produce solutions to NP-complete prob-

lems in polynomial time [114], [117]. Although the solutions produced may some-

times be optimal, optimality is not guaranteed. However, approximation algorithms

are guaranteed to produce solutions with bounded deviations from optimal cost. Devis-

ing approximation algorithms for NP-complete problems remains an area of vigorous

research; there are still numerous problems for which approximation algorithms have

not yet been developed and analyzed. When attempting to solve such problems, re-

searchers often resort to heuristic algorithms. Good heuristic algorithms can be empiri-

cally demonstrated to produce high-quality solutions to important problems most of the

time, although no formal proof bounding the deviation of solution costs from optimality

may be known. Many effective heuristics fall within one of seven algorithm classes:

Chapter 4: Optimization algorithms 35

Optimized
cost

Local minima

Global minimum

Optimization parameter

Figure 4.1: Local and global minima.

constructive, greedy iterative improvement, variable depth iterative improvement, tabu

search, simulated annealing, genetic, and parallel recombinative simulated annealing.

An optimized cost is a value optimization algorithms attempt to minimize, e.g., price.

For any problem instance, the optimized cost is a function of the optimization parame-

ters. An optimization algorithm attempts to find a value of the optimization parameters

such that the optimized cost is minimized. The neighborhood of a solution to an opti-

mization problem is the set of other solutions that can be reached in one discrete step of

the optimization algorithm. A local minimum is a solution for which no other solution

within that solution’s neighborhood has a lower optimized cost. This implies that the

local minima in a solution space are based on the optimization algorithm-dependent def-

inition of neighborhood. The global minima are those solutions for which the optimized

cost is the lowest value possible for the problem instance. In general, optimization al-

gorithms attempt to locate global minima and avoid becoming trapped in local minima.

This concept may be illustrated with an example. The curved line in Figure 4.1 shows

36

the relationship between a problem’s optimization parameter and optimized cost. The

dashed portions of the line are the neighborhoods surrounding the solutions at the lo-

cal and global minima. As indicated, although the two local minima on the left are

not global minima, there are no lower-cost solutions within the neighborhoods of these

solutions. An optimization algorithm with the indicated neighborhoods could become

trapped in one of the sub-optimal local minima.

Constructive algorithms generate finished solutions that are not later improved upon.

Generally, constructive algorithms are fast. However, they usually follow a fixed set of

rules that result in a tightly constrained exploration of the solution space. The qualities

of solutions produced by a constructive algorithm are strongly dependent on the amount

of problem-specific knowledge built into the algorithm. Greedy constructive algorithms

are prone to becoming trapped in local minima.

Iterative improvement algorithms generate a solution and make changes to it in an

attempt to improve its quality. We do not require that an algorithm evaluate and rank all

possible local moves during each iteration in order classify it as an iterative improvement

algorithm. Formally, an iterative improvement algorithm must contain a constructive

algorithm within it in order to generate the initial solution. However, most problem-

specific knowledge in an iterative improvement algorithm is usually incorporated in the

improvement portion of the algorithm, instead of the constructive portion.

Greedy iterative improvement algorithms repeatedly make incremental changes to

a solution. If a change results in an improvement, it is accepted. If it results in a

degradation, it is rejected. As soon as the solution reaches a position from which no

incremental change results in an improvement, the algorithm halts. As a result, this type

of algorithm is liable to become trapped in a local minimum.

Variable-depth search algorithms are a type of iterative improvement that is capable

of backing out of local minima of arbitrary, but bounded, depth [117]. Of course, run

Chapter 4: Optimization algorithms 37

Parallel
recombinative

simulated
annealing

Greedy
iterative

improvement

Variable−depth
iterative

improvement

Simulated
annealing

depth=0

temp.=0

Genetic search
Tabu

no x−over

no tabu list

temp.=0no x−over

Figure 4.2: Iterative improvement taxonomy.

time depends on the backtracking depth selected. A variable-depth search algorithm

with an infinite backtracking depth may be optimal, assuming its repertoire of changes

is sufficient to explore the entire solution space. A variable-depth search algorithm with

a backtracking depth of zero is equivalent to a greedy iterative improvement algorithm.

Therefore, variable-depth search algorithms are a superset of greedy iterative improve-

ment algorithms, as shown in Figure 4.2.

Tabu search is a form of iterative improvement in which some moves are dynam-

ically prohibited [118]. A tabu list is maintained. This list prevents recently visited

solutions from being revisited. A tabu search algorithm with a tabu list of length zero

is equivalent to a greedy iterative improvement algorithm. Therefore, tabu search algo-

rithms are a superset of greedy iterative improvement algorithms, as shown in Figure

4.2.

38

4.2 Simulated annealing

In an iterative improvement algorithm, we define greediness as the probability that

a cost-decreasing change to a solution will be preferred instead of a cost-increasing

change. Simulated annealing algorithms are iterative improvement algorithms in which

greediness increases during the run of the algorithm [119]. Simulated annealing al-

gorithms conduct Boltzmann trials between solutions before and after modifications;

changes are accepted with probability

�
���������	��
�����

where � is the global temperature, � is the cost of the old solution and � is the cost of

the modified solution.

Boltzmann trials are more easily described with the use of an illustration. Note that,

in order to start a simulated annealing algorithm with approximately equal probabilities

of selecting changes that decrease or increase cost, it is necessary to initially have a

global temperature near infinity. In order to smoothly illustrate the behavior of a Boltz-

mann trial as the global temperature varies from infinity to zero, we introduce

��� ��� �

� � �

�
gradually varies from a value near one to zero during the run of a simulated annealing

algorithm, causing � to gradually vary from a value near infinity to zero.

When a simulated annealing algorithm begins execution, the global temperature is

set to a high value, i.e.,
�

is approximately one. As a result, changes that increase the

cost of a solution are selected with approximately the same probability as changes that

decrease its cost, as can be seen in Figure 4.3. When
�

is near one, the acceptance

probability is approximately 0.5, independent of the difference between the cost of the

current solution, � , and the cost of the modified solution, � . In this explanation, we

Chapter 4: Optimization algorithms 39

00.20.40.60.81

U

-1
-0.5

0
0.5

1 N - P

0
0.2
0.4
0.6
0.8

1

Accept. prob.

Figure 4.3: Boltzmann trial acceptance probability.

assume that ��� � ��� � � ��� . At this stage, the algorithm is capable of easily escaping

local minima. However, it is not particularly effective at reducing the value of the op-

timized cost. As time elapses, the global temperature is reduced, gradually changing

the behavior of Boltzmann trials until changes that decrease the cost of a solution are

always selected and changes that increase the cost are always rejected. In other words,

as the global temperature approaches zero, a simulated annealing algorithm degrades to

a greedy iterative improvement algorithm. This greedy behavior is depicted by the por-

tion of Figure 4.3 at which
�

is zero; an improvement in solution quality will always be

accepted and a degradation in solution quality will always be rejected. Greedy iterative

improvement is a special case of simulated annealing. Therefore, simulated annealing

is a superset of greedy iterative improvement, as shown in Figure 4.2.

40

4.3 Genetic algorithms

Genetic algorithms maintain a pool of solutions that evolve in parallel over time.

During each generation, genetic operators that allow randomized local changes and the

exchange of information between solutions are applied to the solutions in the current

pool in order to improve them. The lowest quality solutions are then removed from the

pool [120]. Genetic algorithms have the ability to escape local minima and communicate

information among solutions. A genetic algorithm with a solution pool containing only

a single solution is equivalent to a greedy iterative improvement algorithm. Therefore,

genetic algorithms are a superset of greedy iterative improvement algorithms, as shown

in Figure 4.2.

In a conventional genetic algorithm, a solution is represented by a one-dimensional

array, or string, of values. All changes to strings are made with two operators: mutation

and crossover. Mutation randomly changes part of a solution’s string. Crossover swaps

portions of different solutions. Two different types of crossover are commonly used:

one-cut and two-cut. In one-cut crossover, a pair of strings is selected and the portions to

the left of a randomly selected offset into the strings are swapped. In two-cut crossover,

a pair of strings is selected and the portions between two randomly selected offsets into

the strings are swapped. Figure 4.4 shows an example of two-cut string crossover. In

this illustration, crossover occurs between strings L and M. Two-cuts are made and the

portions of L and M between these cuts are swapped, producing strings L+ and M+.

Crossover is the operator that gives genetic algorithms their strength; it allows different

solutions to share information with each other.

An independent sub-solution is a portion of a solution for which the optimal config-

uration is not influenced by the configurations of other sub-solutions. It is important that

the string encoding used to represent a solution maintain locality, i.e., it is important for

data representing each independent sub-solution to be located contiguously, instead of

Chapter 4: Optimization algorithms 41

Cut Cut

1 0 1 1 0 1 0 1 0

String M

String L

1 1 0 0 0 1 1 0 0

String L+

Swap

1 0

1 1 1

0 0

1

0

0

1

1

1

0

01

String M+00

Figure 4.4: Crossover.

being interleaved with data representing other sub-solutions. The reason for this require-

ment is most easily illustrated with an example. In Figure 4.5, A, B, and C represent

variables associated with different independent sub-solutions. When crossover occurs,

strings are cut into sections. Independent sub-solutions are interleaved in the bottom

two strings. As a result, data representing independent sub-solutions are likely to be

split into separate solutions when crossover occurs. However, in the top two strings,

independent sub-solution representations are contiguous. As a result, data describing

most independent sub-solutions won’t be split between different strings when crossover

occurs. If a string contains a good independent sub-solution, it is important for the

encoding of that sub-solution to remain intact. The practical effect of using a string

encoding and crossover method that effectively maintains locality is a genetic algorithm

42

CutCut

C3C2

C3C2 Soln. 1

Soln. 2

Soln. 1

Soln. 2

A1 A2 A3

A1 A2 A3

B1 B3

B1 B3

C1 C2 C3

C1 C2 C3

C1A1 A2 A3

A3A2C1A1

B1

B1 B2

B2

B2

B2

B3

B3

Figure 4.5: String locality.

that takes advantage of implicit parallelism, i.e., � function evaluations implicitly ex-

amine approximately �
�

string configurations [120], [121], where � is the size of the

solution pool.

Genetic algorithms are, in general, difficult to design, implement, and analyze. They

should be considered for solving optimization problems that are multiobjective or dif-

ficult to analyze and decompose, e.g., problems composed of multiple inter-dependant

NP-hard problems, each of which has huge solution spaces.

Chapter 4: Optimization algorithms 43

4.4 Parallel recombinative simulated annealing (PRSA)

PRSA algorithms have some of the best attributes of both genetic algorithms and

simulated annealing algorithms [122]. This class of algorithms is best understood as

genetic algorithms that use Boltzmann trials between modified and existing solutions,

in order to select the solutions that will exist in the next generation. The greediness of

a PRSA algorithm starts low and increases during an optimization run, allowing it to

escape local minima in a fashion similar to simulated annealing. A PRSA algorithm

in which the global temperature is always zero is substantially equivalent to a genetic

algorithm. A PRSA algorithm, in which there is only one solution, is a simulated an-

nealing algorithm. Therefore, PRSA algorithms are a superset of genetic algorithms and

simulated annealing algorithms, as shown in Figure 4.2.

4.5 Multiobjective optimization

This section describes a method of solving problems for which the solutions have

multiple conflicting costs.

Real-world hardware-software co-synthesis problems are inherently multiobjective.

Embedded systems have numerous costs and improving one cost often results in the

degradation of others. In the past, the few co-synthesis algorithms that attempted to

optimize multiple costs either did so in an informal way, replaced all but one cost with

constraints, or combined the multiple costs into a single cost with a weighting sum and

optimized this sum. For this method to be successful, the weighting vector used must be

appropriate for the problem instance as well as the designer’s desired solution. Unfortu-

nately, the hardware-software co-synthesis problem is too complicated for an instance’s

44

Solution

Price

Power consumption

Figure 4.6: Linear weighted sum cost function.

best weighting vector to be known without first exploring that instance’s Pareto-optimal

set of solutions, i.e., those solutions that can only be improved in one area by being

degraded in another. It is impossible, however, to explore the Pareto-optimal set of

solutions if a weighting vector has been used to combine all costs into a single value.

Assume that a designer is trying to optimize two conflicting features of an embedded

system: price and power consumption. If the designer uses a conventional optimization

algorithm that can only deal with one cost function, it is necessary to combine the two

costs into one value. In Figure 4.6, the curved line is the Pareto-optimal curve. It ap-

proximates the Pareto-optimal set of solutions, i.e., those solutions that can only have

one cost improved at the expense of degrading another cost. Each of the vectors is as-

sociated with a linear weighting sum a designer might potentially select. These vectors

point in the direction of ascent for the gradient defined by the associated weighted sum

of costs. The dotted lines perpendicular to these vectors represent sets of points with

Chapter 4: Optimization algorithms 45

X

Price

Solution

Power consumption

Figure 4.7: Non-linear directed cost function.

the same linear weighting sum costs. As illustrated by the figure, for this Pareto-optimal

set of solutions, a perfect optimization algorithm is only capable of generating solu-

tions at or near the two solutions shown. The minimum cost solutions will lie near the

first intersection of a line (hyperplane) that is swept outward from the origin, and the

Pareto-optimal curve. Using a linear weighting sum forces numerous, and potentially

preferable, solutions to be neglected.

Alternatively, a designer may use a non-linear directed cost function to find solutions

near arbitrary intersections between lines that intersect the origin and Pareto-optimal

curve. In Figure 4.7, each line represents a trough in the following 2-D cost function:

cost ��� ��� ����� �	��
� ������� ����� � � ���

46

where � is a weight with a value ranging from 0 to 1. In the general multidimensional

case, this function is defined as:

cost ���� ���� � � ��
 �
���
�
� � � ��� � �

where � is the number of dimensions, � is an arbitrary � -dimensional vector, and � is an

� -dimensional weighting vector. This cost function generally decreases as component

costs decrease. The lowest-cost legitimate solution for a given cost function will lie,

approximately, at the intersection of the line approximating the Pareto-optimal set and

the inverse of the cost function’s weighting vector.

Although an apparently reasonable weighting array can be selected, the designer has

no way of knowing the shape of the Pareto-optimal curve ahead of time. As a result,

a designer might easily select a weighting vector leading to the production of the solu-

tion marked with an X. However, this is probably not the weighting vector a designer

would have selected if the shape of the Pareto-optimal curve were known. For a small

power consumption penalty, the price of the system can be significantly decreased; for a

small price penalty, the power consumption of the system can be significantly decreased.

Unfortunately, the designer will never know about those valid solutions because the

weighting vector prevents this portion of the Pareto-optimal curve from being explored.

Although the limitations of single objective optimization can be seen from this simple

example, the problem of selecting an appropriate weighting array becomes even more

severe as the number of costs in a system increases.

Chapter 4: Optimization algorithms 47

Price

P
ow

er

4

2

5

5

3
5

Figure 4.8: Pareto-rank.

Solution

Set

Price

P
ow

er

Pareto−optimal

Figure 4.9: Pareto-rank based multiobjective optimization.

48

Let us digress, for a moment, to provide a definition. A solution dominates another

if all of its features are better. A solution’s Pareto-rank is the number of other solutions,

in the solution pool, that do not dominate it. Given a solution pool of size � , calculating

Pareto-rank is an � ���
 � operation; each solution must be compared with every other

solution. In Figure 4.8, each circle represents a solution. Each solution’s price and

power consumption are indicated by the position of its circle in the graph. The number

in each circle indicates the Pareto-rank of the associated solution.

At the end of a multiobjective optimization algorithm’s run, the designer is pre-

sented with one or more non-inferior solutions (see Figure 4.9), i.e., those solutions that

are not dominated by any other solutions. Although the non-inferior solutions are not

guaranteed to be the Pareto-optimal set of solutions for the problem instance (the het-

erogeneous distributed system co-synthesis problem contains multiple interdependent

NP-complete problems), they do form an upper bound on the Pareto-optimal set, giving

the designer insight into the shape of the problem’s Pareto-optimal solution set. The

tradeoffs available between solution costs in these non-inferior solutions are made clear.

In order to carry out Pareto-rank multiobjective optimization, it is necessary for mul-

tiple solutions to be compared with each other. Algorithms in which a pool of solutions

exists concurrently, e.g., genetic algorithms and PRSA algorithms, excel at Pareto-rank

optimization [123].

Chapter 5

Synthesis of Low-Power Heterogeneous

Distributed Systems

In this chapter, we present MOGAC, an adaptive multiobjective genetic algorithm

for hardware-software co-synthesis of distributed embedded systems. This algorithm,

and its associated software implementation, solves the hardware-software co-synthesis

problem or, more formally, the heterogeneous multi-rate distributed system synthesis

problem with communication synthesis and data-dependent tasks. Our solution to this

classical problem provides a basis for the embedded system synthesis algorithms de-

scribed in the remaining chapters of this dissertation. MOGAC partitions and schedules

embedded system specifications consisting of multiple periodic task graphs. Its adap-

tive multiobjective genetic algorithm is designed to avoid becoming trapped in local

minima. Price and power consumption are optimized while hard real-time constraints

are met. MOGAC places no limit on the number of hardware or software processing el-

ements in the architectures it synthesizes. Our general model for bus and point-to-point

communication resources allows multiple types of communication resources to be used

in an architecture. Heuristics are used to tackle multi-rate systems, as well as systems

containing task graphs with hyperperiods that are large relative to their periods. The

application of a multiobjective optimization strategy allows a single co-synthesis run

49

50

to produce multiple designs that trade off different architectural features. Experimental

results indicate that MOGAC has advantages over previous work in terms of solution

quality and running time.

This chapter relies on definitions provided in Chapters 1, 2, and 3. In Section 5.1, we

state the requirement that must be met by an algorithm that synthesizes low-price, low-

power, heterogeneous, distributed systems. Section 5.2 describes the model MOGAC

uses for integrated circuits containing multiple concurrently executing processing ele-

ments. Section 5.3 describes MOGAC’s method of representing solutions. In Sections

5.4, 5.5, 5.6, and 5.7, we describe the optimization algorithm used by MOGAC. Section

5.7 explains our method of evaluating solution quality and ensuring that timing con-

straints are met. Section 5.8 describes solution ranking and reproduction. We present

experimental results and conclusions in Sections 5.9 and 10.6.

5.1 Requirements for the optimization algorithm

Given constraint specifications in the form of a multi-rate task set (defined in Sec-

tion 3.3), and a resource database describing the types of processing elements (PEs)

and communication resources available, it is our goal to generate embedded system ar-

chitectures consisting of allocations, assignments, and schedules. These architectures

must meet hard real-time constraints. In addition, they should have low prices and

power consumptions. This problem contains multiple NP-complete problems within it.

The problem instances may be large. Operating under the conjecture that solving NP-

complete problems optimally requires, in the worst case, an amount of time exponential

in the size of the problem instance, we were forced to resort to a potentially sub-optimal

algorithm. We needed an optimization infrastructure with a number of attributes.

� Scalable: It should be easy to trade off optimization time for solution quality.

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 51

� Multiobjective: It should excel at simultaneously optimizing different costs.

� Robust: It should resist becoming trapped in local minima.

� Problem-specific: It should be straightforward to incorporate problem-specific

heuristics into the optimization framework.

We implemented a multiobjective genetic algorithm that has all the attributes listed

above.

5.2 Specialized hardware resources

In addition to the single processor PEs and communication resources described in

Section 3.6, MOGAC models another type of PE: multiprocessor integrated circuits

(ICs). Multiple cores, each of which has the attributes associated with a PE, may be lo-

cated on the same IC, allowing multiple tasks to execute simultaneously on the IC. This

provides a model for application specific integrated circuits (ASICs) that are capable of

carrying out different tasks at the same time.

MOGAC accepts a database that specifies the performance of each task on each

available PE and core type, as well as providing other information about the PEs and

cores available, e.g., a list of tasks that are incompatible with each type of PE and core,

the price of each resource, and the number of devices provided by each IC and consumed

by each core.

The relationship between tasks and PEs was described in Section 3.6. The following

information establishes the relationship between tasks and cores:

� A two-dimensional array indicating the relative worst-case execution time of each

task on each core.

52

� A two-dimensional array indicating the relative average power consumption of

each task on each core.

� A two-dimensional array indicating the peak power consumption of each task on

each core.

In MOGAC, cores do not have inherent prices. However, each core is assigned to

an IC that does have a price. The following variables are associated with ICs: price,

device count, pins available, idle power consumption, peak power dissipation, speed,

and power efficiency. Each core places a device count requirement, e.g., number of

transistors or configurable logic blocks (CLBs), on the IC to which it is assigned. For

an architecture to be valid, each IC must meet device count requirements of the cores

assigned to it and the pin count requirements of the communication resources attached to

it. In addition, each IC must meet the peak power dissipation requirements of the tasks

assigned to the cores implemented on it. Tasks do not have pin count, device count, or

peak power dissipation requirements. However, tasks may be carried out by cores that

place such requirements on their host ICs.

The worst-case execution time for a task assigned to a core is equivalent to its rel-

ative worst-case execution time divided by the speed of the IC on which the core is

implemented. The task’s average power consumption is its relative average power con-

sumption divided by the power efficiency of the IC on which the task’s core is imple-

mented. Thus, in the current implementation of the algorithm, we assume that there is a

linear relationship between core worst-case execution time and task relative worst-case

execution time. Similarly, there is a linear relationship between core average power

consumption and task relative average power consumption. This model could trivially

be generalized to use a full lookup table, similar to the approach used to determine the

execution time of a task running on any given PE.

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 53

Processors
resources

Communication

J0 K0

K1 R0

Figure 5.1: Example allocation.

5.3 Solution representation

Although we discuss the optimization infrastructure used by MOGAC in conven-

tional terms, each solution is represented by a collection of multidimensional data struc-

tures; primitive linear strings are never computed. The PE allocation is held in a one-

dimensional array of integers. The offset into this array corresponds to PE type. The

integer at each offset represents the number of PEs of that type in a solution. The

communication resource allocation is represented by a similar one-dimensional array.

Assuming that three types of PEs (J, K, and L) are available, the PE allocation shown in

Figure 5.1 would be represented by the following array:

� � � � � � �

This array indicates that the allocation contains one PE of type J, two PEs of type K,

and zero PEs of type L.

Task assignment is represented by a two-dimensional array in which the first dimen-

sion corresponds to the task graph that a task belongs to, and the second dimension

corresponds to the task’s index within the graph. Each entry in the array holds a one-

dimensional array with two entries. The first entry is the type index of the PE to which

54

T1
C2

C0

T0

C3

T4

C4

T2 T3

C1

K0J0

K1
R0

Figure 5.2: Example assignment.

the task is assigned. The second entry is the instance index of the PE to which the task

is assigned. The example assignment for the single graph shown in Figure 5.2 would

be represented by the following one-dimensional array of two-entry one-dimensional

arrays: ����������
�

� � � � �

� � � � �

� � � � �

� � � ���

� � � � �

�����������
�

The five rows correspond to task T0 to task T4. PEs J0, K0, and K1 are encoded as
� � � � � , �

�
�
���

, and �
�
�
� �

, respectively. Note that an assignment with multiple task graphs

would require a multidimensional array with a column for each graph. In addition, an

additional task copy dimension exists in multirate systems, as described in Section 5.7.2.

As mentioned in Section 4.3, a genetic algorithm’s strings should preserve local-

ity, i.e., representations of interdependent portions of the solution should be located

closer to each other in a string than disparate entries [120]. The allocation string order-

ing algorithm places PEs such that those with similar characteristics, e.g., price, have

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 55

a higher probability of being located close together in the string than those with dis-

parate characteristics. The order of PE types in the PE allocation string is determined

in the following way. The relationship between tasks and PEs is defined by a collec-

tion of two-dimensional arrays (see Section 3.3). For the purpose of characterizing a

PE type, the one-dimensional arrays corresponding to that PE type are selected from

these two-dimensional arrays. Thus, each PE can be characterized by a collection of

one-dimensional arrays and some scalars. The first step in determining the order of PE

types in the PE allocation string is to collapse each PE type’s arrays into scalars. This

conversion is done by taking a sum of each array’s entries and weighting each entry with

the number of tasks, of the type corresponding to that entry’s position, which exist in the

embedded system specification. After this step, each PE is described by a collection of

scalars, i.e., a vector. An approximation algorithm is used to impose an order on these

vectors that, in general, places vectors that are close to each other in the � -dimensional

space, close together in the PE allocation string. The communication resource alloca-

tion string and IC allocation string are similar to the PE allocation string and they are

ordered using similar algorithms.

The communication resource connectivity string is an array of IC and processor

instance references specifying the ICs and basic PEs to which each communication re-

source is connected. An example communication resource connectivity string is shown

in Figure 5.3. In this illustration, communication resource G’s two contacts are con-

nected to PE instances P and Q. Communication resource H connects P, Q, and R. More

than one communication resource may be connected to the same PE instance. In Figure

5.3, PE instance Q is an example of a PE connected to two communication resources.

The order of communication resource types in the communication resource connectivity

string is equivalent to their order in the communication resource allocation string.

56

PE instances

Contacts

Link instances

Link connectivity

Q R

32

G H

string

P

Figure 5.3: Example communication resource connectivity string.

5.4 Optimization algorithm

In this section, we give an overview of MOGAC’s optimization infrastructure. This

algorithm maintains a pool of solutions that evolve in parallel. Figure 5.4 illustrates

MOGAC’s core algorithm. After initializing each solution with randomized algorithms,

MOGAC enters a loop that repeats until the halting condition, the passage of a number

of generations without improvement in the solution pool, is met. During evaluation, a

solution’s costs, e.g., price and power consumption, are determined. The costs are then

compared to the designer-supplied constraints to determine how severely the constraints

are violated. At this point, the solutions are ranked using the multiobjective criterion

described in Section 4.5. If the halting conditions have not yet been reached, low-rank

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 57

Change
task

assignment &
communication

resource
connectivity

Schedule &
calculate

costs

Solution loop

Cluster loop

Change

allocation
processor

Results

Initialization

Figure 5.4: Optimization algorithm overview.

solutions are terminated and high-rank solutions reproduce to take their places. The

newly born solutions are then modified via crossover and mutation. At this point, the

generation has completed and another begins. Eventually, enough generations pass with-

out improvement in the solution pool to trigger the halting condition. Before halting,

MOGAC prunes any invalid and inferior solutions from its solution pool and presents

the remaining solutions to the designer.

5.5 Clusters

Clusters of solutions are used to prevent crossover from producing structurally in-

correct solutions, i.e., solutions that are physically impossible. If it were possible for

crossover to occur between arbitrary solutions, structurally incorrect solutions would

58

! !

Solution M Solution N

Task assignment crossover

Swap

TasksTasks

Tasks Tasks

Proc. allocationProc. allocation

T0

T1

P0 P1

T1T0T1T0

T0 T1

P0

T0

P1
Proc. allocationProc. allocation

Invalid task assignment

T0

Figure 5.5: Bad crossover.

sometimes be produced. Assume the existence of two solutions: N and M. As illus-

trated in Figure 5.5, N’s PE allocation contains only one PE instance, of type P0. M’s

PE’s allocation contains only one PE instance, of type P1. Therefore, all tasks in M are

assigned to the PE of type P0 and all tasks in N are assigned to the PE of type P1. If

a crossover were to occur between the task assignment strings in the two solutions, the

result might be the existence of some tasks in M that are assigned to a PE of type P1.

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 59

Task
assignment
crossover

Communication
resource

connectivity
crossover

Communication
resource

connectivity
mutation

Communication
resource

allocation
crossover

Task
assignment
mutation

Communication
resource

mutation
allocation

allocation
mutation

PE
allocation
crossover

PE

Figure 5.6: Solution clusters.

However, no PEs of type P1 exist in M’s PE allocation. Similar problems may be caused

by an indiscriminate crossover of other types of strings.

It would be possible to detect structurally incorrect solutions and repair, or immedi-

ately terminate, them. However, examining every solution and modifying or terminating

those that are structurally incorrect would be costly in terms of computation time. More

importantly, the post-processing would destroy the locality of the crossover operator,

i.e., this step would disrupt the partial solutions that were swapped during crossover.

MOGAC, unlike past work in the research area, uses the concept of solution clus-

ters to prevent structurally incorrect solutions from being created in the first place, i.e.,

MOGAC considers the interdependence between different portions of a solution’s rep-

resentation when carrying out genetic operators. As shown in Figure 5.6, solutions are

grouped into clusters. In this figure, each dot is a solution and the circles around groups

of dots are clusters. Solutions within a cluster all share the same PE allocation and com-

munication resource allocation strings. Thus, each solution in the single cluster has the

60

same PE and communication resources available to it. However, the task assignment,

core assignment, and communication resource connectivity strings of solutions in the

same cluster may differ. Crossover of assignment and communication resource connec-

tivity strings occurs between solutions in the same cluster. Individual communication

resources (busses or point-to-point links) are treated as atomic during communication

resource connectivity crossover. Mutation of these strings can be applied to individual

solutions. Solutions resulting from these operations are guaranteed to be structurally

correct. Crossover of allocation strings occurs between entire clusters. Similarly, when

one of a cluster’s allocation strings mutates, all of the solutions within the cluster are

updated so that they share the cluster’s new allocation string. Inter-cluster crossover

and mutation of allocation strings occurs less frequently than intra-cluster crossover and

mutation. Every time crossover or mutation are applied to clusters, instead of individ-

ual solutions, the information contained in the assignment and communication resource

connectivity strings of the involved solutions is no longer valid. These strings are, there-

fore, re-initialized.

There are three advantages to the use of solution clusters. The overall algorithm

is simplified because it is not necessary to detect or repair structurally incorrect solu-

tions after solution crossover. The algorithm’s execution time is decreased because it

is not necessary to deal with structurally incorrect solutions and because locality is not

destroyed by repair operations, thus allowing more implicit parallelism in the genetic

algorithm (see Section 4.3). Finally, using clusters makes MOGAC easier to parallelize.

The solutions within a cluster can evolve independently of solutions in other clusters,

except when crossover between clusters occurs. There is no need for solutions in differ-

ent clusters to communicate with each other except during the infrequent application of

inter-cluster crossover.

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 61

Start from an empty PE allocation.

For each task � :

If there exist no PEs capable of executing � :

Randomly select a PE type, ��� , that

is capable of executing � .

Add an instance of ��� to the solution’s

PE allocation string.

Figure 5.7: PE allocation string initialization.

5.6 Initialization and genetic operators

In this section, we describe the manner in which solutions are initialized and modi-

fied by genetic operators.

PE allocation strings are initialized with the simple constructive algorithm shown in

Figure 5.7. If the solution contains any cores, its IC allocation string is initialized to con-

tain a single, randomly chosen IC. Otherwise, the IC allocation string is initially empty.

Initially, a solution’s communicate resource allocation string is empty, i.e., the solution

contains no communication resources. Communication resources are introduced by sub-

sequent mutations. The intention of these initialization algorithms is to set up minimal

valid solutions that will be improved via mutation and crossover.

An allocation string’s mutation operator selects a PE, IC, or communication resource

type at random; each PE, IC, or communication resource type has the same probability

of being selected. The number of instances of the selected PE, IC, or communication

resource type is either incremented or decremented, with equal probability. When the

crossover operator is applied to two allocation strings, the strings are cut at the same

two random offsets and the portions between the cuts are swapped. After the crossover

62

Randomly select a task instance, � , in the task assignment string.

��� is the position, in the allocation string, of the PE to which � is assigned.
� is a Gaussian random variable with �

� �
and �

� �
.

Set �������
��� � ��	 � � ��
 .

If there are no PEs of type ����� allocated or � may not execute on ����� :

Select the nearest neighbor of ����� in the allocation that can execute � .

Figure 5.8: Task assignment string mutation.

or mutation of a PE allocation string, the constructive algorithm shown in Figure 5.7 is

applied to the participating string. This enforces the condition that, for each task, there

exists at least one PE capable of executing it. Usually, it is not necessary for this post-

processing step to make any changes to the PE allocation string. Similarly, if a crossover

or mutation causes a solution that contains one or more cores to have no ICs, a single,

randomly selected, IC is introduced.

Initially, each task is randomly assigned to a PE instance in the PE allocation string

that is capable of executing it. The constructive algorithm used to initialize a solution’s

PE allocation string guarantees that there is at least one PE capable of executing each

task (see Figure 5.7). Similarly, each core in the core assignment string is randomly

assigned to an IC.

The task assignment string mutation operator selects a task at random and changes

the PE type used to carry out that task (see Figure 5.8). An analogous algorithm is used

for the mutation of core assignment strings. MOGAC maintains a PE aggressiveness

variable, 	 , that decreases during the run of the algorithm. If the value of this variable

is small, a nearby PE type will probably be used to carry out the task. If 	 is large, it is

likely that ���� will be far from ��� in the PE allocation string. The PE allocation string

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 63

Generate an array, � , of PE locations.

Set each PE location in � to a unique location in the PE allocation string.

For each array, � , of PE references in the commun. resource connectivity string:

Randomize the order of the entries in � .
� is the number of PEs to which � may connect.

For � � � �
to
����� � � � �

� length ��� � � :
Set � � � � � � � � � � .

Figure 5.9: Communication resource connectivity string initialization.

is ordered in a locality preserving way. Hence, there is an inverse correlation between

distance on the PE allocation string and PE type similarity. Decreasing 	 during a run

allows MOGAC to initially mutate task assignment strings in a way that is likely to

cause large jumps across the solution space. As a run nears its end, task assignment

mutation makes only small changes to the task assignment string, fine-tuning it.

When the crossover operator is applied to two task assignment strings, the strings are

cut at the same random offset and the portions following the cut are swapped. The two

participating strings always come from solutions that have the same PE allocations be-

cause task assignment string crossover is an intra-cluster genetic operator. The mutation

operation for core assignment strings is analogous.

Initially, each communication resource is randomly connected to PEs in the PE al-

location string (see Figure 5.9). The communication resource connectivity mutation

operator selects a location in the string at random and applies the inner loop of the

initialization algorithm shown in Figure 5.9 to it. In other words, it connects a commu-

nication resource to PEs randomly. The communication resource connectivity string’s

crossover operator cuts the participating strings at the same random offset and swaps

64

the portions following the cut. The two participating strings always come from solu-

tions that have the same communication resource allocations because communication

resource connectivity string crossover is an intra-cluster genetic operator.

During mutation, randomized local changes are made to solutions and clusters. Note

that randomized changes need not be entirely random, i.e., mutation may be directed to-

ward more promising results by heuristics as described in Section 6.4. Cluster mutations

occur a random number of times, varying from zero to the number of clusters, during

each iteration of the cluster loop. Similarly, solution mutations occur a random number

times, varying from zero to the number of solutions, during each iteration of the solution

loop. During cluster PE allocation mutation, a PE of a randomly selected type is either

added or removed. Similarly, during communication resource allocation mutation, a

randomly selected type of communication resource is either added or removed. During

task assignment mutation, a task is randomly selected and its assignment is re-initialized

as described in Section 6.5. During communication resource connectivity mutation, the

PEs to which a communication resource is connected are re-initialized as described in

Section 6.5.

Sometimes, due to PE allocation crossover or mutation, a PE is removed from a clus-

ter’s allocation. When this happens it is necessary to adjust the task assignments of the

solutions within the cluster. Any tasks assigned to the lost PE must be immediately re-

assigned for the solutions in the cluster to remain structurally correct (see Section 5.5).

The assignments of the affected tasks are re-initialized using the algorithm described in

Section 6.5.

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 65

5.7 Solution evaluation

Performance evaluation consists of calculating a solution’s costs and determining

how severely they violate the constraints imposed by the designer. If one of the system’s

costs is higher than its hard constraint, the system is invalid. For example, the times at

which tasks are scheduled cannot exceed their hard real-time constraints. Valid systems

may have costs that are higher than their soft constraints, although it is desirable to

reduce a cost until it is lower than its soft constraint. In this section, we will explain

how MOGAC does performance evaluation and then describe the process by which raw

performance metrics are converted into hard and soft constraint violation values.

5.7.1 Scheduling

The PE allocations, communication resource allocations, task assignment, core as-

signment, and communication resource connectivities of MOGAC’s solutions are opti-

mized by its genetic algorithm. Scheduling, however, is carried out by a conventional

algorithm during each solution evaluation. MOGAC uses a slack-based list scheduling

algorithm to generate static PE and communication resource schedules. Static schedul-

ing makes it possible to guarantee that hard real-time constraints will be met [124].

MOGAC’s scheduling algorithm assigns a priority to a task based upon the difference

between its latest possible start time and its earliest possible start time. The relative

priorities of tasks in different task graphs, as well as different copies of the same task

graph, are based on the periods and deadlines of the different graphs. The scheduler

is capable of dealing with embedded system specifications in which task graphs have

periods less than their deadlines.

66

6 ms
21 ms

5 ms
18 ms

1 ms4 ms 3 ms

8 ms
1 ms4 ms

2 ms 5 ms

2 ms

Figure 5.10: Task durations, communication event durations, and deadlines.

8 ms 8 ms

2 ms

16 ms18 ms

Figure 5.11: Earliest finish times.

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 67

10 ms

2 ms

8 ms

18 ms21 ms

Figure 5.12: Latest finish times.

Slack computation is best illustrated with an example. Figures 5.10, 5.11, 5.12, and

5.13 show the major steps in slack computation. The tasks and communication events in

Figure 5.10 are labeled with their durations. Deadlines are also specified (21 ms, 18 ms,

and 8 ms). Figure 5.11 shows the earliest finish times of each task. Earliest finish times

are computed by conducting a topological search of the task graph, starting from the

node with no incoming edges. Each communication event duration is assumed to be the

duration required by the slowest communication resource connecting the PEs to which

the communicating tasks are assigned. It is commonly assumed, in distributed comput-

ing research, that communication between tasks assigned to the same PE is effectively

instantaneous, relative to inter-PE communication. We also make this assumption. Fig-

ure 5.12 shows the latest finish times of each task. Latest finish times are computed

by conducting a backward topological search of the task graph, starting from the nodes

that have deadlines. Figure 5.13 shows the slack of each task. Slack is the different

between a tasks’s latest finish time and its earliest finish time. A task’s priority is equal

to its negated slack. Priority is static, i.e., it is computed before scheduling begins and

68

0 ms

0 ms

2 ms

2 ms3 ms

Figure 5.13: Slacks.

is not adjusted during scheduling. Priority computation, therefore, takes � � ��� � � time,

where
�

is the number of edges and � is the number of tasks.

An example schedule is shown in Figure 5.14. This schedule corresponds to the

allocation shown in Figure 5.1 and the assignment shown in Figure 5.2. In this example,

a task graph is shown on the right and one possible schedule is shown on the left. For

the sake of simplicity, a single rate schedule, in which the period of the task graph

is greater than its highest deadline, is shown. Task T0 is scheduled to PE J0 at time

zero. After this, communication event C1 is scheduled to communication resource R0.

Note that communication event C0 need not be scheduled because tasks T0 and T1 are

both assigned to PE J0. The schedule continues, similarly, with time ordering partially

determined by data dependencies.

Co-synthesis systems that use a straightforward application of the LCM scheduling

method [105] are forced to repeatedly schedule each task graph until the hyperperiod

of the system has elapsed. This can be computationally expensive for systems in which

the hyperperiod is large, relative to the periods of individual task graphs. MOGAC uses

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 69

Proc. J0 Proc. K0 Proc. K1 Commun.
Res. R0

Time

T0

T1

T2 T4

T3

C3

C2

C1
T1

C0

T0

C1

T4

C3C2C4

T2 T3

C0 and C4 need
not be scheduled

Figure 5.14: Example schedule.

heuristics to tackle system specifications with a large hyperperiod. One of these is an

extension of a method used in real-time computing [125]. The problem caused by a large

hyperperiod can be reduced by tightening the periods of some task graphs. Consider a

system consisting of two periodic task graphs, in which the first has a period of 12, and

the second has a period of 13. The hyperperiod is, therefore, 156. If we tighten the

period of the second task graph to 12, however, the system’s hyperperiod reduces to

12. The designer has full control over the aggressiveness with which the hyperperiod

contraction heuristic is applied. MOGAC allows the designer to specify the maximum

and minimum acceptable periods for each task graph in the system. Subject to these

constraints, a period for each task graph is calculated such that the number of task graph

copies needed for LCM scheduling is minimized.

5.7.2 Task graph copies

When a task graph’s period, � , is less than the hyperperiod, � , of a task set, �� copies

of the graph are scheduled (see Section 3.4). Figure 5.15 shows an example schedule

70

3 copies

Period = 20 ms
Deadline = 20 ms

Period = 30 ms
Deadline = 40 ms

2 copies

System hyperperiod = 60 ms

Time

Figure 5.15: Task graph copies.

containing two task graphs. The upper task graph has a period of 20 ms, the lower

task graph has a period of 30 ms. As a result, the system hyperperiod is 60 ms. Three

copies of the upper task graph must be scheduled and two copies of the lower task graph

must be scheduled. Intuitively, scheduling new copies of task graphs until the system

hyperperiod is reached ensures that all inter-task graph interactions that may ever be

encountered will have valid schedules. Somewhat less intuitively, some graphs may

have periods that are less than their maximum deadlines. The lower task graph has

a period of 30 ms but it has a maximum deadline of 40 ms. As a result, some tasks

from the first (left) task graph copy may continue to execute after the second (right) task

graph copy begins execution. Some of the tasks in the second (right) task graph copy

may execute after the first task graph copy has started executing again, thereby wrapping

past the end of time to the beginning of time. This can be more intuitively understood

by viewing time as circular.

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 71

Real task graph copies

Implicit task graph copies

ParentParent
Parent

Figure 5.16: Implicit task copy assignment.

We have developed a method in which some of the task graph copies in the hyper-

period are implicit and some are real (see Figure 5.16). Each implicit copy has a real

parent. Implicit copies are not entered in a solution’s task assignment string; they share

the assignment strings of their parents. Although it is necessary to schedule implicit

task graph copies, there is no need to prioritize the nodes of these copies; the implicit

task graph node priorities are equivalent to the parent task graph node priorities. Addi-

tionally, the absence of implicit copies from a solution’s task assignment string reduces

the size of the genetic algorithm’s solution space, thus speeding optimization. Selecting

a ratio of the number of real task graph copies to the total number of task graph copies

involves making a trade-off between potential solution quality and MOGAC’s run-time.

This decision is left to the designer. For the examples in Section 5.9, a low ratio (� 0.2)

rapidly produced high-quality results.

5.7.3 Cost calculation

Hard real-time deadline violation, price, and power consumption are computed dur-

ing cost calculation. The completion time of each node in a task graph is recorded during

scheduling. Therefore, the completion times of all nodes with deadlines are available for

inspection. All schedules span the system’s hyperperiod. Price is determined by taking

72

the sum of the prices of all PEs and communication resources in a solution’s PE and

communication resource allocations. System power consumption is computed by step-

ping through each PE’s and communication resource’s hyperperiod schedule, obtaining

the system energy required, including the idle PE or communication resource energy,

and dividing the energy by the hyperperiod [68].

5.7.4 Constraint violation

A system’s constraint violations are derived from its costs and the constraints im-

posed by the designer. Solutions have a number of hard constraints. Although solutions

in which one or more hard constraints have been violated are invalid, MOGAC treats

them no differently than other solutions during its run. Solutions that violate their hard

constraints are removed only at the end of a co-synthesis run. It may seem counter-

intuitive to allow invalid solutions to survive. However, doing so is beneficial when

solving constrained problems [126], for there are significant disadvantages associated

with the alternatives. If one terminates invalid solutions immediately, one wastes a sig-

nificant amount of computation time in identifying such solutions. The solutions most

likely to eventually evolve into high-quality valid solutions are those that are near the

boundary between valid and invalid. By immediately terminating all invalid solutions

in each generation, one destroys many solutions that are likely to ultimately evolve into

high-quality valid solutions. One could, instead, attempt to repair invalid solutions.

However, in general it is difficult to formulate a repair operation that is guaranteed to

repair all solutions [79]. Thus, one will often be forced to terminate solutions even after

expending computation time attempting to repair them. More importantly, a repair oper-

ation applied to a solution that was made invalid by crossover disrupts a portion of that

solution, effectively changing the crossover operator such that it no longer preserves

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 73

locality. These problems are analogous to the problem with terminating or repairing

invalid solutions discussed in Section 5.5.

Every task graph has one or more nodes with specified deadlines. A system’s hard

real-time constraint violation is the sum of the time constraint violations of all such

nodes in all the task graph copies in the system.

5.8 Ranking and reproduction

In this section, we explain the manner in which solutions and clusters are selected

for reproduction. The number of clusters and solutions maintained by MOGAC is con-

served during one run of the algorithm. For each cluster or solution created via repro-

duction, another is terminated. The number of solutions and clusters maintained during

a run can be chosen at the start of the run. We typically use 20 clusters, each of which

contains 20 solutions.

Solutions within a cluster are ranked using the method presented in Section 4.5. In

each generation, a pre-specified number of solutions within each cluster are eliminated

to make space for the reproduction of other solutions. MOGAC maintains a solution

selection elitism variable,
�
, that controls the probability of high-rank solutions being

selected for reproduction. This variable increases during the run of the algorithm. This

feature has the practical effect of allowing MOGAC to more easily escape local minima

during the start of an optimization run. Near the end of a run, however, MOGAC be-

comes greedier to allow its solutions to converge on local minima. Solutions are selected

for reproduction by indexing inward from the highest-ranking solution with a Gaussian

random variable whose variance is the inverse of
�
. The pseudo-code for MOGAC’s

reproduction algorithm is shown in Figure 5.17.

74

�
is the solution selection elitism.

�
is a Gaussian random variable with �

� �
and �

� �� .

� is the number of solutions to be replaced via reproduction.
�

is the array of solutions, with ��� entries.

Sort solutions in the order of increasing Pareto-rank.

For � := 0 to �
� �

:

Select a random instance, � , from
�

.

Set � � � ��� � � � �	� � .
Set

� � � � � � � � � � .

Figure 5.17: Solution reproduction algorithm.

After reproduction, crossover and mutation are carried out on the solutions that were

copied. The number of crossovers and mutations per generation, for each type of string,

are specified by user-defined parameters. Crossover is applied to randomly selected

solution pairs that are selected from the solutions created by reproduction. Mutation is

applied to randomly selected solutions that are also selected from the solutions created

by reproduction.

Ranking clusters is more complicated than ranking solutions. Each solution has one

set of costs. Thus, determining whether it dominates another solution is straightforward.

Clusters, however, contain numerous solutions; each cluster is associated with many

sets of costs. We extend the concept of domination, in a straightforward way, to take

partial domination into account. Cluster domination is represented by a scalar instead

of a Boolean value. The definition of rank must also be adjusted when it is applied

to clusters. Let � and � be clusters. Nis � � � is the set of non-inferior solutions in � .

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 75

dom � 	 ��� � is 1 if 	 is not dominated by � and 0 otherwise. Cdom is a function of two

clusters. Then,

cdom � � ��� � � ��
�
��� � ��� ��� �

	

 � � ��� ��� �

dom � 	 �� �

and,

rank � � � � 	

� � ������ ��������������� ���� �
cdom � � ��� �

Once cluster ranks have been determined, cluster reproduction is analogous to solution

reproduction. A pre-specified number of clusters is removed to make room for high-

rank clusters to reproduce. Clusters are selected for reproduction in the same manner as

solutions. Cluster crossover and mutation are also analogous to solution crossover and

mutation.

5.9 Experimental results

MOGAC is a prototype consisting of approximately 18,000 lines of C++ and Bison

code. Our results were obtained on a 200 MHz Pentium Pro system with 96 MB of

memory running the Linux operating system. We compare our results with those of

Yen [127], Hou [84], and COSYN [128], which were obtained on a SPARCstation 20,

as well as those of SOS [76], which were obtained on a Solbourne Series5e/900 (similar

to a SPARC 4/490). The CPU times are given in seconds.

MOGAC’s input consists of two ASCII files. The first file specifies the attributes

of each PE, IC, and communication resource type that may be used to implement an

architecture. In addition, this file specifies the relationships between PEs and tasks,

i.e., for each PE it contains arrays specifying the worst-case execution times, average

power consumptions, and peak power consumptions of each task on that PE. The sec-

ond file specifies the topologies, periods, deadlines, tasks, and communication events

76

associated with all the task graphs comprising the system specification. MOGAC runs

without designer intervention and, upon halting, outputs one or more solutions. Each so-

lution is a system architecture consisting of a price, power consumption, PE allocation,

IC allocation, communication resource allocation, core assignments, task assignments,

communication resource connectivities, task schedules for each PE, and communication

event schedules for each communication resource.

5.9.1 Price optimization

MOGAC has numerous parameters that can be modified to tune its performance.

Although every problem has its own optimal parameter settings, it would be inappro-

priate to only report the CPU time necessary to achieve a given solution if significantly

more time was spent finding a good set of parameters. We, therefore, use the same set

of parameters for all the examples presented in this section. In addition, the same value

is used to seed MOGAC’s random number generator for every result presented in this

paper, with the exception of Table 5.4.

It was necessary to trade off run-time against solution quality when selecting a gen-

eral parameter set for the examples in this section. Using a smaller solution pool and

cluster pool would allow MOGAC to produce low-cost solutions for simple examples

more rapidly. However, the solution quality for more complicated examples would suf-

fer. For illustrative purposes, run-times achieved by tuning MOGAC’s parameters to an

individual problem’s complexity, as well as the run-times that resulted from using the

general parameter set, are shown in the price optimization tables.

Table 5.1 compares MOGAC’s performance with that of COSYN [67] and Yen’s

system [127] when each is run on the clustered and unclustered versions of Hou’s task

graphs [84]. Task clustering is the process of using a pre-pass to collapse multiple tasks

into a cluster of tasks. This cluster is treated like a single task during assignment, i.e.,

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 77

Table 5.1: Hou’s examples

Yen’s system COSYN MOGAC
Example

No. of
CPU CPU CPU TunedTasks Price

time (s)
Price

time (s)
Price

time (s) time (s)

Hou 1&2
(unclustered)

20 170 10,205 170 5.1 170 5.7 2.8

Hou 3&4
(unclustered)

20 210 11,550 n.a. n.a. 170 8.0 1.6

Hou 1&2
(clustered)

8 170 16.0 n.a. n.a. 170 5.1 0.7

Hou 3&4
(clustered)

6 170 3.3 n.a. n.a. 170 2.2 0.6

all the tasks in a cluster are executed on the same PE. Clustering reduces the complexity

of the co-synthesis problem by decreasing the number of tasks that must be assigned.

Hou ran Yen’s system on the clustered and unclustered versions of his graphs. We use

the same clusters as Hou when comparing our results with his, and those of COSYN.

For the example upon which it was possible to make a comparison between MOGAC

and COSYN, COSYN’s performance was similar to that of MOGAC. The only existing

implementation of COSYN is solely owned by Lucent. We relied on results reported in

the literature to compare with COSYN.

It is interesting to observe the impact of an increase in problem complexity upon

MOGAC and Yen’s system. MOGAC’s CPU time increases slightly when it solves the

unclustered versions of Hou’s examples instead of the clustered versions. In contrast,

Yen’s system takes approximately 1,000 times as long to produce solutions. Despite

consuming significantly less CPU time, in one case MOGAC produces a lower-price

architecture than Yen’s system. The difference in solution quality between Yen’s sys-

tem and MOGAC is likely to be a result of differences in their respective optimization

infrastructures. The run-time of Yen’s system is significantly influenced by the method

used to guarantee schedule validity. In addition, Yen uses an optimization algorithm in

78

Table 5.2: Prakash and Parker’s examples

SOS COSYN MOGAC
Example No. of

CPU CPU CPU Tuned�
Performance � tasks Price

time (s)
Price

time (s)
Price

time (s) time (s)

Prakash &
Parker 1

�
4 � 4 7 28 n.a. n.a. 7 3.3 0.2

Prakash &
Parker 1

�
7 � 4 5 37 5 0.2 5 2.1 0.1

Prakash &
Parker 2

�
8 � 9 7 4,511 n.a. n.a. 7 2.1 0.2

Prakash &
Parker 2

�
15 � 9 5 385,012 5 0.4 5 2.3 0.1

which a single solution is iteratively improved. Although the search is not blind, only a

single stage of look-ahead is used. For each real evaluation, only a single solution is im-

plicitly evaluated. Invalid solutions are terminated instantly instead of being improved

upon. The use of a locality preserving crossover operator allows MOGAC’s genetic al-

gorithm to implicitly evaluate more than one solution for each explicit evaluation (see

Section 4.3). Instead of maintaining a single solution that moves across the solution

space, MOGAC maintains multiple solutions that spread out across the solution space.

These solutions share information with each other. MOGAC attempts to improve invalid

solutions, which are otherwise of high quality, instead of terminating them immediately.

We believe that these features allow MOGAC to tackle large problem instances without

a prohibitive increase in execution time.

The hyperperiod contraction heuristic described in Section 5.7 was applied to the

clustered and unclustered versions of the task graphs called Hou 3&4. The period of

one of the task graphs in these examples was contracted by 5%. We were able to de-

crease MOGAC’s CPU time, without decreasing solution quality, by tuning the size of

MOGAC’s solution pool and making its halting conditions less tolerant.

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 79

Table 5.3: Yen’s large random examples

No. of Yen’s system MOGAC
Example

Tasks Price CPU Time (s) Price CPU Time (s) Tuned (s)

Yen’s Random 1 50 281 10,252 75 6.4 0.2
Yen’s Random 2 60 637 21,979 81 7.8 0.2

Table 5.2 compares MOGAC’s performance with that of SOS [76] and COSYN

when they are applied to Prakash and Parker’s task graphs. The performance number

shown by each task graph is the worst-case finish time for the task graph. For instance,

“Prakash & Parker 1 � 4 � ,” refers to Prakash and Parker’s first task graph with a worst-

case finish time of 4 time units. In these graphs, an unconventional model for com-

munication is used [76]. A task may begin executing before all of its input data have

arrived. We converted their specifications into graphs that conform to the conventional

communication model, i.e., a task can only begin execution when all of its input data

have arrived. Their model implies that part of each task is independent of the task’s input

data. This is expressed by splitting each task into a portion that depends on input data

and a portion that is independent of its input data. We ensure that each task’s subtasks

are assigned to the same PE. It is not surprising that SOS requires significantly more

CPU time than MOGAC. The mixed integer-linear programming algorithm used in SOS

has the potential to take exponential time, relative to the problem instance complexity. It

guarantees optimality, while MOGAC makes no such guarantee. However, in practice,

MOGAC also obtained optimal results.

Table 5.3 compares MOGAC’s performance with that of Yen’s system when each

system is applied to Yen’s large random task graphs [127]. Random 1 consists of six

task graphs, each of which contains approximately eight tasks. There are eight PE types

80

available in this example. Random 2 consists of eight task graphs, each of which con-

tains approximately eight tasks. There are 12 PE types available in this example. Neither

of these examples contains communication resources; all communication costs are zero.

The observations comparing MOGAC to Yen’s system, in the discussion of Table 5.1,

apply to these examples as well. However, the price savings achieved by MOGAC are

even more substantial.

The task graph periods in these systems are co-prime. Therefore, the hyperperiod

contraction heuristic presented in Section 5.7 significantly reduces the number of task

graph copies that MOGAC is required to schedule. The heuristic was prevented from

specifying task graph periods to be less than the corresponding deadlines, or greater than

their original periods [127]. MOGAC’s performance depends on the seed given to its

pseudo-random number generator. Each problem instance has a different random seed

for which MOGAC produces the best results most rapidly. However, MOGAC is able

to arrive at a high-quality solution given suboptimal seeds, if its solution pool size or

cluster pool size are increased, or its halting conditions are made more lenient.

Table 5.4 shows the average results of optimizing each of the price optimization

examples thirty times, given random seeds ranging from one to thirty. In this table,

reported price is the price reported for a single run of MOGAC with a fixed seed (see

Tables 5.1, 5.2, and 5.3). Effort corresponds to the computing resources MOGAC is al-

lowed to dedicate to the problem. The meaning of each effort value is given in Table 5.5.

The average price column shows the average price of the solutions. MOGAC was run in

single-objective optimization mode for these experiments. Therefore, each run produces

only one non-dominated solution. When MOGAC is given the same parameters as were

used in the previous tables in this section, there are a small number of example-random

seed combinations for which it does not arrive at valid solutions. Slightly more liberal

parameters were used for Table 5.4 than for the preceding tables. This ensures that

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 81

Table 5.4: Effect of varying random seed

Problem Reported Price Effort Average Price Average CPU Time (s)

1 183.3 23.1
Hou 1&2 2 175.0 56.2

(unclustered)
170

3 176.7 89.4
4 171.7 156.8

1 176.0 41.8
Hou 3&4 2 177.7 80.9

(unclustered)
170

3 171.0 125.5
4 171.7 226.0

1 176.3 11.9
Hou 1&2 2 176.7 26.3

(clustered)
170

3 170.7 39.7
4 170.7 73.3

1 176.6 1 12.6
Hou 3&4 2 175.7 30.5

(clustered)
170

3 174.0 41.6
4 178.7 72.4

1 7.0 11.4
Prakash & Parker 1 2 7.0 31.7�

4 � 7
3 7.0 49.9
4 7.0 89.6

1 5.0 8.0
Prakash & Parker 1 2 5.0 24.8�

7 � 5
3 5.0 40.1
4 5.0 73.3

1 7.3 10.1
Prakash & Parker 2 2 7.1 27.2�

8 � 7
3 7.0 42.3
4 7.0 72.1

1 5.0 6.0
Prakash & Parker 2 2 5.0 18.0�

15 � 5
3 5.0 29.5
4 5.0 54.1

1 75.0 18.7
Yen’s 2 73.7 80.1

Random 1
75

3 74.4 125.2
4 74.4 225.6

1 81.0 32.1
Yen’s 2 81.0 91.1

Random 2
81

3 81.0 148.0
4 81.0 266.4

82

Table 5.5: Effort definitions

New New Generations beforeEffort Solutions
solutions

Clusters
clusters halting

1 26 10 33 17 5
2 34 14 40 20 10
3 36 14 44 22 14
4 44 18 45 23 20

average price is meaningful. Note that, when allowed a modest increase in run-time,

MOGAC robustly deals with varying random seeds.

Table 5.5 shows the parameter settings corresponding to each effort setting in Table

5.4. Solutions is the total number of solutions per cluster and new solutions is the number

of solution reproductions that occur per generation, per cluster. Similarly, clusters and

new clusters are the total number of clusters and the number of cluster reproductions

per generation. Generations before halting is the number of generations that must pass

without improvement in MOGAC’s solution pool before MOGAC halts.

5.9.2 Multi-objective power and price optimization

Table 5.6 displays the results of simultaneously optimizing the price and power

consumption of system architectures based on examples presented in past work. The

database for the example called Yen’s Random 2 contains two IC types and two core

types in addition to the processor types specified by Yen, for a total of 14 PE types. The

values shown in the “Ignoring Power” column indicate the results of running MOGAC,

in single objective price optimization mode, on the same embedded system specifica-

tions. MOGAC was given the same parameters for all of the examples in this section,

although the parameter set used for price optimization in Section 5.9.1 differs from

the parameter set used in this section. The database files used for these examples are

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 83

Table 5.6: Power consumption examples

MOGAC Ignoring Power MOGAC Optimizing Power
Example

No. of
CPU CPUTasks Price Power

time (s)
Price Power

time (s)

Hou 1&2 (unclustered) 20 170 60.6 16.9 170 51.8 89.6
Hou 3&4 (unclustered) 20 170 62.4 30.7 170 48.6 26.3
Hou 1&2 (clustered) 8 170 75.3 7.8 170 62.5 9.5
Hou 3&4 (clustered) 6 170 47.1 3.9 170 43.3 5.1

Prakash & Parker 1
�
4 � 4 7 75.4 10.1 7 75.4

15 64.2
20.1

Prakash & Parker 1
�
7 � 4 5 44.4 8.5 5 44.4

7 35.1 16.9
10 21.5

Prakash & Parker 2
�
8 � 9 7 49.8 8.4 7 49.8

12 40.0
17.2

Prakash & Parker 2
�
15 � 9 5 48.0 6.32 5 48.0

7 26.8 22.4
12 21.8

Yen’s Random 1 50 75 25.6 43.1 75 17.7
151 8.2
225 6.8

453.1

301 3.3
Yen’s Random 2 60 81 39.8 59.2 81 34.4

153 25.4
158 15.7 268.8
214 9.9
338 7.0

available at ftp://ftp.ee.princeton.edu/pub/dickrp/Trans/Mogac. These examples do not

contain soft deadlines.

The advantage of multiobjective optimization, over the use of a non-linear directed

cost function, can clearly be seen in Table 5.6. When MOGAC simultaneously optimizes

power and price, it provides a designer with its entire set of non-inferior solutions. For

each system specification, only a single co-synthesis run was necessary to produce all

the corresponding architectures whose costs are listed in Table 5.6.

84

10

15

20

25

30

35

100 150 200 250 300

P
ow

er

Price

power = 15.7
price = 158

price = 153
power = 25.4

Figure 5.18: Yen’s Random 2 example.

MOGAC provides an upper bound on a problem’s Pareto-optimal solution set in-

stead of merely producing a single solution. This approach allows a designer to see

the relationship between the costs of different architectures that satisfy the same system

specification. Figure 5.18 illustrates the danger of selecting a solution without knowing

the shape of a system’s non-inferior solution curve. Although all of MOGAC’s solutions

for Yen’s Random 2 example are non-inferior, a designer would rarely select the solution

with a price of 153 and a power consumption of 25.4 when, for a price penalty of only 5,

a solution with a power consumption of 15.7 can be obtained. Presenting a non-inferior

solution set shows the designer the cost tradeoffs available between different solutions.

Chapter 5: Synthesis of Low-Power Heterogeneous Distributed Systems 85

22

23

24

25

26

40 60 80 100 120 140

P
ow

er

Price

Figure 5.19: Very Large Random 1 example.

24.5

25

25.5

26

26.5

27

35 40 45 50 55 60 65 70 75 80

P
ow

er

Price

Figure 5.20: Very Large Random 2 example.

86

Figs. 5.19 and 5.20 show the results of optimizing very large multi-rate examples

that require communication resource synthesis. These pseudo-random examples were

generated with the TGFF system [129]. They are available via anonymous FTP. The

first very large example contains 8 task graphs, each of which has 62 or 63 tasks. There

are 8 PE types and 5 communication resource types available. MOGAC took 40.9 CPU

minutes to arrive at the non-inferior solution curve shown in Figure 5.19. The second

very large example contains 10 task graphs, each of which has 99 tasks. There are 20

PE types and 10 communication resource types available. MOGAC took 203.5 CPU

minutes to arrive at the non-inferior solution curve shown in Figure 5.20. The primary

purpose of these examples is to demonstrate that MOGAC can rapidly solve extremely

large problem instances. We hope that others will use these examples for comparative

purposes.

5.10 Conclusions

In this chapter, we have presented a method for the co-synthesis of low-power

real-time multi-rate heterogeneous hardware-software distributed embedded systems.

A novel multiobjective genetic algorithm that allows exploration of the Pareto-optimal

set of architectures instead of providing a designer with a single solution, has been de-

veloped and applied to a number of examples found in the literature. MOGAC has

been shown to rapidly synthesize architectures with costs that are lower than or equal

to those presented in previous work. For large examples upon which comparisons with

other systems are possible, MOGAC produces significantly lower-cost solutions, despite

requiring orders of magnitude less run-time. It has been demonstrated that adaptive mul-

tiobjective PRSA algorithms are well suited to solving the co-synthesis problem.

Chapter 6

Enhanced Low-Power Heterogeneous

Distributed Systems Synthesis

In this chapter, we introduce a number of improvements to the optimization algo-

rithm described in Chapter 5. We refer to the resulting optimization infrastructure as

EMOGAC. Section 6.1 describes changes made to our hardware resource model to

increase its accuracy. Section 6.2 describes changes to the optimization infrastructure

that make it conform more closely to the definition of parallel recombinative simulated

annealing and improve its performance. Section 6.3 describes the changes we made

to crossover in order to better preserve locality. Section 6.4 describes a new task as-

signment mutation algorithm that takes problem-specific information into account. Sec-

tion 6.5 describes the constructive algorithm used to initialize solutions. Section 6.6

describes EMOGAC’s cost calculation algorithms. Section 6.7 explains a method of

caching solutions that improves EMOGAC’s performance. Section 6.8 introduces a

new embedded synthesis benchmark suite we have developed. We present experimental

results and conclusions in Sections 6.9 and 6.10.

87

88

6.1 Communication and memory model

In this section, we describe changes made to the communication resource model

presented in Section 3.7 in order to increase its accuracy. In addition, we present an

enhanced memory model.

Processing elements (PEs) that have had their performance characterized for the Em-

bedded Microprocessor Benchmark Consortium benchmarks suite (described in Section

6.8) are representative of those commonly used to implement embedded systems. The

differences between bus protocols for these PEs motivated us to make a change in our

communication resource model. We have augmented the simpler classical model de-

scribed in Section 3.7 with a new cost, price per contact, to represent bus bridge and/or

interface circuit price. The augmented communication resource model may be used to

model a bus that requires a protocol translator, or bridge, for each connected processor

by assigning the bus an appropriate controller price and a contact price equal to the price

of a bus bridge.

We use a memory model in which each PE has a dedicated memory used by the

tasks assigned to it. It might, at first, seem desirable to allow shared external memo-

ries in order to reduce the total quantity of memory, and number of packages, required

in the embedded system. Unfortunately, using shared external memory requires that

communication with memory be scheduled in a way that avoids contention between

memory access requests by tasks assigned to different PEs. This would require detailed

information about the exact times at which different tasks access memory. Gathering

this information would be difficult; it would be processor-dependent and data-set de-

pendent. In the absence of this information, in order to guarantee that hard real-time

deadlines are met, it would be necessary to assume each task constantly accesses the

Chapter 6: Enhanced Low-Power Heterogeneous Distributed Systems Synthesis 89

shared memory during its execution. This would prevent multiple tasks from execut-

ing concurrently on different PEs, eliminating one of the major advantages of having

multiple PEs. Therefore, we associate dedicated memory with each PE.

We compute the quantity of memory associated with each PE based upon code and

data memory requirements. For each PE, we require an entry in the PE database giving

the code size of each task type that may execute on that PE. The code memory for a PE in

a solution’s allocation is the sum of the code memory requirements of the tasks assigned

to that PE. We do not currently have access to any benchmarks in which the data mem-

ory requirements of each task are given. Therefore, we make the assumption that each

task requires an amount of data memory equal to the sum of the data quantities of its in-

coming and outgoing communication events. Although this is a reasonable assumption

for many dataflow tasks, it should be noted that this method of computing memory re-

quirements could easily be changed in the presence of more detailed information about

task data memory requirements. In order to compute the memory requirements for a

PE, we take the maximum of the data memory requirements of all the tasks assigned to

it, and add the sum of the code memory requirements of the tasks assigned to it. Note

that task code could initially be stored in electrically programmable read-only memories

(EPROMs), and transferred to PE local memories during system initialization. Memo-

ries commonly have sizes that are integer powers of two. In order to be conservative,

we ensure that each PE has a quantity of memory that is an integer power of two.

6.2 Optimization infrastructure

In this section, we describe changes made to our optimization infrastructure caus-

ing it to more closely conform to the definition of a parallel recombinative simulated

annealing (PRSA) algorithm.

90

During our design of MOGAC, described in Chapter 5, we wanted to build an opti-

mization infrastructure with the multiobjective optimization strength of a genetic algo-

rithm and the resistance to becoming trapped in local minima of a simulated annealing

algorithm. We believe MOGAC meets these criteria. However, it was not, exactly,

a PRSA algorithm. We have subsequently changed our solution reproduction method

from that described in Section 5.8 to that described in Section 4.4. Changing from a

method that does randomized weighted ranking to a method that conducts Boltzmann

trials between the old and new solutions after mutation and crossover makes EMOGAC

conform more closely to the definition of a PRSA. The main remaining exception stems

from the multiobjective nature of the embedded system synthesis problem. In order

to use Pareto-ranking for multiobjective optimization, we rank all solutions relative to

each other. This requires a comparison between every pair of solutions. Based on empir-

ical observations of algorithm performance, we have chosen not to constrain Boltzmann

trials such that they only occur between direct participants in the same crossover or

mutation operation. Constraining Boltzmann trials in this manner has the advantage

of easing parallel implementation of PRSA algorithm. However, for a multiobjective

optimization algorithm using Pareto-ranking, this advantage is illusory.

At the end of a solution loop, after new solutions have been created and changed as

described in Sections 5.6 and 6.3, solutions within each cluster are ranked based on the

costs described in Section 5.7.3, using the method described in Section 4.5. Boltzmann

trials (see Section 4.2) are then used to eliminate solutions until the cluster contains the

same number of solutions as it did at the start of the loop iteration. At the end of a

cluster loop, Boltzmann trials are used to eliminate clusters in a similar way.

In EMOGAC, the global temperature used in Boltzmann trials decreases linearly

(subtractively) during execution. We experimented with multiplicative and linear cool-

ing schedules and found that using a linear cooling schedule generally resulted in better

Chapter 6: Enhanced Low-Power Heterogeneous Distributed Systems Synthesis 91

solution quality and optimization time. When a user-selected number of generations

pass without improvement in solutions, the temperature is decreased.

6.3 Multidimensional locality preserving crossover

In a conventional PRSA algorithm, each solution is represented by a string, i.e., a

linear array of values. Information is traded between different solutions by conduct-

ing crossover of the strings representing them. Unfortunately, the solutions to many

real problems cannot be cleanly represented by one-dimensional strings of values. Each

solution in EMOGAC is represented by a collection of values, each of which is associ-

ated with a multidimensional vector. For example, each type of PE in a solution’s PE

allocation is associated with a scalar value indicating the number of PEs of the corre-

sponding type existing in the solution, as described in Section 5.3. In addition, each

type of PE is associated with a multidimensional vector describing its attributes, i.e.,

price is one dimension, weighted average power consumption is another dimension, and

weighted average execution time is a third dimension, etc. Conventionally, researchers

who use genetic algorithms impose a linear order on the information representing a solu-

tion. However, there are problems with this approach. For genetic algorithms to operate

efficiently, it is necessary for their crossover operations to preserve locality [120], [121].

When solutions are represented by multidimensional data structures, the complexity

of imposing a good locality-preserving order on a solution is increased. Consider the

problem of imposing a linear order on a set of � -dimensional vectors. If it is possi-

ble to make the assumption that locality is inversely proportional to Euclidean distance,

i.e., the attributes that are closest together in space are components of the same mostly

independent sub-solutions, or building blocks, then imposing a linear optimally local-

ity preserving order on these attributes is equivalent to the � -dimensional Euclidean

92

90
random orientation

Price

Power consumption

Figure 6.1: Selection of random orientation in crossover.

traveling salesman problem, which is NP-complete [112]. Even if it were computa-

tionally feasible to find an optimal solution to this problem, in general, reducing the

dimensionality of information from � to one would result in a distortion of space and,

consequently, bias the exploration of the solution space. In order to encode some build-

ing blocks contiguously, it is necessary to disrupt others. EMOGAC attempts to mitigate

the effects of this disruption by dynamically imposing a linear order on the elements of

a solution’s allocations and assignments. This allows the preservation of locality for a

different combination of dimensions during each crossover.

EMOGAC’s dynamic locality preserving linearization algorithm assumes an inverse

correlation between the distances between resources, e.g., PEs, in a multi-dimensional

cost space and membership in the same building blocks. This algorithm has two stages.

An illustration of the first stage is shown in Figure 6.1. For the sake of simplifying

this example, we will discuss only two PE dimensions: price and power consumption.

However, in general, this method may be applied to � -dimensional elements, where �

Chapter 6: Enhanced Low-Power Heterogeneous Distributed Systems Synthesis 93

Price

Power consumption

Don’t
swapSwap

Figure 6.2: Selection of bounded random position in crossover.

is an arbitrary positive integer. Each circle in Figure 6.1 is an element in a solution’s

PE allocation, i.e., each circle corresponds to a PE. Initially, a randomly oriented, unit

length vector (labeled random orientation in the illustration) is placed in the PE allo-

cation hyper-space (a plane in this example). The dot product of each element and this

vector is taken, i.e., the relative offsets of the intersections between the �
� �

dimension

hyper-planes that intersect the elements and are perpendicular to the randomly oriented

vector are computed. As shown in Figure 6.2, an offset between the minimum and max-

imum dot products is then randomly selected using a uniform random variable. An �
� �

dimension hyper-plane perpendicular to the randomly oriented vector is then placed at

this offset and the values associated with elements on one side of the hyper-plane are

swapped between solutions while the values associated with elements on the other side

remain in their original solutions.

94

When carrying out crossover, we take care not to disrupt solution components, e.g.,

during PE allocation crossover, solution task assignments adapt to the loss of PEs via

re-assignment, as described in the next section.

It is our belief that the effects of locality preservation during crossover between solu-

tions with multidimensional representations is an area within evolutionary optimization

theory that can have great impact on solution quality but is still poorly understood. Pe-

likan, Goldberg, and Canú-Paz have noted the difficulty of automatically identifying so-

lution building blocks in order to better preserve locality during crossover and developed

an adaptive method of building block identification based on Bayesian networks [130].

After comparing it with a number of alternative methods of preserving locality during

crossover, we are satisfied with the performance of the heuristic we have described in

this section. However, in the future we hope to consider the problem of locality preserv-

ing crossover for multidimensional solution representations in more detail.

6.4 Guided task assignment mutation

A desire for improved performance, especially on problems in which the band-

width of communication resources is tightly constrained, motivated us to incorporate

problem-specific knowledge within EMOGAC’s task assignment mutation algorithm.

This change also resulted in improved performance for other problem domains. In this

section, we describe this guided task assignment mutation algorithm.

As described in Section 5.6, mutation makes randomized changes to task assign-

ments. However, these changes need not be random: they may be guided by problem-

specific heuristics. We have developed a guided task assignment mutation algorithm

that attempts to minimize PE over-use, task execution time, and communication time.

After randomly selecting a task to be reassigned, this heuristic generates an array of

Chapter 6: Enhanced Low-Power Heterogeneous Distributed Systems Synthesis 95

PEs capable of executing it. Three costs are associated with each PE in the solution’s

allocation: communication time, execution time, and loading.

Communication time is a metric that takes into account the impact of a change to a

task’s assignment upon the amount of time required to transmit incoming and outgoing

data. A task’s neighbors are the other tasks with which it communicates, i.e., the tasks

connected to it by arcs as shown in Figure 3.2. Let � � �
 be the quantity of data, in bits,

transferred along the edge between a task, 	 , and one of its neighbors, � . Let function

ctime ��� � � � � �
 � give an estimate of the amount of time required to transmit � bits of

data between the PE, � � , to which task 	 is assigned and the PE, �
 , to which task � is

assigned. In a distributed system, we approximate the amount of time required to trans-

mit information between a pair of PEs based on the average data transmission rate of the

communication resources in that solution’s allocation. We previously computed the set

of communication resources between each pair of PEs to more accurately approximate

communication time. However, the CPU time required for this operation was too costly

to justify the potential for improved estimation. In our wireless client-server system syn-

thesis algorithm, described in Chapter 8, we maintain separate average data transmission

rates for the communication resources in the client, the communication resources in the

server, and the wireless communication resource. In the system-on-chip synthesis algo-

rithm described in Chapter 7, we do not use expected communication time to guide task

assignment. Instead, when high-priority communication occurs between a pair of PE’s,

we position them close together on the integrated circuit to reduce communication time.

The communication time �
 � � for each PE, � , a task, � , might potentially be assigned

to is the sum of the communication times for communication between that task and all

of its neighbors, set � � , i.e.,

�
 � �
� 	

� � ��� ctime ��� � � � � ��� � � �

96

We attempted defining communication time as the maximum communication time for

any neighbor of the task under consideration. However, using a sum instead of a maxi-

mum resulted in better solution quality.

In addition to communication time, � � , we use execution time to prioritize PEs to

which a task might potentially be assigned. Execution time is the amount of time re-

quired to execute the task on the PE under consideration. Our final prioritization metric

is loading, the proportion of a PE’s time, in the system hyperperiod, that has already

been occupied by the other tasks assigned to it, i.e., if � is the system hyperperiod, ���
is the set of all tasks assigned to PE � , and function etime � ��� � � is the time required to

execute task � on PE � , then the execution time �
 � � for each PE, � , a task, � , might

potentially be assigned to is defined as follows:

�
 � �
� 	

� � ���
etime ����� � �

�

Unless all PEs are overloaded, i.e., have a loading greater than or equal to one, over-

loaded PEs are not considered legitimate targets for task assignment.

Note that we have three metrics for the quality of PEs to which a task’s assignment

might potentially mutate. We rank candidate PEs by using the Pareto-ranking method

described in Section 4.5. We considered using only two costs in this Pareto-ranking:

loading and the sum of communication time and execution time. However, we found that

leaving communication time and execution time separate until Pareto-ranking resulted in

better solutions. After ranking, PEs are sorted by their ranks. We empirically determined

that better results were produced when PEs of the same rank were randomly ordered, i.e.,

EMOGAC does not allow solution encoding to bias task assignment decisions. Once the

PEs are ordered, we select one by indexing into the array of PEs using a random variable

with a probability density function (PDF) that favors PEs with the highest rank. We tried

using a number of different indexing functions but settled on a mathematically elegant

approach that produces good results.

Chapter 6: Enhanced Low-Power Heterogeneous Distributed Systems Synthesis 97

1

0.5−0.5

−1 1

1

−1 1

0

0

0

2

a) PDF for x and y

c) PDF for abs(x + y)

b) PDF for x + y

Figure 6.3: Probability density functions

We wanted a function that, given uniform random variable (URV) instances, pro-

duces random variable instances with a biased PDF. In addition, we wanted to be able

to control the degree of bias toward selecting high-rank PEs. We will now present a

function meeting the first requirement. Let � and � be uncorrelated URVs in the range
� �

� �

� with the PDF’s shown in Figure 6.3a. Recall that the PDF of the sum of two URVs

is the convolution of their PDFs. Therefore, the PDF of two URVs with equal ranges is

a pyramid peaking at the sum of their means, as shown in Figure 6.3b. By taking the

absolute value of � � � we get the triangular PDF shown in Figure 6.3c. The random

98

0 1

0 1

0 1

1.5

1.524

0.476

1.333

1.5

1.5

1.333

a) PDF for r(0.333, x, y)

b) Computation of g(0.333, x, y)

c) PDF of g(0.333, x, y)

Figure 6.4: Calculation of g � �� � � ��� �

variable instances produced in this manner range from zero to one and are biased toward

zero. Thus, the following function satisfies our first requirement:

f ��� ��� � � abs � � � � �

In order to satisfy our second requirement, we introduce a slope control variable, � ,

with a range of �
�
�
� � . When �

� �
we would like function g ��� � � ��� � to produce random

Chapter 6: Enhanced Low-Power Heterogeneous Distributed Systems Synthesis 99

variable instances that have a PDF with a slope of 0 in the range �
�
�
� � . When �

� �

we would like function g ��� � � ��� � to produce random variable instances that have a PDF

with a slope of
�
� in the range �

�
�
� � . Let

smod ��� � � �
� �

�

and

r � � � � ��� � � f � � ��� �
smod ��� �

Figure 6.4a shows the PDF for r � � � ����� � � ��� � . Note that the maximum value of this

function is greater than one. Now let

g ��� � � ��� � �
��� �� r ��� � � ��� �	� �
 �

r ��� � � � � �
r ��� � � ��� �	� �
 � � � f ��� � � � � smod � � �

�
� smod � � �

As illustrated for the case in which �
� � � ����� in Figure 6.4b, the case in which

r � � � � ��� � is greater than one can be intuitively understood as reflecting the tail of the

PDF, i.e., the portion for values greater than one, back upon the remainder of the PDF

and scaling the tail such that it covers the range �
�
�
� � . Figure 6.4c shows the PDF for

g � � � ���� � � ��� � . Note that, given URVs � and � , g ��� � � ��� � produces random variables with

a PDF bias controlled by � . We use the function g ��� � � � � � , multiplied by the number of

PEs to which a task might be assigned, to index downward into the rank-sorted array of

PEs. In practice, setting �
� �

results in high-quality solutions.

In addition to guiding task assignment mutation, we also probabilistically constrain

differences in task assignment mutation between different copies of the same task in

the hyperperiod. We allow tasks in different copies of a task graph to be assigned to

different PEs, as described in Section 5.7.2. However, we have developed a more flexible

way of integrating control of these task assignment probabilities into the evolutionary

algorithm. We allow the user to provide a parameter specifying the probability, per task

100

assignment mutation, that the mutation will affect all of a task’s copies instead of only

one task copy. This allows arbitrary combinations of task assignments to be explored

while making it possible to focus the search on promising area of the solution space in

which most copies of a task are assigned to the same PE. The designer may specify the

proportion (a value greater than 0.9 works well in practice) of task assignment changes

that are made to all copies of a task, and the proportion of the changes that are made to

only a single copy.

6.5 Initialization

At the start of the EMOGAC’s run, the initial solution pool must be populated. A

user-defined number of clusters is created, each of which contains a user-defined number

of solutions. Constructive algorithms are used to initialize cluster allocations, commu-

nication resource allocations, task assignments, and communication resource connectiv-

ities.

In the first step of PE allocation initialization, it is ensured that, for each type of task

in the task set, there is at least one PE capable of executing the task. This is accomplished

by iteratively finding a task that cannot be executed by any of the PEs in the allocation,

and adding a randomly selected PE of a type capable of executing the task. Note that,

even after this step, it is still possible that there are too few resources to execute all

the tasks in the system before their hard deadlines. In the next step, additional PEs are

randomly added until there are sufficient hardware resources to execute all tasks within

an amount of time equal to the hyperperiod multiplied by a scalar, � . The value � is

proportional to twice the ratio of the index of the cluster to the total number of clusters,

i.e., some clusters will have few PEs in their allocation and others will have many. This

allocation diversity in the initial solution pool improves optimization.

Chapter 6: Enhanced Low-Power Heterogeneous Distributed Systems Synthesis 101

After a PE allocation has been decided, task assignments are initialized by a two-

stage algorithm. In the first stage, information is not yet available about communication

times. Therefore, a modified version of the algorithm described in Section 6.4 is used to

assign each task to a PE. This algorithm considers all the criteria of the guided task mu-

tation algorithm, with the exception of communication times. After the first stage of task

assignment initialization is complete, the second stage reassigns each task using the full

guided task assignment mutation algorithm, i.e., it considers the communication times

associated with different potential task assignments. Communication resource connec-

tivity is initially random, i.e., each contact of a communication resource is attached to a

randomly selected PE.

6.6 Cost calculation

In this section, we describe EMOGAC’s cost calculation algorithms. Before a so-

lution’s cost may be calculated it is necessary to generate its schedule. The first step

in scheduling is task prioritization. Now that task execution times and communication

times are known, it is possible to use slack, earliest start time (EST), and latest finish

time (LFT) based prioritization. The method of prioritization and scheduling is similar

to that used in Section 5.7.1. As in MOGAC, we use negative slack, the difference be-

tween a task’s EFT and its LFT, to prioritize tasks. However, in EMOGAC, we also use

other priority metrics if slack-based prioritization does not produce a solution that meets

all its hard real-time deadlines. If slack-based scheduling does not work, EMOGAC also

attempts to produce a valid schedule using negative EST, and then negative LFT, as pri-

ority metrics. We found that using multiple priority metrics improved solution quality,

for some problems.

102

Although EMOGAC uses multiple prioritization metrics when there is some hope of

producing a valid schedule, it is careful to avoid needless scheduling. A PE is overloaded

if the sum of the execution times of the tasks assigned to it is greater than the system

hyperperiod. EMOGAC does not spend time generating schedules for solutions in which

some PEs are overloaded. Instead, it notes the degree to which PEs are overloaded

and uses this cost for comparison with other solutions. Avoiding needless scheduling

decreases the amount of run-time the synthesis algorithms require without decreasing

solution quality.

The other aspects of cost calculation are similar to those described in Section 5.7.3.

However, price computation differs slightly. The prices of PEs to which no tasks are

assigned, and communication resources that carry no communication events, are not

included in the price of the embedded system. Such unused resources play a role in

optimization. However, they should not appear in a manufactured embedded system. In

addition, each PE has a local memory with a size computed in the manner described in

Section 6.1. The price of this memory is determined based on a price per bit value read

from the resource database. Each solution has a soft deadline violation proportion cost,

defined as the sum of the times by which every copy of every task in the architecture

misses its soft deadline, divided by the hyperperiod.

6.7 Solution cache

Every time a solution is changed, it is necessary to determine its new cost. Carrying

out cost evaluation every time a solution changes would be the most straightforward

approach. However, solution evaluation, which requires scheduling, and might require

floorplan block placement (see Section 7.6) and bus topology generation (see Section

Chapter 6: Enhanced Low-Power Heterogeneous Distributed Systems Synthesis 103

7.8), is the most time-consuming operation undertaken by our hardware-software co-

synthesis and embedded system synthesis algorithms. In order to avoid needless so-

lution evaluations, EMOGAC maintains a cache of solution cost sets to prevent the

re-evaluation of solutions after every modification. In our algorithms, scheduling, floor-

planning, and bus topology generation are deterministic. Therefore, for any PE allo-

cation, task assignment, link allocation, and link connectivity, there exists exactly one

system cost set. Thus, any solution is characterized by a small amount of information,

relative to the amount of information computed during cost evaluation.

Sometimes, solution mutation and crossover produces a solution identical to one for

which cost calculation was previously done. In these cases, the solution’s cost set is

retrieved from a cache, making it unnecessary to carry out cost evaluation. We use a

least-recently used (LRU) replacement policy. The cache size is dynamically controlled

based on EMOGAC’s total memory usage, i.e., we allow more entries to exist if the en-

tries consume little memory. Our experimental results indicate that the cache is usually

hit 50 � of the time. Its use generally cuts synthesis time in half.

6.8 Benchmarks

In this section, we describe our motivations for constructing an embedded system

synthesis benchmarks suite based on the Embedded Microprocessor Benchmark Con-

sortium (EEMBC) benchmarks suite [131], and briefly describe this benchmarks suite.

Our hardware-software co-synthesis and embedded system synthesis algorithms can

be viewed as functions that take an embedded system synthesis problem specifications,

i.e., a resource databases as well as behavioral and constraint specifications, as their in-

put, and produce embedded system architectures as their output. In order to demonstrate

the operation of our synthesis algorithms, it is necessary to provide them with embedded

104

system synthesis problem specifications. Making these problem specifications public al-

lows other researchers to compare the results produced by their algorithms with those

produced by ours.

Acquiring realistic embedded system synthesis problem specifications is difficult.

Ideally, we would have access to large industrial problem specifications. A colleague of

ours was employed by a company that is heavily involved in embedded systems design.

He requested the release of some old specifications to us under a non-disclosure agree-

ment. However, even in this nearly ideal situation, the legal department of his company

refused to give us access to the specifications. As a result of the difficulty of getting

access to industrial examples, we were left with three other options.

It is possible to find examples in the embedded systems design literature. This ap-

proach has the advantage of allowing easy comparison of our algorithms with those

designed by other researchers. However, it also has a number of disadvantages. Most

examples in the literature are simple, small, and somewhat unrealistic. In addition, they

typically assume synthesis software that solves the most basic of hardware-software co-

synthesis problems, i.e., power consumption, and issues related to single-chip synthesis

are neglected. Nonetheless, we run our algorithms on examples from the literature.

We could hand-generate our own examples. This would potentially allow us to pro-

duce larger and more realistic problem specifications than those common in the litera-

ture. However, there is a reason for the scarcity of large and realistic problem specifica-

tions. Accurately characterizing a large set of resources and specifying the constraints

on an embedded system takes a lot of time. For each substantial example, we would be

required to do a large portion of the work required to design an embedded system. This

would have diverted a great deal of our resources away from research and toward useful

but mundane design projects. However, we do use some manually produced embedded

system problem specifications for illustrative purposes. In addition, we have gathered

Chapter 6: Enhanced Low-Power Heterogeneous Distributed Systems Synthesis 105

information about hardware resources. This information serves as a starting point for

automatically generated examples.

In collaboration with David Rhodes, an algorithm was developed for the automatic

generation of embedded system problem specifications (see Appendix A). This algo-

rithm is parametric, i.e., it allows the user to control the general attributes of the resource

databases and task sets it generates. This allows the use of some of the characteristics of

real processors, real communication resources, and industrial task sets in automatically

generated embedded system problem specifications. Automatically generated examples

have a number of advantages over examples from the literature and hand-generated ex-

amples. One can rapidly generate numerous large, differing, problem instances with

similar structural attributes.

In order to ease collaboration in finding and building embedded system synthesis

benchmarks, we established a mailing list [102]. We considered the discussions on this

list when collecting benchmarks for this dissertation. Good benchmarks motivate better

problem formulations and algorithms. We have developed an embedded system synthe-

sis benchmarks suite, called E3S, based on data from EEMBC [131]. The first release

of E3S contains 17 processors, e.g., the AMD ElanSC520, Analog Devices 21065L,

the Motorola MPC555, and the Texas Instruments TMS320C6203. These processors

are characterized based on the measured execution times of 47 tasks, power numbers

derived from processor datasheets, and additional information, e.g., die sizes, some of

which were necessarily estimated, and prices gathered by emailing and calling numer-

ous processor vendors. In addition, E3S contains communication resources modeling

a number of different busses, e.g., CAN, IEEE1394, PCI, USB 2.0, and VME. Our

task sets follow the organization of the EEMBC benchmarks. There is one task set for

each of the five application suites: automotive/industrial, consumer, networking, office

automation, and telecommunications. This benchmark suite has been publicly released

106

and are available via the E3S link on the http://www.ee.princeton.edu/˜cad/projects.html

web page. We make heavy use of E3S in this dissertation.

6.9 Experimental results

In this section, we present the results produced by running EMOGAC on the E3S

benchmarks suite, introduced in the previous section, and a number of examples from

the literature.

6.9.1 Multiobjective optimization for the E3S benchmarks

Table 6.1 gives the results of running EMOGAC on the E3S benchmarks and simul-

taneously optimizing price, power consumption, and soft deadline violation proportion.

Note that multiple solutions trading off these costs were produced for each benchmark.

In Table 6.1, the first column gives the name of the benchmark, the second column gives

the price of each solution, the third column gives the average power consumption of each

solution, and the fourth column gives the soft deadline violation proportion (see Section

6.6) of each solution. We rounded prices and power consumptions up to the nearest

dollar and milliwatt. This table demonstrates that EMOGAC is capable of running on

examples containing 47 tasks representing a wide range of embedded application, and

17 commonly used embedded processors. For these problems, multiobjective optimiza-

tion was valuable, i.e., there were dramatic differences between the prices and power

consumptions of different non-dominated solutions. For example, among the different

solutions to the Automotive-Industrial problem, prices varied from $169 to $652, power

consumptions varied from 167 mW to 184 mW, and soft deadline violation proportions

varied from 1.13 to 2.08.

Chapter 6: Enhanced Low-Power Heterogeneous Distributed Systems Synthesis 107

Table 6.1: Multiobjective optimization for the E3S benchmarks

Average Soft DLExample Price ($)
power (mW) viol. prop.

169 167 2.08
453 140 1.50Automotive-
530 316 1.05Industrial
652 182 1.24
652 184 1.13
57 72 1.31Networking
70 101 1.23
291 1569 4.58
291 1666 4.57Telecom
378 2098 3.18
379 1974 3.44
155 298 1.57
176 378 1.46Consumer
229 351 1.52
365 355 1.42
66 55 0.02

Office 127 449 0.01
Automation 184 440 0.01

215 273 0.01

6.9.2 Price-only optimization for examples from the the literature

Table 6.2 shows the results of running EMOGAC on all of Prakash and Parker’s SOS

examples [76]. The first column shows the names of the examples. The second column

shows the prices of the solutions found by EMOGAC. The other columns show the

prices of the solutions found by algorithms developed by other researchers. The third

column is for SOS, Prakash and Parker’s mixed integer-linear programming (MILP) al-

gorithm [76]. This algorithm has the advantage of guaranteeing optimality. However,

108

Table 6.2: Prices for Prakash and Parker’s examples

Example Oh & Ha’s
� performance � EMOGAC SOS COSYN

algorithm

P&P 1 � 2.5 � 14 14 n.a. n.a.
P&P 1 � 3 � 13 13 n.a. n.a.
P&P 1 � 4 � 7 7 n.a. 7
P&P 1 � 7 � 5 5 5 5
P&P 2 � 5 � 14 (15) � 15 n.a. n.a.
P&P 2 � 6 � 12 12 n.a. n.a.
P&P 2 � 7 � 7 (8) � 8 n.a. n.a.
P&P 2 � 8 � 7 7 n.a. 7

P&P 2 � 15 � 5 5 5 5
P&P 3 � 6 � 10 10 10 n.a.
P&P 3 � 7 � 6 6 n.a. n.a.

P&P 3 � 15 � 5 5 5 n.a.

� See Figure 6.5.

its run-time increases dramatically with increasing problem complexity. The fourth col-

umn is for COSYN, a constructive algorithm, [128]. The fifth column is for Oh and Ha’s

heuristic [75]. Entries of n.a. indicate that a result for the corresponding problem and

optimization algorithm was not reported in the literature. The P&P 2 � 5 � and P&P 2 � 7 �
entries are explained in the next few paragraphs.

Prakash and Parker’s examples contained no soft deadlines or power information.

Therefore, we ran EMOGAC in single-objective price optimization mode. We used the

same optimization parameters for each of these examples, and for those in the next sub-

section. A 1.4 GHz AMD Athlon Thunderbird CPU was used to solve these problems.

Each example took between 12 and 35 minutes of CPU time. Note that it is possible

for EMOGAC to produce good solutions to the simpler Prakash and Parker examples in

significantly less than 12 minutes of CPU time. However, we wanted to use the same

optimization parameters for all of Prakash and Parker’s examples, as well as all of Hou

Chapter 6: Enhanced Low-Power Heterogeneous Distributed Systems Synthesis 109

� Deadline 5: For this example, SOS’s optimal solution to the problem contains
exactly one pair of back-to-back links. A bidirectional communication model
might allow one of these links to be removed, thereby reducing the solution
price by, at most, one unit. Our algorithm arrived at such a solution. If one
were to re-insert that link, the solution price would be 15, which we have
shown in parenthesis in Table 6.2.

� Deadline 6: SOS’s optimal solution to this problem contains no back-to-back
links. A bidirectional communication model will not make a link redundant,
allowing it to be removed.

� Deadline 7: SOS’s optimal solution to this problem contains exactly one
back-to-back pair of links. A bidirectional communication model might al-
low one of these links to be removed, reducing the solution price by, at most,
one unit. Our algorithm arrived at such a solution. If one were to re-insert
that link, the solution price would be 8, which we have shown in parenthesis
in Table 6.2.

� Deadline 8: SOS’s optimal solution to this problem contains no back-to-back
links. A bidirectional communication model will not allow any improvement
to the solution.

� Deadline 15: SOS’s optimal solution to this problem contains no point-to-
point communication links. A bidirectional communication model will not
make a link redundant, allowing it to be removed.

Figure 6.5: Impact of difference on communication model for P&P 2 example.

and Wolf’s examples. Therefore, we selected a solution pool size and halting conditions

sufficient for more complicated problems, i.e., we granted the optimization algorithm

more CPU time than was necessary for simple problems so that it would have good

performance on complicated problems. The dependence of EMOGAC’s CPU time re-

quirements upon problem complexity stand in contrast with the requirements of SOS.

Although SOS took only 11 CPU seconds, on a Solbourne Series5e/900 (similar to a

110

SPARC 4/490), for a simple problem, P&P 1 � 2.5 � , its run time increased dramatically

with increased problem complexity; it took 106.7 hours of CPU time for P&P 2 � 15 � .

That there isn’t any particular problem in taking a large amount of CPU time to solve a

problem well. However, dramatic increases in optimization time with increasing prob-

lem complexity imply that an algorithm may not halt in an acceptable amount of time

for large problems.

Prakash and Parker’s behavioral specifications are somewhat unconventional. They

contain tasks with pre-computation and post-computation. We used the method de-

scribed in Section 3.5 to precisely model this. Our model does vary from that used by

Prakash an Parker in one way: our point-to-point communication links are bidirectional

and theirs are directed, i.e., they allow communication to occur over a point-to-point

link in only one direction during the life of an embedded system. In our model, com-

munication via a point-to-point link can occur in either direction, although only one

communication event can be carried by the point-to-point link at a time. This results

in some apparently unusual results for the P&P 2 � 5 � and P&P 2 � 7 � examples. Our

slightly different model for point-to-point communication links allows our algorithm to

get lower prices than SOS in a few instances. Although a price comparison is still legit-

imate, it requires some explanation. We will now describe the impact of this difference

on the solutions to each of the Prakash and Parker examples.

None of the solutions produced by SOS for any of the deadlines associated with

the P&P 1 examples contain a pair of point-to-point communication links that connect

the same pair of PEs and have different directions, i.e., back-to-back links. Therefore,

a bidirectional communication model will not allow back-to-back links to be merged,

thereby reducing price, in any of these solutions. For every P&P 1 example, EMOGAC

arrived at a solution with the same price as SOS. The P&P 3 example resource database

does not contain directed point-to-point communication links. As a result, the difference

Chapter 6: Enhanced Low-Power Heterogeneous Distributed Systems Synthesis 111

Table 6.3: Optimization for Hou and Wolf’s examples

Example Yen’s Oh & Ha’sClustering � performance � EMOGAC COSYN
algorithm algorithm

H&W 1&2 140 170 170 170
Unclustered H&W 1&3 170 170 240 170

H&W 3&4 140 n.a. 210 170
H&W 1&2 140 n.a. 170 170

Clustered H&W 1&3 170 n.a 170 n.a.
H&W 3&4 170 n.a. 170 n.a.

in communication models has no impact on the results for this example. EMOGAC

arrived at a solution with the same price as SOS for every P&P 3 example. In Figure

6.5, we describe the impact of the difference between our communication model and

that used by SOS upon the results for the P&P 2 problems.

EMOGAC produced a solution with the same price as SOS’s optimal solution for

every example in which a bidirectional communication model would not allow a pair of

back-to-back links to be merged in the optimal solution produced by SOS. In cases for

which our communication model could potentially allow point-to-point communication

links to be merged, thereby reducing price, our algorithm arrived at a solution that had

a price exactly equal to that of SOS, minus the savings that might result from merging

of back-to-back links. In practice EMOGAC finds solutions that are substantially equiv-

alent to those produced by SOS, an optimal algorithm, although EMOGAC has CPU

time requirements that do not increase rapidly with increasing problem complexity.

Table 6.3 compares the results produced by running EMOGAC on Hou and Wolf’s

examples [84] with those produced by other hardware-software co-synthesis algorithms.

The first column states whether or not the example in question is clustered. Clustering

is described in Section 5.9.1. Clustered graphs have a similar structure to unclustered

112

graphs but contain fewer tasks. The second column contains the names of Hou and

Wolf’s examples. The third column shows the prices of the solutions produced by

EMOGAC. The other columns show the prices of the solutions found by algorithms

developed by other researchers. The fourth column is for COSYN [128]. The fifth col-

umn is for Yen’s iterative improvement algorithm [81]. The sixth column is for Oh and

Ha’s heuristic [75]. Entries of n.a. indicate that the algorithm’s developers did not report

a result for the given problem and optimization algorithm.

These examples contained no soft deadlines or power information. Therefore, we

ran EMOGAC in single-objective price optimization mode. We did not contract the pe-

riods and and deadlines of these examples in order to reduce the hyperperiod: these are

precisely Hou and Wolf’s example. We used the same optimization parameters for each

of these example, and for the examples in the previous subsection. These examples were

run on a 1.4 GHz AMD Athlon Thunderbird CPU. Each example took approximately 10

CPU minutes, with the exception of H&W 1&3 unclustered, which took 74 CPU min-

utes. For all of Hou and Wolf’s problems, EMOGAC arrived at solutions with prices

that are equal to or lower than those produced by past work.

It is interesting to note the implications of these results for clustering research. Task

clustering converts a task graph into another task graph with fewer nodes by grouping

some nodes together and treating them as a single node. This has the potential to im-

prove the solutions produced by a co-synthesis algorithm by eliminating unpromising

areas from the search space. For example, if all of a problem’s promising solutions as-

sign two tasks to the same PE and schedule them concurrently, converting them into a

single task will concentrate a search on the most promising areas of the solution space.

However, although task clustering can simplify a hardware-software co-synthesis prob-

lem and eliminate unpromising potential solutions from the search space, it can also

Chapter 6: Enhanced Low-Power Heterogeneous Distributed Systems Synthesis 113

eliminate promising solutions from the search space. Note that for the Hou 3&4 ex-

ample, EMOGAC was able to find a superior solution to the unclustered version of the

problem. For the unclustered version of this problem, EMOGAC found a solution with

a price of 140. However, for the clustered version, such a solution is not possible. In

this example, clustering forced tasks that would ideally be assigned to different PEs to

be assigned to the same PE. It is important for a clustering algorithm not to eliminate

the possibility of finding a good solution in its attempts to simplify a problem. Task

clustering is a method of simplifying a behavioral specification and pruning unpromis-

ing areas from the solution space. It is our opinion that the best place to carry out such

pruning and simplification is within a synthesis algorithm, when additional information

is available about allocation and assignment, not as a pre-pass.

6.10 Conclusions

In this chapter, we have described a number of enhancements to our evolutionary

optimization algorithm and hardware resource models. We presented a new embedded

system synthesis benchmarks suite containing realistic models of 17 processors running

47 different types of embedded system tasks. Finally, we gave the results of running

our optimization infrastructure on these benchmarks and compared the quality of so-

lutions produced by our optimization algorithm with solutions presented in past work.

When run on the specification in the E3S benchmark suite, EMOGAC produces mul-

tiple solutions that trade off different architectural costs. When run on problems from

the literature, EMOGAC meets, and very often beats, the results produced by other

hardware-software co-synthesis algorithms, without requiring an long run-time for dif-

ficult problems.

114

Chapter 7

Intellectual Property Core-Based

System-on-Chip Synthesis

In this chapter, we present a system synthesis algorithm, called MOCSYN, that par-

titions and schedules embedded system specifications to intellectual property cores in

an integrated circuit. Given a system specification consisting of multiple periodic task

graphs as well as a database of core and integrated circuit characteristics, MOCSYN

synthesizes real-time heterogeneous single-chip hardware-software architectures using

an adaptive multiobjective genetic algorithm that is designed to escape local minima.

As shown in the previous chapter, the use of multiobjective optimization allows a single

system synthesis run to produce multiple designs that trade off different architectural

features. Integrated circuit price, power consumption, and area are optimized under

hard real-time constraints. MOCSYN differs from previous work by considering prob-

lems unique to single-chip systems. It solves the problem of providing clock signals to

cores composing a system-on-chip (SOC). It produces a bus structure that balances ease

of layout with reduction of bus contention. In addition, it carries out floorplan block

placement within its inner loop, allowing accurate estimation of global communication

delays and power consumption.

115

116

7.1 Motivation

It is possible to implement some embedded systems using a single integrated circuit

(IC), thereby reducing cost and improving performance [132]. Economic and time pres-

sures frequently make it impractical to do an in-house design for each component in a

single-chip system. Fortunately, the number of intellectual property (IP) cores available

from the industry has dramatically increased in the past few years. Numerous companies

and non-profit organizations offer a wide range of IP cores, e.g., protocol processors,

general-purpose processors, micro-controllers, digital signal processors (DSPs), mem-

ory, and application-specific hardware (e.g., Data Encryption Standard engines) [133].

MOCSYN, which stands for multiobjective core-based single-chip system synthe-

sis, differs from past work on system synthesis by considering a number of problems

unique to core-based single-chip systems. MOCSYN determines the clock frequencies

supplied to different cores. It generates priority-based bus structures of arbitrary topol-

ogy, balancing ease of routing and bus contention minimization. In addition, it conducts

floorplan block placement [134] within its inner loop, thereby determining the location

of each core and allowing estimates of global wiring delays and power consumption to

be used during scheduling and cost calculation. Experimental results demonstrate that

a global bus is, in general, inferior to the use of a priority-based arbitrary bus topol-

ogy. Conducting block placement in the inner loop generally results in an improvement

in solution quality when compared with worst-case or best-case communication delay

estimates.

The rest of this chapter is organized as follows. In Section 7.2, we describe the

model MOCSYN uses for IP cores. Section 7.3 gives an overview of the SOC synthesis

algorithm. Section 7.4 describes MOCSYN’s clock selection algorithm. Section 7.5

describes the way we determine how important it is for each pair of IP cores to be

placed near each other on the SOC. In Section 7.6, we describe the algorithm we use

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 117

to determine floorplan block placements. Section 7.7 describes the model MOCSYN

uses for wire delay and power consumption estimation. Section 7.8 describes our bus

topology generation algorithm. In Section 7.9, we describe our method of calculating a

SOC’s costs. We give experimental results and conclude in Sections 7.10 and 7.11.

7.2 IP core model

In this section, we describe MOCSYN’s model for IP cores. A core is a processing

element (PE) that is capable of executing one or more types of tasks. Multiple cores may

be located on the same IC, upon which multiple tasks may execute simultaneously. Note

that MOCSYN uses a model for cores and ICs that is substantially more complicated,

and powerful, than the one used by MOGAC (described in Chapter 5. The following

information establishes the relationship between tasks and MOCSYN’s cores:

� A two-dimensional array indicating the relative worst-case number of execution

cycles of each task on each core.

� A two-dimensional array indicating the energy consumption per cycle of each task

on each core.

� A two-dimensional array indicating the core types upon which each task type may

be executed.

� A two-dimensional array indicating the amount of code memory required for each

task type executed on each core.

In addition, each core has a price that corresponds to the royalties paid to the IP

producer for each fabricated instance. This price is zero for royalty-free IP cores. If

118

IP has a one-time fee instead of, or in addition to, a per-use royalty, the price is equiv-

alent to the one-time fee divided by the expected production volume. Each core has a

width, a height, a maximum clock frequency, a variable indicating whether or not its

communication is buffered, an energy consumption per cycle spent in communication,

an idle energy consumption per cycle, and a global routing layer density that is used

when estimating routability.

7.3 Algorithm overview

In this section, we give a high-level description of the MOCSYN algorithm. This

algorithm carries out the following tasks:

1. Determine a clock frequency for each core type, subject to tradeoffs between exe-

cution time and power consumption.

2. Determine the allocation of cores to use.

3. Determine the tasks to assign to each core, subject to tradeoffs between ease of

routing and minimization of bus contention.

4. Determine a bus structure to use on the IC.

5. Derive a block placement for the cores, allowing an estimation of wire delay, wire

power consumption, and silicon area.

6. Assign each communication event to a bus.

7. Schedule the tasks on the cores and the communication events on the communi-

cation links.

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 119

Communication
assignment

Schedule

Task
prioritization

Change task
assignment

Clock
selection

Initialization

Change core
allocation

Results

re−prioritization
Tie

Bus
formation

Block placement

Architecture loop

Cluster loop

Tie
prioritization

Figure 7.1: MOCSYN overview.

MOCSYN uses a parallel recombinative simulated annealing (PRSA) algorithm to

optimize embedded system architectures. An overview of this algorithm is shown in

Figure 7.1. Initially an optimal, but potentially slow, algorithm determines the clock fre-

quency to provide to each core. Basic data structures are then initialized. MOCSYN is a

hierarchical algorithm. After this phase has been repeated an arbitrary (user-selectable)

number of times, an attempt is made to improve the core allocation of a cluster of ar-

chitectures, i.e., a collection of architectures that share the same core allocation but may

have different task assignments (see Section 5.5). Within the architecture optimiza-

tion loop, a number of deterministic algorithms are used to concurrently evaluate the

core allocation and task assignment of each architecture. First, a priority is assigned to

each communication tie, i.e., the communication carried out between each pair of cores.

These priorities are used to generate a block placement for the cores, ensuring that core

120

pairs for which communication priority is high are located near each other. Ties are

re-prioritized based on global wiring delay information that is extracted from the block

placement. During embedded system design, a synthesis-time or run-time scheduler pre-

vents multiple communication events from being scheduled to the same communication

resource at the same time. Contention occurs when one communication event’s trans-

mission blocks the transmission of another communication event during scheduling. A

bus structure that trades off potential bus contention for ease of routing is produced.

After bus structure generation, tasks are prioritized and a schedule is generated for the

tasks assigned to each core. Communication events are concurrently assigned to, and

scheduled on, busses. At the completion of each architecture optimization loop, changes

are made to the task assignments in an attempt to improve them. At the completion of

each cluster optimization loop, changes are made to the core allocations in an attempt to

improve them. Initialization, changes to processing element (core) allocation, changes

to task assignments, and scheduling were described in Chapters 5 and 6. The remaining

internal algorithms shown in Figure 7.1 are described in the following sections.

7.4 Clock selection

In this section, we discuss the problems associated with selecting a clock frequency

for each core in an IC and describe the algorithm used in MOCSYN to solve these

problems.

An IC’s global clocking can be single-frequency synchronous, multi-frequency syn-

chronous, or asynchronous [31], [135]. Single-frequency synchronous global clocking

has the potential to keep communication overhead at a minimum. However, its use

requires that all the cores that communicate with each other be clocked at the same

frequency. When different cores have different maximum frequencies, all cores must

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 121

be clocked at a frequency less than or equal to the maximum frequency of the slowest

core. Thus, using a single-frequency synchronous communication protocol will gener-

ally force sacrifices in core speed. Multi-frequency synchronous communication allows

cores with different clock periods to communicate with each other at a rate proportional

to the LCM of the communicating core’s periods. Unfortunately, when cores have dif-

ferent minimum periods and efforts are made to allow each core to run near its maxi-

mum frequency, the LCM of the periods of communicating cores can be significantly

higher than the period of any individual core, e.g., LCM ��� ��� � � � � . This generally re-

sults in slow communication. It is possible to significantly accelerate semi-synchronous

communication between clock domains if their frequencies are related by rational num-

bers with small integer numerators and denominators, i.e., the LCM of the frequencies

is small [136]. Finally, one may use asynchronous communication, clocking cores at

arbitrarily different frequencies and relying on asynchronous circuits to facilitate com-

munication between them. Although it has a reputation for increasing communication

overhead, we believe that it is a good option for systems in which different cores are

clocked at mostly unrelated frequencies. Using asynchronous communication, speed is

bounded only by bus bandwidth, the rate at which communicating cores can transmit

and receive information, and some protocol overhead; constraints need not be placed on

the relative frequencies and phases of different cores . Using asynchronous communica-

tion has the additional advantage of making inter-core clock skew irrelevant. Past work

has developed asynchronous communication approaches using clock pausing [137], and

first-in first-out memories (FIFOs) [138]. Other work has provided a framework for

automatically synthesizing asynchronous interface protocols [135].

If one decides to use asynchronous communication, the selection of clock frequen-

cies for the cores comprising a single-chip system need not be constrained by communi-

cation considerations. However, there are a number of other problems that must be dealt

122

with. Supplying each core with an arbitrary clock frequency would require a large num-

ber of frequency generators, e.g., analog timers based on RC delay or crystal oscillation.

These components are difficult to integrate with conventional CMOS IC processes. Us-

ing discrete components is a poor option because each additional external component

increases the price and area of an embedded system. Thus, a clocking approach that re-

quires only one frequency source but allows nearly arbitrary frequencies to be delivered

to each core would be advantageous.

We use an approach in which a single external oscillator is used to supply a base fre-

quency. A cyclic counter or interpolating clock synthesizer associated with each core is

used to divide this frequency by an integer, in the case of a cyclic counter, or multiply the

frequency by a rational number, in the case of an interpolating clock synthesizer [139].

Note that frequencies generated in this manner can easily satisfy the requirements for

semi-synchronous communication [136] as well as asynchronous communication. A

description of the clock selection algorithm used in MOCSYN follows. This algorithm

is capable of dealing with interpolating clock synthesizers. The cyclic counter clock

selection problem is a special case of the interpolating clock synthesizer clock selec-

tion problem. Therefore, the algorithm used in MOCSYN is capable of solving either

problem.

Given: A maximum external clock frequency, � max, and a maximum frequency

associated with each of the � cores ��� max � ��� max
 � � � � ��� max ��� .

Each core’s clock frequency multiplier is a rational number, � � � � � �	� � , with a

positive integer numerator � � less than or equal to a user-supplied maximum, � max,

and a positive integer denominator, � � . A core’s internal frequency, � � , is equal to the

external frequency, � , multiplied by its multiplier, � � .

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 123

MOCSYN maximizes the average of the ratios of the core frequencies, � � , to the core

frequency maxima, � max � , i.e.,
�	
���
�
� � � � max �

Our quality metric, � � � � � ��� , is the average, over all cores, of the ratio of each core’s

actual frequency to its maximum frequency, i.e.,

� ���
����
� �

� � � max �

�

Thus, when each core is running at its maximum frequency, � max, quality is one. When

each core is running at an extremely low frequency, quality approaches zero. We ini-

tially considered using a quality metric that weights the relative contribution of each

core type by its number of instances in the core allocation, or by how heavily it is used

by the tasks eventually assigned to it. However, as shown in Section 7.10.1, we found

that it is possible to clock all cores at nearly their maximum frequencies before decid-

ing core allocation or task assignment. This allows us to remove clock selection from

MOCSYN’s inner loop and conduct it in a pre-pass.

It is simple to determine an optimal external frequency, � , if the value of each mul-

tiplier, � � , is known. Given that � � � max, for an optimal � , � � � � � � � � � � � � � � such

that � � � � max � . Thus, one need only consider a small set of � ’s.

For a given set of multipliers, at least one core’s internal frequency will be equal to

that core’s maximum frequency if the external frequency is optimal. This is obviously

the case because, if each internal frequency is below its corresponding maximum, it

would be possible to increase the external frequency until one internal frequency is

equal to its maximum; this would be guaranteed to result in an increase in quality.

The maximum external frequency that does not result in any core’s internal frequency

exceeding that core’s maximum internal frequency is the optimal external frequency. It

is guaranteed that there exists at least one external frequency that does not result in any

124

core’s internal frequency exceeding the core’s maximum internal frequency, because

the first external frequency selected by the clock selection algorithm is less than the

maximum internal frequency of any core. It is still necessary to determine an optimal

set of multipliers. It is obvious that, for any given pair of internal frequencies, if the first

is greater than or equal to the second, then the optimal multiplier associated with the

first is greater than the multiplier associated with the second. This observation allows

the solution space to be pruned.

We now restate the preceding paragraph more formally. Given that � � � � � is the

optimal � for core � , for � max � � � � . The
��
� �� �

� � � � �
�

for which � �� � � � � � � max� is the optimal � for a given set of � ’s. It is guaranteed

that at least one � for which � �� � � � � � � max� exists because the first � chosen by the

clock selection algorithm is less than or equal to the � max value of every core. The only

remaining problem is to determine an optimal set of � ’s. It is obvious that, for any

given pair of � max’s, � max � and � max
 , if � max ��� � max
 then an optimal � ��� �
 .
This observation allows the solution space of � ’s to be pruned.

Initially, all � ’s are equal to 1 and all � ’s are equal to � max. Therefore, all � ’s

are equal to � max. To maximize the average of core frequency to maximum frequency

ratios, one need only repeatedly execute a simple algorithmic kernel, while keeping

track of the best set of � ’s, until � � � max. This kernel is shown in Figure 7.2.

Although, given that the maximum and minimum of the set ��� max � ��� max
 � � � � ��� max ���
are � max � and � max
 , respectively, this algorithm takes � � � � � max � � max � � � max
 �
time, in practice it is fast (see Section 7.10).

Linear interpolating clock synthesizers are compatible with standard digital design

tools and processes. Their use provides a significant advantage: one can distribute a

base global clock frequency that is below the maximum local clock frequencies, thereby

reducing power consumption in the global clock distribution net. However, interpolating

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 125

For each � between 1 and � , inclusive,

there is an array, � � , of size � max,

that contains integers.

Each of these integers is the current denominator

for the numerator equivalent to its index.

Optimize � for the current � ’s.

For all � ’s between 1 and � , inclusive, if � � � � max � :
�

ranges from 1 to � max, inclusive

Find the
�

for which
� � ��� � � � � � is maximal

Increment � � �
Set � ��� � � �
Set � ��� �

Figure 7.2: Clock selection kernel.

clock synthesizers are more complicated than cyclic counters. In addition, they are likely

to require more area [139]. If one chooses to use cyclic clock division counters, instead

of linear interpolating clock synthesizers, the same clock selection algorithm is used.

However, � max is set to 1.

126

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Max Freq.

Actual Freq.

Divider

Reference = 50 MHz

Quality = 0.708

/1 /1 /1

50 MHz

100 MHz

80 MHz

Figure 7.3: Clock selection example initial condition.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

80 MHz

100 MHz

50 MHz

40 MHz

/2/1/1

Reference = 80 MHz

Quality = 0.867

Figure 7.4: Clock selection example first iteration.

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 127

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����� 50 MHz

100 MHz

80 MHz

/1/2 /2

Reference = 100 MHz

Quality = 0.875

Figure 7.5: Clock selection example second iteration.

For the sake of example, consider a set of three cores that have maximum internal

frequencies (� max � ��� max
 ��� max �) of 80 MHz, 100 MHz, and 50 MHz. For the sake of

simplifying this example, we will consider the use of counter dividers only, not interpo-

lating clock synthesizers. This implies that each core’s multiplier (� �) is equal to the

reciprocal of its counter divider value (� �), i.e., � � � ��� . Initially, the counter dividers

for each core (� � �
�

 �
� �) are set to one and the external frequency (�) is set to the

minimum of the cores’ internal maximum frequencies, i.e.,

� �
�� � �
���
�
� max �

Therefore, as shown in Figure 7.3, the quality is initially
�
�
�����
�
�
�

�
�
� �

�
�����

�	���
�����

� �
�
�����

�
�
������ � � � � ���

In the next step, the cores for which � � � � max � are located and their dividers (� �)

are incremented. As shown in Figure 7.4, the divider of the core on the far right is

incremented. The external frequency (�) is then increased until � � � � � � � � � � such that

� max �
� � � . In this case, � is increased to 80 MHz, resulting in a quality of 0.867.

128

The iterative kernel in Figure 7.2 is executed again, incrementing the divider of the

core at the far left in Figure 7.5. � is increased to 100 MHz, resulting in a quality of

0.875. When � reaches � max, the algorithm terminates and returns the highest-quality

configuration encountered.

7.5 Tie prioritization

This section describes the algorithm used by MOCSYN to prioritize communication

ties between pairs of cores. These priorities are used by the floorplanner to determine

which pairs of cores should be placed closes to each other. In addition, it is re-calculated

after floorplanning and used in the generation of a bus structure. Ties of high priority are

likely to get their own point-to-point links. During tie prioritization, task assignments,

and therefore task execution times, are known. Tie priority determination is conducted

before block placement and bus structure generation. Therefore, exact communication

times are not yet known during tie prioritization. For communication between different

cores, communication time estimates are based on the average expected separation be-

tween pairs of cores in a square grid containing the same number of cores as the solution

for which tie priorities are calculated. Each core in the grid is a square with height and

width equal to the average of the heights and widths of the cores in the solution. For

cases in which the square root of the number of cores is not an integer, the average core

separation distance is interpolated. These estimates are used to guide floorplanning, en-

suring that cores between which a large amount of low-slack communication occurs are

placed near each other. The communication delays are re-computed after floorplanning

block placement has been completed in order to estimate them more accurately.

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 129

Slack is the difference between the earliest finish time and latest finish time of a task.

Thus, it is the amount of time by which a task’s execution may be delayed, from its ear-

liest possible execution time, without causing any other tasks to miss their deadlines.

Earliest finish times are computed by considering task execution times and estimated

communication delays during a topological search of the task graph, starting from the

node with no incoming edges. Latest finish times are computed by conducting a back-

ward topological search of the task graph, starting from the nodes that have deadlines.

Task graph edges, which signify communication, have a slack equivalent to the mini-

mum of the slacks of the tasks they connect. A tie’s priority is the average of the negative

slacks of the task graph edges (communication events) along it, or zero if there are no

edges along it. Given that � is tie priority, � is the set of communication events along

the tie with size � , and � is slack, then

� �
��� �� � � ��� � � �

�

 �

� � �

�
 �
�
� �

We did not settle on this definition of priority easily. Numerous experiments revealed

that negative slack average, with zeros for unused ties, resulted in better quality solu-

tions than prioritizing ties by their communication event data quantities, communication

times, negative slacks, communication durations minus slack times, and numerous other

metrics. In some cases this was counter-intuitive, e.g., using a large-magnitude negative

priority, instead of zero, for unused ties resulted in a degradation in architecture quality.

7.6 Floorplan block placement

This section describes the block placement algorithm used within MOCSYN’s inner

loop. This algorithm is built upon the work of other researchers.

130

Initially, it is necessary to determine the layout shape of each core. Although the

raw IP core layout shapes are specified in the resource database input to MOCSYN,

the area of memory required by each core must be determined during the run of the

algorithm. The memory requirements of each core depend on the tasks assigned to the

core. We calculate the code and data memory requirements of each core, using the

method described in Section 6.1. After determining a core’s memory requirements, we

compute the area required to implement this memory and generate a new core layout

shape that has the same aspect ratio as the core and an area equal to the sum of the

core’s area and its associated memory area, thereby ensuring that there is sufficient area

reserved for each core’s memory to be located near or within it. These core-memory

layouts shapes are used in floorplan block placement.

It is possible for some of the cores within a cluster’s allocation to be unused by some

of the solutions within the cluster. During floorplanning, a solution’s unused cores are

given insignificant sizes so that they do not interfere with floorplanning.

After core areas have been calculated and unused cores have been omitted, a bal-

anced binary tree of cores is formed, based on tie priorities, i.e., the priorities of com-

munication between core pairs. Accounting for the priority of communication is an

extension of the historical algorithm, which considered only the binary presence or ab-

sence of communication [140]. As a result, the time complexity of the partitioning

algorithm is increased from � � �
 � to � � �
 � ����� � � where � is the number of cores.

Cores that are adjacent in the binary tree will be adjacent in the final block placement.

After forming the binary tree, MOCSYN optimally determines the orientations of all

of the cores, under the constraint that the aspect ratio, i.e., the ratio between width and

height, does not exceed a value specified by the user. Padding is added to orientations

that do not conform to the desired aspect ratio. However, the additional area resulting

from padding is counted in the block placement area; this discourages the selection of

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 131

block placements with poor aspect ratios. Under these conditions, IC area is minimized.

This algorithm is based on past work and takes �	� � � � ��� � � time where � is the number

of cores [141].

7.7 Wiring delay and power consumption model

We have used the approach proposed by Cong and Pan to model communication

delay and energy [2]. In this section, we summarize the parameters required for the

buffered wire model. We follow the parameter naming conventions used by Cong and

Pan, although we use basic units instead of scaled units, i.e., we use
��� � �

m instead of

1 � m.

���
����	��
���
: the maximum buffer width multiplier

������� : the voltage for a logical one (logical zero is 0 V)

���
 ��� : the minimum wire width in meters

�
�
 ��� : the minimum wire spacing in meters

� � : the sheet resistance in � ���

� � � : the unit area capacitance in Farads/meter

� ��� : the unit effective-fringing capacitance in Farads/meter

� � � : the intrinsic gate delay in seconds

� � � : input capacitance of a minimum-sized gate in Farads

� �!� : output resistance of a minimum-sized gate in �

132

Using these parameters, and our own implementation of Cong and Pan’s algorithms,

we model optimal buffer insertion and wire sizing under the constraints supplied by

the designer. We compute delay, as well as driven wire and buffer capacitance, as lin-

ear functions of wire length. Wire and buffer capacitances are used to compute power

consumption. The linear model allows rapid delay and energy estimation during cost

calculation [2].

7.8 Bus topology generation

This section describes the algorithm used by MOCSYN to produce an arbitrary bus

structure. Before bus formation, MOCSYN recalculates tie priorities using an algorithm

similar to that described in Section 7.5. The global wiring delay information extracted

from the floorplan block placement, however, is now available, allowing an accurate

estimation of communication time during this recalculation.

7.8.1 Motivation

The objective, during bus formation, is to minimize the probability of bus scheduling

contention under the constraint that the bus structure is routable. If routability were not

a concern, point-to-point communication resources could be used between every pair of

cores, eliminating contention. However, this solution might be un-routable, especially

in SOCs containing numerous cores. Therefore, it is necessary to establish some metric

of routability. There has been little research on the problem of estimating routabil-

ity, although some have looked at related problems. Wang and Sarrafzadeh do block

placement in a way that minimizes the number of crossings between rectilinear layout

regions and nets [142]. Unfortunately, their approach requires fairly precise knowledge

of global routing paths. There are widely used commercial implementations of global

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 133

and detailed routing tools. Therefore, we defer precise global routing, and detailed rout-

ing, to other software instead of re-implementing mature algorithms. As a result, we

cannot safely make assumptions about the detailed paths taken by global wires.

7.8.2 Definitions and assumptions

We assume that rectilinear global routing is used. In addition, two-layer routing is

assumed. Our algorithm’s parameters may be adjusted to account for the availability of

additional metal layers for global routing.

In order to make an estimation of congestion that does not depend on the precise

paths taken by global wires, we define the term density. Density is the ratio between the

area of routing metal in a region to the total area of the region. We use the maximum

density of a layout and bus topology as a proxy for routability. This allows us to take

into account flexibility in routing paths.

One can estimate the wire length of a bus by taking the rectilinear minimal Steiner

tree of the points connected by the bus. However, computing a rectilinear minimal

Steiner tree is an NP-hard problem [112]. Therefore, we approximate the rectilinear

minimal Steiner tree with a rectilinear minimal spanning tree (RMST). The length of an

RMST for a set of points is at most one and a half times the length of the rectilinear

minimal Steiner tree for the same set of points [143]. Computing the RMST is of time

complexity � � � � � ��� � � [114]. We estimate the amount of routing metal in a region by

multiplying the length of the RMST by the number of wires in the bus and the average

width of each wire.

A bus’s contention estimate is the sum of the priorities of the communication ties it

serves. It is necessary to determine a contention estimate before bus structures are gen-

eration and a schedule is produced. Therefore, we do not yet know the times at which

communication events will occur. However, minimizing this contention estimate guides

134

1) Create point-to-point links for communicating pairs of cores. � � � � ��� � �
2) While maximum density � density bound: � � � �

3) Find the most congested position, congest. �	� � � � � � �
4) For each bus, � , intersecting with the congest: � � �
 �

5) For each bus,
�
: � � � � �

6) Tentatively merge � and
�
. � � ��� �

7) Evaluate the density, new dens, of congest. �	� � � �
8) Evaluate new maximum contention estimate, cont est. � � � � �

If new dens decreased for any tentative merge:

9) Merge the pair with greatest new dens decrease. � ���
 �
Break ties by selecting merge with least cont est increase.

Else if new dens increased for any tentative merge:

10) Merge the pair for which the new dens increase is least. � � �
 �
Break ties by selecting merge with least cont est increase.

Else halt: no valid topologies were found.

Figure 7.6: Bus formation kernel.

the bus formation algorithm to generate bus structures in which high-priority communi-

cation events are likely to occur on point-to-point links and low-priority communication

events are likely to occur on large busses.

7.8.3 Overview

An overview of the bus formation algorithm is shown in Figure 7.6. The order notes

to the right of the figure will be explained in more detail in Section 7.8.4. This algorithm

merges pairs of busses until the maximum density on the chip is lower than the density

bound. A heuristic is used to rapidly evaluate the quality of different potential merges.

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 135

Cont.
est. = 5

Cont.
est. = 7

Figure 7.7: Bus formation example, step 1.

In order to reduce computational complexity, this heuristic considers only changes to

the maximum density for points within the pair of busses that are merged, not changes

in density for other points contained within the tentatively created bus. The algorithm

accepts the move that reduces estimated maximum density the most. Ties are broken

by accepting a move that increases the maximum contention estimate the least. If all

moves increase estimated maximum density, the move that results in the smallest in-

crease is taken. This has the potential of allowing the algorithm to escape local minima

in some special circumstances. However, as described in Section 7.8.4, computational

complexity was a more significant factor in the design of the algorithm than thorough

solution-space exploration. Recall that bus formation is carried out in the inner loop of

MOCSYN.

We describe this algorithm with an example. Figure 7.7 shows the starting conditions

for a simple instance of the bus formation problem. In this image, every square is a core,

all of which are the same size in this example. In order to simplify this example, we

assume that the cores have densities of zero, i.e., one need only consider the densities

136

Merge

Highest density

Cont.
est. = 5

Cont.
est. = 7

Figure 7.8: Bus formation example, step 2.

of busses. However, our algorithm does take into account core densities. The top tie

has a priority, and therefore a contention estimate, of seven. The left tie has a priority,

and therefore a contention estimate, of five. Figure 7.8 shows the bus structure after

creating a point-to-point bus, i.e., link, between each communicating pair of cores. In

this figure, shaded rectangles depict busses. The darkness of the shading at a point

indicates the wiring density at that point. As shown in the figure, the highest density

points are located at the intersections of the two busses. In this example, this density is

higher than the maximum acceptable density; a merge will be attempted. The points of

highest density, i.e., the corners of each bus that intersect with the other bus, are located.

These points are indicated by black dots. One of these points is randomly selected and

pairs of busses intersecting with that point are tentatively merged. In this example, only

one such pair exists. After the busses in the pair are merged, only one bus remains, as

shown in Figure 7.9. The new bus has a contention estimate equal to the sums of the

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 137

Cont.
est. = 12

Figure 7.9: Bus formation example, step 3.

contention estimates of the two busses that were merged to form it. This new bus has a

lower density than the maximum acceptable density; the algorithm halts.

7.8.4 Efficiency

We use red-black trees to store information about positions, densities, and busses.

This allows the lookup and storage of these data to be accomplished in time � � � � � � .
In Figure 7.6, information about the time complexity of the most important portions of

the algorithm is given in Figure 7.6. In this figure, � is the number of communicating

pairs of cores in the algorithm’s input. During step 1, it is necessary to create � point-to-

point links. Creating each of these links requires �	� ��� � � time, for a time complexity of

� � � � ��� � � . During each execution of loop 2, the number of busses must be reduced by

one. Therefore, the contents of loop 2 may be executed a maximum of � times. Step 3

requires a search in a red-black tree of density values and may be executed a maximum

of � times, for a time complexity of �	� � � � � � � . The contents of loop 4 may be executed

138

once per bus, per execution of loop 2, for a time complexity of � � �
 � . Similarly, loop

5 has a time complexity of � � � � � . Step 6 results in the bus configuration being copied,

� � � � , for a time complexity of �	� ��� � . Step 7 requires a simple addition, for a time

complexity of �	� � � � . Step 8 requires a summation over all busses intersecting with the

old highest density position, congest. In the worst case, there are � intersecting busses,

for a time complexity of � � ��� � . Steps 9 and 10 may be executed � times and each

merge may take �	� � � time, for a time complexity of � � �
 � . Therefore, the overall time

complexity of the bus formation algorithm is � � � � � .
A heuristic is used to decrease the time complexity of the algorithm. It would be

most straightforward to fully evaluate changes in the densities of all points affected by

tentatively merging two busses in order to compute the new highest density. However,

this would require new density calculations to be carried out for � � � � points, in the

worst case. Instead, the change in density is evaluated only at the point that previously

had the highest density. Although this may result in a suboptimal merge being chosen,

correctness is maintained by doing a density calculation at all affected points after a

merge is completed. This heuristic reduced the time complexity of the algorithm from

� � � � � to �	� � � � .

7.9 Cost calculation

As mentioned before, MOCSYN optimizes architecture price, area, and power con-

sumption under hard real-time constraints. An architecture is invalid if any task with a

deadline violates that deadline. Total hyperperiod energy is the sum of the energy con-

sumptions of all of an IC’s tasks executed on all its cores, throughout the hyperperiod,

in addition to the sum of the idle energy consumption of all the cores, plus the energy

consumed in the global clock distribution and communication networks. This value is

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 139

divided by the hyperperiod to get the power consumption. As described in Section 7.7,

we assume the presence of buffers in the global communication network. In addition, the

clock network is assumed to be constructed with buffered segments. Leakage current is

assumed to be negligible. This allows delay and energy consumption to be estimated as

linear functions of wire length and transition count, with constant factors derived from

the process parameters and VDD. Ultimately, three such constant factors are computed:

communication wire delay factor, communication wire energy factor, and clock energy

factor. The energy consumed by the global clock network is determined by estimating

the total wire length of this network, multiplying this value by the number of signal tran-

sitions occurring during a hyperperiod, and also multiplying by the clock energy factor.

The wire length estimate is derived from an RMST of the core positions in the block

placement [114]. This provides an approximation of wire length. A Steiner tree may be

used in the final post-optimization routing operation, possibly resulting in a lower total

wire length. However, as mentioned earlier, computation of minimal Steiner trees is

time-consuming (NP-hard) [114]. Hence, it is not used in inner-loop routing estimates.

Energy consumption in the global communication networks is similarly computed. A

separate RMST is computed for each bus. The transitions required for the communica-

tion events occurring on each bus are used to compute the bus energy consumptions.

An architecture’s price is the sum of the prices of all the cores on the IC. The area of

the IC is equivalent to the total rectangular area required for its block placement.

7.10 Experimental results

In this section, we present experimental results. Previous hardware-software co-

synthesis systems do not target the single-chip synthesis problem. As a result, there

is no body of work by other researchers with which MOCSYN’s performance can be

140

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 p
ro

po
rt

io
n

of
 m

ax
im

um
 in

te
rn

al
 fr

eq
ue

nc
ie

s

External frequency (MHz)

8X frequency multiplication

No frequency multiplication

Figure 7.10: Clock selection quality as a function of external frequency.

compared. It is, however, possible to experimentally determine the effects of the algo-

rithms comprising MOCSYN. The examples discussed below attempt to determine how

clock selection, block placement, and bus topology generation affect the solution of the

single-chip synthesis problem. Section 7.10.1 shows the results produced by the clock

selection algorithm when run on a difficult example, i.e., one in which core maximum

frequencies varied widely. In Section 7.10.2, we empirically determine the influence of

a number of MOCSYN’s specialized algorithms. Section 4.5 shows the result of running

MOCSYN on the E3S benchmarks suite in the multiobjective optimization mode.

7.10.1 Clock selection

MOCSYN automatically selects clock frequencies for each core using the algorithm

described in Section 7.4. In this section, we examine the results produced by this algo-

rithm when run on an example problem.

In the interest of decreasing the power consumed in the global clock distribution

network, one may reduce the frequency of the base clock. There is a tradeoff between

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 141

power consumption and execution time. However, this relationship is not linear. Figure

7.10 shows the relationship between maximum reference clock frequency and the aver-

age proportion of maximum internal clock rates at which the cores are clocked for a set

of eight cores, each of which has a random maximum internal frequency ranging from

2 MHz to 100 MHz. Each sample point lies at the optimal reference clock frequency

for a set of core multiplier values. The top solid line shows the average ratio of actual

core frequencies to maximum core frequencies for linear interpolating clock synthesiz-

ers with a maximum numerator of eight. The bottom solid line corresponds to a cyclic

counter clock divider. The dotted lines indicate the maximum ratio encountered before

or at each frequency. The increase in power consumed by the clock reference frequency

distribution network is approximately a linear function of frequency, although this func-

tion will be superlinear if voltage scaling is simultaneously carried out. As shown in

Figure 7.10, the quality of the internal clock frequencies is a sub-linear function of the

reference clock frequency. If one were using an interpolating synthesizer with a maxi-

mum numerator of eight for the cores in this example, choosing a maximum reference

frequency greater than 100 MHz would not result in a significant increase in execution

speed but may have a negative impact on system power consumption.

In summary, it is possible to clock each core at nearly its maximum frequency despite

using a fairly conservative global clock frequency and widely varying core maximum

frequencies.

7.10.2 Feature comparisons

This section empirically shows the influence of a number of the core-based synthesis

algorithms used in MOCSYN.

Table 7.1 shows the results of synthesizing a number of ICs using MOCSYN with

various sets of features enabled. These results indicate that it is extremely important

142

Table 7.1: Feature comparisons

Worst-case Best-case Single
Example

MOCSYN
commun. commun. busprice

price price price

1 219 137 n.a. n.a.
2 254 n.a. n.a. n.a.
3 343 n.a. n.a. n.a.
4 279 n.a. n.a. n.a.
5 243 n.a. n.a. 254
6 254 138 254 254
7 n.a. n.a. n.a. 245
8 n.a. n.a. n.a. 162
9 306 n.a. n.a. n.a.
10 354 n.a. n.a. n.a.
11 269 n.a. n.a. 206
12 382 n.a. n.a. n.a.
13 283 n.a. n.a. n.a.
14 n.a. n.a. n.a. 218
15 357 n.a. n.a. n.a.
16 343 n.a. n.a. n.a.
17 304 n.a. n.a. n.a.
18 231 231 n.a. n.a.
19 254 n.a. n.a. n.a.
20 255 n.a. n.a. n.a.
21 320 n.a. n.a. n.a.
22 216 n.a. n.a. n.a.
23 n.a. n.a. n.a. 254
24 227 n.a. n.a. n.a.
25 280 n.a. n.a. 280

Continued on next page.

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 143

Table 7.1: Feature comparisons (continued)

Worst-case Best-case Single
Example

MOCSYN
commun. commun. busprice

price price price

26 219 n.a. n.a. n.a.
27 226 n.a. n.a. 277
28 n.a. n.a. n.a. 137
29 302 n.a. n.a. n.a.
30 n.a. n.a. n.a. 300
31 216 n.a. n.a. n.a.
32 380 n.a. n.a. n.a.
33 489 n.a. n.a. n.a.
34 267 n.a. n.a. n.a.
35 269 n.a. n.a. n.a.
36 256 n.a. n.a. n.a.
37 291 n.a. n.a. n.a.
38 324 n.a. n.a. n.a.
39 301 n.a. n.a. n.a.
40 239 n.a. n.a. 239
41 304 n.a. n.a. n.a.
42 332 n.a. n.a. n.a.
43 213 n.a. n.a. 213
44 382 n.a. n.a. n.a.
45 227 n.a. n.a. n.a.
46 n.a. n.a. n.a. 256
47 243 n.a. n.a. 375
48 137 n.a. n.a. 165
49 213 n.a. n.a. 213
50 n.a. n.a. n.a. 338

MOCSYN better 39 41 36
MOCSYN worse 2 0 9

144

to consider low-level details such as floorplan block placement and bus topology gen-

eration when making allocation, assignment, and scheduling decisions during system-

on-chip synthesis for difficult problem instances. For the examples in this table, price

was optimized under hard real-time constraints. If multiobjective optimization were

used, it would be difficult to compare the solutions produced by different versions of

MOCSYN because multiple solutions might have been produced for each problem (see

Section 4.5). We used the 17 processors from the E3S benchmarks suite derived from

the EEMBC benchmarks as described in Section 6.8. For each processor, we used two

layout shapes: square and rectangular. We required numerous task sets for these exper-

iments. Therefore, it was not possible to use the E3S task sets built from the EEMBC

benchmarks. The task sets were produced with the aid of TGFF [129], a randomized

parametric task set generator. Each example contains five task graphs with ten tasks,

each. For each task with a deadline, the deadline is equal to � � � � � � � ��� ms where

depth,
�
, is the distance of a task, in nodes, from the start node of a task graph. Each

communication event requires 1.8 Mb of data to be transferred. The graphs are com-

posed of the 21 task types within the EEMBC Networking and Telecom benchmarks.

Communication wire delay factor, communication wire energy factor, and clock energy

factor were calculated based on the 0.18 � m process parameters given in the litera-

ture [144], with a VDD of 1.8 V. We used 32 bit wide busses. Wire delay and energy

consumption per � m per transition are calculated based on the use of a buffer separa-

tion distance that optimizes delay per � m. This optimal buffer separation is internally

computed. The maximum clock reference frequency is 500 MHz and the maximum

interpolating clock synthesizer numerator is eight. Note that internal frequencies may,

therefore, be higher than 500 MHz. For each example, the same parameters were given

to TGFF and MOCSYN. Only the random seed given to TGFF is varied, to produce

different task sets based on the same parameters. We use a maximum aspect ratio of

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 145

two for the generated floorplans. Based on the automated analysis of wiring density in

a number of designs, e.g., PipeRench [145], using modified design rule checking soft-

ware [1], we believe that 0.8 is reasonable bound on routing density, and used this bound

for our bus topology generator. We rounded the prices of the solutions up to the nearest

dollar.

The bottom two rows in Table 7.1 show the number of problems for which a version

of MOCSYN, with floorplan block placement and bus topology generation, produced

better and worse solutions than the limited version of MOCSYN associated with the

column. The first column in Table 7.1 shows the example number. Many of these exam-

ples had tight deadlines; they were difficult to solve. Entries of n.a. indicate situations

in which no solution was found. Note that there is no guarantee that a solution exists for

each example. Therefore, when no solution was found for a given example running in

any of the four modes of operation, we omitted the example from the table and moved

on to the next example. Each of the examples in this section took less than 1.25 minutes

to complete on a 900 MHz Intel Pentium III machine running Linux. Allowing longer

run-times might have produced lower prices for these examples. However, in these ex-

periments, we were interested in relative values: we wanted to determine the value of

including a number of low-level algorithms within system-on-chip synthesis.

The second column shows the price of solutions produced by MOCSYN when car-

rying out block placement-based wire delay estimations. The third column shows the

price of solutions under the assumption that the distance in the block placement between

each pair of cores is equal to the maximum distance between any pair of cores. Although

this estimate may appear conservative, it is not possible to derive a tight bound on the

maximum separation between any pair of cores without carrying out block placement

in the inner loop. Thus, in practice, this estimate would probably be even more con-

servative if an inner-loop block placement tool were not available. The fourth column

146

shows the prices of solutions produced under the assumption that communication events

take almost no time. After the optimization run is complete, solutions that are invalid

because their schedules do not meet their hard real-time deadlines are eliminated. The

fifth column shows the price of solutions that result from allowing MOCSYN to carry

out block placement in the inner loop to accurately estimate communication delay but

allowing only a global bus to be used, instead of an arbitrary priority-based topology

containing up to eight busses. Although there are a few examples for which MOCSYN

was able to produce superior results by making worst-case or best-case assumptions

about wire delay instead of carrying out floorplan block placement or limiting itself to

a single system-wide bus, these cases are fairly uncommon. Such deviations from the

overall trend are not surprising, given that MOCSYN used a probabilistic optimization

algorithm. The arbitrary bus topology version of MOCSYN outperforms the single-bus

version in 36 out of 50 cases. However, the single-bus version outperforms the arbitrary

topology bus version in only nine out of 50 cases. This is understandable: if the best so-

lution to a particular problem uses only a single system-wide bus, then the one-bus solver

will concentrate its search on this area of the solution space. The full-featured version

of MOCSYN produces better solutions than the limited versions 10.5 times more often

than it produces inferior solutions. From this, we conclude that, for difficult problem

instances in which the problem specifications contain some degree of parallelism and

communication, it is important to include floorplan block placement and bus topology

generation within synthesis of a system-on-chip composed of IP cores.

7.10.3 Multiobjective optimization for the E3S benchmarks

This section presents the result of using MOCSYN to conduct multiobjective opti-

mization on the E3S benchmarks described in Section 6.8. When MOCSYN is run in

Chapter 7: Intellectual Property Core-Based System-on-Chip Synthesis 147

Table 7.2: Multiobjective optimization for the E3S benchmarks

Average Soft DLExample Price ($)
power (mW) viol. prop.

Area (mm
)

Automotive-
Industrial

91 120 0.59 2.0

61 72 0.94 38.4
Networking 188 843 0.25 139.4

190 1339 0.23 173.3
223 246 2.43 2.0
238 239 2.49 5.5
238 243 2.51 5.2

Telecom 334 261 2.16 3.0
354 402 1.96 80.8
433 516 1.83 84.5
433 667 1.41 84.5

Consumer 134 281 1.40 21.6
Office 64 370 0.23 32.8

Automation 66 55 0.00 7.2

the multiobjective optimization mode, it produces a set of solutions, each of which is su-

perior, in some way, to at least one other solution. Table 7.2 shows the sets of solutions

produced for the five task sets in the E3S benchmarks suite. We rounded the prices and

power consumptions of the solutions up to the nearest dollar and milliwatt. MOCSYN

took less than 30 CPU minutes when run on each of these benchmarks. For most of

the benchmarks, MOCSYN found multiple solutions that trade off price, average power

consumption, soft deadline violation proportion, and area. For certain problems, it is

possible for the lowest-price solution to also have the lowest power consumption, soft

deadline violation proportion and area. In such cases, a multiobjective optimizer will

find only one solution. This may have been the case for the Automotive-Industrial and

Consumer benchmarks. Note that MOCSYN produced dramatically different solutions

148

to some problems, e.g., the prices of solutions to the Telecom benchmark ranged from

$223 to $433, the power consumptions ranged from 246 mW to 667 mW, the soft dead-

line violation violation proportions ranged from 1.41 to 2.43, and the areas ranged from

2.0 mm
 to 84.5 mm
 . These benchmarks are available via the E3S link on the http://-

www.ee.princeton.edu/˜cad/projects.html web page.

7.11 Conclusions

In this chapter, we presented a method for the synthesis of core-based, single-chip,

low-price, low-power, real-time, multi-rate, heterogeneous embedded systems. A multi-

objective PRSA algorithm that allows exploration of the Pareto-optimal set of architec-

tures instead of providing a designer with a single solution, was applied to a number of

examples. MOCSYN’s use of automatic clock selection, block placement-based com-

munication delay and power estimation, and arbitrary bus topology generation allows

it to efficiently solve the core-based synthesis problem. We experimentally determined

that it is important to carry our floorplanning block placement and bus topology gener-

ation within SOC synthesis.

Chapter 8

Wireless Low-Power Client-Server

System Synthesis

In this chapter, we present COWLS, a hardware-software co-synthesis algorithm that

targets embedded systems composed of servers and low-power clients that communicate

with each other through a channel of limited bandwidth, e.g., a wireless link. A novel

scheduling algorithm is used to pipeline the execution of tasks that serve multiple clients

associated with a given server. COWLS simultaneously optimizes the price of the client-

server system, the power consumption of the client, and the response times of tasks that

have only soft deadlines, while meeting all the hard deadlines. It produces numerous

solutions that trade off different architectural features, e.g., price, power consumption,

and response time, of an embedded client-server system. As far as we know, this is the

first synthesis algorithm of its kind. We present the experimental results for a low-power,

client-server camera system as well as several randomized examples.

A bandwidth-constrained embedded client-server system is a special-purpose com-

puter in which clients and servers communicate with each other via a channel of limited

bandwidth. Clients are frequently consumer products, e.g., portable communication de-

vices, for which price is often particularly important. Server price is also an important

factor, although it is usually less important than client price because clients typically

149

150

outnumber servers. In this work, we assume that servers have access to high-capacity

power supplies. In order to maintain mobility, clients may be small and battery-powered.

Therefore, client power consumption must be minimized to reduce heat production and

increase battery life. Clients or servers may initiate communication events.

The literature contains numerous case studies of embedded client-server system de-

sign and general descriptions of the client-server problem domain. Some researchers

have discussed wireless and cellular systems [146], [147], some have focused on em-

bedded systems in which the server is a satellite [148], [149], and others have studied

telerobotics, systems in which a robot is partially or totally controlled via a limited-

bandwidth communication channel [150], [151]. The majority of previous research on

embedded client-server systems either surveys the problems typically faced by the de-

signer of such systems or provides case studies detailing specific solutions to individual

problems.

Despite the previous work dealing with embedded client-server systems, we know of

no previous work that automatically synthesizes such systems. COWLS automatically

synthesizes architectures for embedded client-server systems, taking into account price,

power consumption, bandwidth requirements, as well as task deadlines. It uses a novel

scheduling algorithm that pipelines the computation and communication associated with

the multiple clients that may interact with a server.

In the next section, we formulate the problem solved by COWLS. Section 8.2 pro-

vides a motivational example, describing the different ways in which a designer, or

hardware-software co-synthesis algorithm, might partition functionality between client

and server. Section 8.3 describes the scheduling, and client-server pipelining, algorithms

used by COWLS. In Section 8.4 we describe the method COWLS uses to calculate the

costs, e.g., price, power consumption, and soft deadline violation, of each architecture.

Section 8.5 shows the results of using COWLS to produce client-server architectures for

Chapter 8: Wireless Low-Power Client-Server System Synthesis 151

the E3S benchmarks. In addition, we give experimental results demonstrating the effect

of using client-server pipelining during scheduling. In Section 8.6, we draw conclusions.

8.1 Problem formulation

In this section, we present the client-server synthesis problem formulation used for

COWLS.

The independent synthesis of a client or server is similar to the distributed, heteroge-

neous embedded system co-synthesis problem. The optimization infrastructure used by

COWLS is similar to that described in Chapters 5 and 6. However, COWLS targets the

servers and clients simultaneously, and examines the consequences of allowing tasks to

migrate between clients and servers. A designer may specify the behavior and timing

constraints of a client-server system using a modified version of the model presented in

Section 3.3. This version also allows some tasks to have their assignment constrained to

processing elements (PEs) in the clients or PEs in the server, although many tasks will

be free to migrate between client and server during synthesis. It is also necessary to de-

scribe the characteristics of the resources that may be used to meet these requirements.

We model three main types of resources: PEs, communication resources, and memory.

As described in Section 3.6, PEs model general-purpose or special-purpose proces-

sors that are capable of executing tasks. However, COWLS models two classes of PEs:

client PEs and server PEs. Client PEs may only exist within the client’s PE allocation.

Server PEs may only exist within the server’s PE allocation. In general, server PEs will

have better performance than client PEs but their power consumptions will be higher.

152

Task assignments are modified using the algorithm described in Section 6.4. This

algorithm was originally designed to improve the performance of our optimization in-

frastructure when synthesizing client-server systems containing low-bandwidth commu-

nication resources. By considering the expected impact upon bandwidth caused by each

potential change in task assignment, COWLS is able to avoid task assignments that in-

crease communication time without compensating improvements in computation time

or reduction in PE overloading.

COWLS synthesizes embedded systems containing arbitrary-topology busses and

point-to-point communication links, as well as the primary communication resources

that are used to connect clients and servers. There are a number of attributes associ-

ated with each type of communication resource. There may be multiple communication

resources within the client, and within the server. Different primary communication

resources may be available. However, only one primary communication resource may

be present in a client-server pair, as multiple wireless transmitters and receivers will

typically result in unreasonably expensive client-server systems. Each type of commu-

nication resource has a price per instance (to represent bus controller price), a price per

contact (to represent bus bridge or interface circuit price), packet size (which can be

very small to model communication that is not packet-based), energy consumption per

packet, transmission time per packet, and maximum number of contacts. A communi-

cation resource’s number of contacts is the number of different PEs that it may connect

together, i.e., a communication resource with two contacts is a point-to-point link. Pri-

mary communication resources have four prices: the client and server each have a price

per instance and a price per contact. For primary communication resources, each contact

is associated with a PE, on the client or server, that needs to be connected to the primary

communication resource.

Chapter 8: Wireless Low-Power Client-Server System Synthesis 153

COWLS uses task sets to specify client-server behaviors and timing constraints.

These task sets are identical to those described in Section 3.3, with one addition: any

task may have its assignment locked to a client PE, a server PE, or be permitted to exe-

cute on either a client or server PE. Given the client-server system requirements, in the

form of a task set, the attributes of the PEs, memory, and communication resources avail-

able, as well as the number of clients and servers in the client-server system, COWLS

attempts to synthesize client-server systems that meet the requirements with minimal

price, client power consumption, and soft deadline violation. COWLS contains algo-

rithms that carefully consider the impact of task assignment, defined in Section 3.1, on

the wireless communication resource. In addition, the scheduler in COWLS uses a novel

method of client-server pipelining.

An architecture’s costs are derived from the manner in which resources are used in

its construction. Therefore, by attempting to meet real-time constraints, one ensures that

high-speed PEs, well-suited to tasks they execute, are used for tasks that lie along critical

paths in the task graphs. By attempting to minimize price, one ensures the use of PEs

that are capable of carrying out the required tasks with minimal price. By attempting

to minimize client power consumption, one minimizes the number of power-intensive

tasks run on power-hungry PEs located on the client. Of course, some of these goals

conflict with each other. For this reason, a single run of COWLS generates multiple

solutions that explore the tradeoffs among different costs.

8.2 Motivating example

A synthesis system for the client-server problem domain should simultaneously op-

timize multiple costs. It must also consider the differences in cost between executing a

task on a client or a server. It is, therefore, necessary to allow tasks to migrate from one

154

side of the primary communication resource, the link connecting the client and server,

to the other. Optimizing only one cost, or considering local improvements instead of

system-level improvements, is likely to lead to a poor overall solution.

We will show how COWLS explores the design space in a manner that allows it to

uncover a high-quality design similar to one proposed in the motivational example, and

consider other options that trade off different system costs.

Consider a system specification requiring a battery-powered camera to transmit dig-

ital images to a base station via a limited-bandwidth wireless link. If the designer has

decided that the video information should be compressed, but has not yet decided what

sort of processor should be used to carry out this operation, or even whether it should

be done by the client or the server, COWLS will simultaneously explore the different

options.

Figure 8.1 shows the Consumer benchmark from the E3S benchmarks suite de-

scribed in Section 6.8. In this example, images must initially be generated on the client

camera. They are then filtered, on either the client or server, converted to another image

format, and compressed. Images must be transferred to the sink task within 2.5 s and,

ideally, within 0.1 s. Image capturing (represented by the src node in the left graph), and

display must be carried out on the client. Data storage (represented by the sink node in

the left graph) data retrieval (represented by the src node in the right graph) and image

printing must be carried out on the server. Storage has a hard deadline of 2.5 s and a soft

deadline of 0.1 s. Printing has a hard deadline of 15 s and a soft deadline of 5 s. Display

has a hard deadline of 15 s and a soft deadline of 1 s.

In this motivational example, we will focus on the left task graph in Figure 8.1.

This task graph carries out image acquisition (src), filtering (filt-x), conversion (rgb-yiq),

compression (cjpeg), and storage (sink). In one possible client-server partitioning of this

graph, shown in Figure 8.2, filtering, conversion, and data compression are executed on

Chapter 8: Wireless Low-Power Client-Server System Synthesis 155

server

server

cjpeg

filt−r djpeg

print

disp

client

client

server

hard DL: 2.5 s
soft DL: 0.1 s

hard DL: 15 s
soft DL: 1 s

hard DL: 15 s
soft DL: 5 s

src

sink

src

filt−g filt−b

2Mb 2Mb

2Mb 2Mb2Mb

6Mb

1Mb

1Mb

6Mb 6Mb

6Mb

period: 6 speriod: 2 s

rgb−
yiq

rgb−
cmyk

Figure 8.1: Camera specification, i.e., the Consumer E3S client-server benchmark.

the client and all other tasks are carried out on the server. This partitioning reduces the

load on the wireless communication link to 1 Mb per task graph execution and allows

an inexpensive primary communication resource to be used between the client and the

server. However, carrying out data compression on the client requires increased client

price and power consumption.

In another possible partitioning, shown in Figure 8.3, image acquisition (src) exe-

cutes on the client and all other tasks execute on the server. In this partitioning, the

156

server

filt−g

hard DL: 2.5 s
soft DL: 0.1 s

sink

src

filt−bfilt−r

cjpeg

2Mb 2Mb

2Mb 2Mb2Mb

6Mb

1Mb

period: 2 s

client

rgb−
yiq

Figure 8.2: Camera architecture 1

client executes only essential functions, shifting all other computational burdens to the

server. This decreases the client’s price and power consumption. However, it increases

the demands upon the communication link between the client and the server, increasing

its price and power consumption. Although some of the tradeoffs facing the designer of

client-server systems are apparent even from this simple example, COWLS is capable

of solving problems that are significantly larger and more complicated.

Chapter 8: Wireless Low-Power Client-Server System Synthesis 157

src

hard DL: 2.5 s
soft DL: 0.1 s

filt−g filt−bfilt−r

cjpeg

sink

2Mb 2Mb

2Mb 2Mb2Mb

6Mb

1Mb

period: 2 s

client

server

rgb−
yiq

Figure 8.3: Camera architecture 2

8.3 Scheduling and client-server pipelining

In this section, we describe the scheduling algorithm used in COWLS.

In order to determine a solution’s client power consumption, soft deadline violation,

and hard deadline violation, it is necessary to generate its complete schedule. COWLS

uses a rapid multi-rate list scheduler (see Section 6.6) that is capable of handling task

graphs with periods that are greater than, equal to, or less than the deadlines in the task

158

graphs. The scheduler treats time as circular, i.e., an event that occurs at one point in

time also occurs at every integer multiple of the hyperperiod from that point in time.

This scheduler operates in two stages. During the first stage, the scheduler determines

a priority for each task. During the second stage, communication events are assigned

to communication resources, communication events are scheduled, and tasks are sched-

uled.

In order to prioritize tasks, the approximate earliest finish times (EFTs) and latest

finish times (LFTs) of every task is determined by conducting a modified breadth-first

search of each task graph. At this point, task assignments are fixed. Therefore, the

execution time of each task is known. Communication event assignments are not fixed

when EFT and LFT calculations are carried out. Therefore, it is not possible to know

the exact amount of time required to carry out each communication event. A communi-

cation event’s time is approximated by taking the maximum amount of time required by

the event on any of the communication resources that connect the PEs to which the com-

munication event’s parent and child tasks are assigned. Raw times are used for EFT and

LFT computation, i.e., these time values are not multiplied by the number of clients per

server. A more detailed explanation of this decision requires knowledge of the method

of pipelining used in COWLS. We explain this concept in later in this section. Slack

is the difference between a task’s LFT and its EFT. The scheduler uses negative slack

in order to prioritize task scheduling, i.e., low-slack paths in the task graphs have high

scheduling priorities. If the schedule produced in this manner fails to meet all hard real-

time deadlines, COWLS retries scheduling using negative LFT and negative earliest start

time (EST) for prioritization.

Once tasks are prioritized, the second scheduling stage is entered. During this stage,

the contents of a continuously updated prioritized list of tasks, whose data dependen-

cies have been satisfied, are iteratively scheduled. Recall that some task graphs will be

Chapter 8: Wireless Low-Power Client-Server System Synthesis 159

scheduled multiple times during the hyperperiod. Given that � is a task, � is the offset of

a task’s copy in the hyperperiod, � is the maximum copy number for a given task, then

a task’s proportional copy number, � , is defined as follows,

� � �
�

tasks are sorted in the following manner. If the slacks of the tasks are unequal, the

task with the lower slack is scheduled. If slacks are equal, the task with the lower

proportional copy number is scheduled.

When a task is selected for scheduling, each of its incoming communication events

is first scheduled on one of the communication resources connecting the PEs to which

the task and its parent are assigned. The communication resource that allows the com-

munication event to finish at the earliest time is used. If the tasks are assigned to the

same PE, communication is treated as instantaneous. If they are assigned to PEs sep-

arated into the client and server, the communication event is scheduled on the primary

communication resource, i.e., the wireless link.

While scheduling, bus contention is explicitly simulated. The scheduler is determin-

istic, i.e., given a particular resource allocation and task assignment, it always produces

the same complete, static schedule. Therefore, after scheduling, the worst-case comple-

tion times of each task and communication event are known. This allows straightforward

calculation of soft and hard deadline violations. In addition, the scheduler determines

the communication resources upon which each communication event occurs. This in-

formation allows the calculation of power consumption by the client’s communication

resources. The power consumption of each task that executes on the client, as well as

the power consumed by the client PEs while idle and communicating, is added to the

client communication resource power consumption to determine the total client power

consumption.

160

Primary
commun.
resource

Idle
time

Idle
time

Idle
time

Time

Server

B

C

A

A

B

C

A

B

C

A
B
C

B C

Clients

A

Figure 8.4: Part of a non-pipelined schedule

Recall that there may be multiple clients per server. It is necessary to ensure that a

server is capable of executing the tasks associated with each client. The most straight-

forward way of accomplishing this is to multiply the execution times of the tasks and

communication events on the server, and the communication events between the server

and clients, by the client-server ratio, i.e., the number of clients per server. However, in

order to ensure that this straightforward approach is correct, it is necessary to delay the

execution of the corresponding tasks on each client until all the tasks have received the

data upon which their execution depends, and provide buffers for the transmitted data.

Chapter 8: Wireless Low-Power Client-Server System Synthesis 161

Consider the schedule portion shown in Figure 8.4. Time increases from the top

of the figure to the bottom. The left column depicts the schedule for the server. In

the top rectangle of this column, each of the three portions (A, B, and C) corresponds

to a task associated with one of three clients. In this figure, a straightforward, non-

pipelined method of scheduling is used. The communication events that transmit data

from the server to the client do not begin until the tasks associated with each client have

completed execution. Similarly, none of the clients begins execution until data have

been transmitted to each client. This results in the primary communication link and

clients sitting idle when they might otherwise be carrying out work. There are a number

of ways that this problem might be remedied.

One possible approach is to explicitly schedule each client separately, thereby al-

lowing every task to execute as soon as its incoming data are ready. This approach has

two disadvantages, one tolerable and one intolerable. Scheduling each client separately

would increase the average run-time of the scheduler by a factor of the client-server

ratio. However, this synthesis-time cost might be tolerable if the increased scheduling

flexibility resulted in improved schedules. More importantly, this approach would re-

sult in each client having a different schedule. We considered the resulting increased

complexity of manufacturing, debugging, and maintaining such a system sufficient to

disqualify this approach. To give some idea of the problems associated with such a

scheme, note that it would require the maintenance of a number of client designs equal

to the client-server ratio.

The approach we selected gains a significant amount of scheduling flexibility with-

out sacrificing synthesis-time efficiency or dramatically increasing the complexity of

producing, debugging, and maintaining the embedded system. We pipeline the execu-

tion of tasks and communication events associated with different client copies. How-

ever, we constrain each client to the same schedule. Each client’s schedule is offset,

162

Primary
commun.
resource

Fixed
client
offset

Idle
time

A

B

C
A
B
C

Intentional
packing

delay

Server Clients

Time
B

A

C

A

B

C

A

B

C

Figure 8.5: Part of a pipelined schedule with a large client offset

in time, by a fixed duration from every other client’s schedule. The approach may be

most directly illustrated with the aid of a diagram. Figure 8.5 is analogous to Figure 8.4.

However, it shows a portion of a schedule produced using our pipelining approach. Note

that the first series of communication events (shown at the top of the center column) may

begin as soon as their parent tasks have completed. Similarly, the client task may begin

execution as soon as their data have arrived, under the constraint that each client task

must be separated from its corresponding task in other clients by a fixed amount of time,

the client offset. As a result of adhering to a fixed client offset, it is only necessary to

produce one client schedule explicitly. Each of the other client schedules is equivalent

to the explicit schedule offset in time by an integer multiple of the client offset.

Chapter 8: Wireless Low-Power Client-Server System Synthesis 163

As described in Section 8.3, the raw execution time of tasks is used during EFT

and LFT calculation. Pipelining frequently allows tasks to be scheduled as soon as the

corresponding incoming communication event has completed. Therefore, using raw task

and communication event durations allow more accurate EFT and LFT estimates than

using task and communication event durations multiplied by the client-server ratio.

Consider the second set of server tasks in Figure 8.5. Note that the task associ-

ated with client copy A begins execution later than its incoming data are ready. This

intentional packing delay is introduced to ensure that the tasks are scheduled as one

contiguous event. We considered the alternative of allowing the tasks to be separated

by an arbitrary amount of time. However, this leads to a dramatic increase in the time

complexity of the scheduling algorithm with little gain in scheduling flexibility. By al-

lowing arbitrary gaps between the scheduling events of the tasks and communication

events associated with different clients, one introduces numerous (a number equal to the

client-server ratio minus one, in general) gaps into the schedule every time an event is

scheduled. Scheduling complexity is increased, not only by the necessity of checking

each of these gaps when every new event is scheduled, but more importantly, by the ne-

cessity of finding a location for new events, each of which consists of a pattern of gaps

and active periods. We avoid these problems by making a set of tasks, associated with

different clients, contiguous.

Even if allowing non-contiguous scheduling of the events associated with different

clients did not grossly increase computational complexity, it would be of dubious ben-

efit. Figure 8.6 shows a portion of a pipelined schedule without packing. Consider the

second server task set, to the lower left. By allowing arbitrary delays between the tasks

associated with different clients, we have traded a moderate idle slot in a position where

it can easily be filled or masked by other tasks in practice, for numerous (equal to the

164

Fixed
client
offset

Primary
commun.
resource

A

B

C

Idle
time

C

A

B

Hard
to fill
idle
time

C

B

A

A

B

C

C

B

A

Server Clients

Time

Figure 8.6: Part of a pipelined schedule without packing

client-server ratio minus one) small idle slots that increase the computational complex-

ity of scheduling and are difficult to fill or mask. These observations led us to use the

packing approach.

We initially considered the selection of the client offset to be an important problem.

Compare the client schedules of Figure 8.5 and Figure 8.7. In the first case, idle time is

introduced between client tasks by using a client offset that is larger than the ideal offset.

In the second case, the execution of the first client’s task is delayed in order to enforce the

constraints imposed by a client offset that is smaller than the ideal offset. Unfortunately,

it is necessary to use a single client offset for all tasks in order to ensure that all client

schedules are identical. Therefore, the client offset is likely to be too large for some tasks

Chapter 8: Wireless Low-Power Client-Server System Synthesis 165

Primary
commun.
resource

Fixed
client
offset

A

B

C
A
B
C

Intentional
packing

delay

Idle
time

Time

A

B

C

C

B

A

Server Clients

C
A

B

Figure 8.7: Part of a pipelined schedule with a small client offset

and too small for others in any problem of moderate complexity. One must select a client

offset that provides a good tradeoff between these two alternatives. We set the client

offset to be equal to the average time required by the communication events assigned to

the primary communication resource. We experimentally determined that the qualities

of the results produced by a synthesis run are not strongly dependent upon the client

offset, as long as a few conditions hold. An explanation of this phenomenon and a

comparison between non-pipelined and pipelined scheduling are presented in Section

8.5.

166

8.4 Cost calculation

In this section, we describe the process by which a solution’s costs are calculated.

After making changes to solutions, it is necessary to determine whether or not those

changes resulted in improved costs. Thus, after modifying a solution, COWLS carries

out cost calculation to determine its aggregate price, the client’s power consumption, and

the degree to which soft deadlines are violated. In addition to these visible costs, there

are a number of hidden costs that need never be displayed to the designer. Hard deadline

violation is an example of such a cost. All solutions in which the hard deadline violation

is non-zero are eliminated before results are presented to the designer. However, during

optimization, solutions with hard real-time deadline violations are allowed to exist, for

they have the capacity to evolve into high-quality, valid solutions during optimization.

Soft deadline violation proportion is the sum of the soft deadline violation times in every

copy of each task graph, divided by the hyperperiod.

Once a schedule is computed for a solution, that solution’s client power consumption

and soft deadline violation information is stored in a cache (see Section 6.7) and used for

any equivalent solutions that subsequently arise during optimization. Aggregate price

is computed by taking the sum of the prices of the PEs, task execution memory, com-

munication buffer memory, communication resources, and the primary communication

resource associated with the client, multiplying this by the expected number of clients,

and adding to this the sum of the prices of the resources used in the server multiplied by

the expected number of servers. This gives a total client-server system price.

Chapter 8: Wireless Low-Power Client-Server System Synthesis 167

8.5 Experimental results

In this section, we present experimental results and discuss their implications. These

results provide a reference point for other researchers, suggest the superiority of particu-

lar synthesis tool design decisions, and allow a deeper understanding of the client-server

synthesis problem. Note that we have already discussed the suitability of the optimiza-

tion infrastructure used by COWLS by comparing its performance with past work in

Section 6.9.

8.5.1 Multiobjective optimization for the E3S benchmarks

This section presents the result of using COWLS to conduct multiobjective opti-

mization on the E3S benchmarks described in Section 6.8. We have modified these

benchmarks to ensure that at least one task in each task graph has its assignment locked

to the client and at least one has its assignment locked to the server. For example, see the

Consumer benchmark discussed in Section 8.2. In addition, we relaxed some deadlines

and periods. Some of the distributed system E3S benchmarks had deadlines that were

too tight for timing constraints to be met when communication via a wireless channel

was necessary. We used three Linux machines to produce these results: a Pentium III

running at 900 MHz, an Athlon Thunderbird running at 1.4 GHz, and an Athlon running

at 650 MHz.

Table 8.1 shows the sets of solutions produced for the five task sets in the E3S bench-

marks suite. There are five clients for each server. For these benchmarks, COWLS was

used to explore the tradeoffs among different system costs, instead of attempting to min-

imize a single cost. Given a similar amount of CPU run time, it would be possible to

better optimize a single cost by ignoring all other costs. However, this approach would

ignore the fundamentally multiobjective nature of embedded system design. COWLS

168

Table 8.1: Multiobjective optimization

Average Soft DLExample Price ($)
power (mW) viol. prop.

Automotive- 518 186 0.00
Industrial 563 98 0.00

372 136 0.86
408 136 0.74
423 134 0.86Networking
507 134 0.80
543 134 0.75
583 135 0.74
659 143 1.62
659 147 0.98
659 152 0.64
660 146 0.92
673 143 1.52Telecom
996 366 0.58

1168 145 0.88
1559 327 0.62
1684 343 0.52
2902 344 0.51
610 126 0.98

Consumer 1038 167 0.61
2890 165 0.65
344 159 1.14
385 158 0.71
418 157 0.75
436 157 0.72Office
476 172 0.69Automation
492 164 0.69
651 162 0.68
664 162 0.67
893 158 0.68

Chapter 8: Wireless Low-Power Client-Server System Synthesis 169

took less than 80 CPU minutes when run on each of these benchmarks. We rounded the

prices and power consumptions of the solutions up to the nearest dollar and milliwatt.

For most of the benchmarks, COWLS found numerous solutions that trade off price,

average power consumption, and soft deadline violation proportion. Note that COWLS

produced multiple solutions for each benchmark. In particular, let us revisit the camera

(E3S Consumer) example we described in Section 8.2. COWLS produced three wire-

less client-server architectures for this example. These architectures had prices ranging

from $610 to $2,890, power consumptions ranging from 126 mW to 167 mW, and soft

deadline violation proportions ranging from 0.61 to 0.98. The first solution to the cam-

era example contains an IBM PowerPC 405GP running at 266 MHz on the client, an ST

Microelectronics ST20C2 running at 50 MHz on the server, and an IEEE 802.11 Lucent

Wavelan card. COWLS found that the requirements placed on the wireless communica-

tion resource could be significantly reduced by assigning all tasks, prior to compression,

to the client in the left, data acquisition, task graph in Figure 8.1. This corresponds

with the assignment decisions specified in Figure 8.2. The other two solutions have rel-

atively more PEs and communication resources and use these resources to reduce soft

deadline violation. These benchmarks are available via the E3S link on the http://www.-

ee.princeton.edu/˜cad/projects.html web page.

In the interest of evaluating the performance of the client-server pipelining algo-

rithm described in Section 8.3, we did a number of experiments in which we compared

different versions of pipelining scheduler with each other, and with a straightforward

non-pipelining scheduler. Multiobjective optimization significantly complicates presen-

tation of, and comparison between, the results of different optimization runs because

each run produces numerous examples. For these comparative examples, we forced

170

Table 8.2: Price-only pipelining comparison experiments with an offset factor of 1.0

Price with Price without Price with Price withoutExample
pipelining pipelining

Example
pipelining pipelining

1 525 526 2 885 448
3 547 653 4 671 671
5 686 849 6 845 861
7 542 1092 8 617 618
9 719 910 10 561 1035

11 513 590 12 583 408
13 3277 n.a. 14 954 954
15 740 622 16 695 1003
17 491 500 18 1455 n.a.
19 1149 754 20 829 773
21 726 809 22 n.a. 1017
23 663 663 24 874 n.a.
25 431 586 26 465 716
27 444 570 28 919 n.a.
29 1564 1564 30 1442 n.a.
31 430 430 32 557 515
33 1020 690 34 952 558
35 440 603 36 1016 1127
37 657 657 38 420 441
39 464 927 40 820 787
41 618 988 42 914 1017
43 843 1369 44 714 714
45 615 868 46 832 758
47 744 n.a. 48 897 825
49 754 n.a. 50 2085 n.a.

Improved: 31
Degraded: 12

Chapter 8: Wireless Low-Power Client-Server System Synthesis 171

COWLS to ignore soft deadline violation and power, concentrating only on price opti-

mization. As a result, each run produces only one result. We rounded the prices of the

solutions up to the nearest dollar.

Table 8.2 shows the result of running COWLS on 50 examples in which the proces-

sors come from the EEMBC benchmarks suite and the task sets are randomly generated.

Solution quality improved 2.58 times as frequently as it degraded. For the examples in

this table, we used the 17 processors from the E3S benchmarks suite derived from the

EEMBC benchmarks as described in Section 6.8. For each processor, we generated

a server version and a client version. The server version is identical to the EEMBC

processor. The client version has one-fifth the power consumption of the EEMBC pro-

cessor and five times the execution time, for each task, but is otherwise identical. Our

task sets each contain 12 tasks. Each task type is randomly selected from the Network-

ing and Telecom EEMBC benchmarks. Each communication event has a quantity of

1 kb. Approximately a third of the tasks must be assigned to a client, a third must be

assigned to the server, and a third may be assigned to either client or server. There are

five clients for each server. There is no guarantee that every example generated in this

manner will have a valid solution. In this table, an entry of n.a. indicates that no solu-

tion was found for the problem and parameters associated with the entry. For cases in

which no solutions were found by either the client communication pipelining nor client

communication non-pipelining version of COWLS, we omitted the example from the

table.

We found that pipelining schedules usually results in an improvement to solution

quality. As shown in Table 8.2, solution quality improved approximately two and a

half times as frequently as it degraded. Although there were some cases when using

a non-pipelining scheduler allowed the production of a superior solution, one should

not draw the conclusion that it would be wise to run the scheduler in pipelining and

172

non-pipelining mode for every cost evaluation and take the best cost. By doubling the

amount of time required for each solution evaluation, one would halve the number of

solutions that may be evaluated. One could, instead, use the scheduling method that is

generally superior, i.e., the pipelining scheduler, and allow a more thorough exploration

of the solution space, guided by the evolutionary algorithm, in the same amount of time.

As discussed in Section 8.3, we had initially considered the selection of a client

offset ratio to be an important problem. However, in practice, solution quality is highly

resistant to degradation. Varying this ratio from zero to two results in only small changes

to the number of cases for which pipelining resulted in an improvement to solution qual-

ity. Solution quality remains independent of the client offset ratio until it approaches the

ratio of primary link communication time to computation time. Examining the schedules

with a simple graphing tool revealed that, up until this point, the task delays required

due to dependency on data transmitted via the primary communication link mask the

idle slots that result from having a large client offset factor.

8.6 Conclusions

COWLS automatically synthesizes embedded client-server systems. It uses a multi-

objective evolutionary algorithm to simultaneously produce multiple solutions that trade

off different costs. It optimizes price, client power consumption, and soft deadline

violations under hard real-time constraints and constrained client-server communica-

tion bandwidth. COWLS incorporates a novel and tractable scheduling algorithm that

pipelines the execution of tasks associated with different clients while maintaining iden-

tical client schedules. This form of pipelining has been found to improve solution quality

in the majority of cases.

Chapter 9

Hardware-Software Co-Synthesis of

Dynamically Reconfigurable

Embedded Systems

In this chapter, we describe our co-synthesis algorithm for hardware-software sys-

tems containing dynamically reconfigurable hardware. Field programmable gate arrays

(FPGAs) are commonly used in embedded systems. Although it is possible to reconfig-

ure FPGAs while an embedded system is operational, this feature is seldom exploited.

Recent improvements in the flexibility and reconfiguration speed of FPGAs have made

it practical to reconfigure them dynamically, i.e., while the embedded system contain-

ing them is operating, thereby reducing the amount of hardware required in an embed-

ded system. We have developed a synthesis algorithm, called CORDS, that produces

multi-rate, real-time, periodic distributed embedded system architectures containing dy-

namically reconfigurable FPGAs. Executing different tasks on the same FPGA requires

that potentially time-consuming reconfiguration be carried out between tasks. CORDS

uses a novel dynamic priority, multi-rate scheduling algorithm to deal with this problem.

Experimental results indicate that using dynamically reconfigured FPGAs in distributed

173

174

real-time embedded systems has the potential to reduce their price, and allow the synthe-

sis of architectures that meet system specifications that would otherwise be infeasible.

9.1 Motivation

Until recently, dynamic reconfiguration of FPGAs in hard real-time embedded sys-

tems has been impractical. FPGA reconfiguration times have conventionally been on the

order of 100 ms. However, recently a number of companies have released products that

improve upon the reconfiguration times of existing FPGAs by an order of magnitude

or more [152], [153]. In particular, the largest member of the Xilinx XC6200 family,

the XC6264, can be completely reconfigured in under 200 � s. However, a price is paid

for this speed. Rapid reconfiguration FPGAs can cost approximately ten times as much

as FPGAs using conventional architectures. Rapid reconfiguration FPGAs are a new

product and production has been limited. Therefore, their price is likely to decrease

in the future. Already, many of the features that used to appear only in research parts,

e.g., the Xilinx XC6200, have been incorporated into mainstream parts, e.g., the Xil-

inx Virtex series. Nonetheless, if price is a concern, it is important to consider more

conventional FPGAs, which have large reconfiguration times. If one derives a schedule

that locates different instances of the same task type adjacent to each other, the number

of reconfigurations an FPGA needs to undergo will be reduced, resulting in significant

time savings.

FPGAs fit naturally into the hardware-software co-synthesis design flow. The holy

grail of configurable computing research is a system that will accept a problem de-

scription in a general-purpose programming language, automatically partition it between

hardware (FPGAs) and software (general-purpose processors), synthesize the required

hardware, and manage communication between the two domains. This problem closely

Chapter 9: Synthesis of Dynamically Reconfigurable Embedded Systems 175

mirrors the co-synthesis problem. By using FPGAs in co-synthesis, designers can take

advantage of research in the reconfigurable computing field. There are already systems

that accept algorithm descriptions in general-purpose languages, like ANSI-C, and au-

tomatically produce FPGA configurations [154].

CORDS was the first co-synthesis system to handle dynamically reconfigurable FP-

GAs, although others have subsequently considered their use [69], [71], [155]. CORDS

automatically selects an allocation from a set of FPGAs, general-purpose processors,

and communication resources. It assigns tasks to FPGAs and general-purpose proces-

sors, and determines the connectivity of communication resources. Finally, it derives

schedules for tasks and communication events. It optimizes the sequence of tasks on

FPGAs to reduce the impact of reconfiguration time on system performance while con-

sidering the priorities of individual tasks.

CORDS uses an evolutionary optimization infrastructure that incorporates numerous

problem-specific heuristics. It is similar to the algorithms described in Chapters 5 and

6, and differs primarily by modeling FPGAs and scheduling tasks on FPGAs in a way

that takes advantage of dynamic reconfiguration.

The rest of this chapter is organized as follows. In Section 9.2, we describe our

model for FPGAs. Section 9.3 describes the scheduling algorithm run within CORDS.

In Sections 9.4 and 9.5, we give the results of running CORDS on a collection of

hardware-software co-synthesis problems and present conclusions.

9.2 FPGA model

In CORDS, each FPGA type is described by a set of scalars and vectors. A list of

the scalars follows:

� price

176

� number of devices, i.e., configurable logic blocks (CLBs), on the FPGA

� input/output (I/O) pins available

� bits required to configure entire FPGA

� reconfiguration clock frequency

� energy per device switching event

� energy per I/O switching event

� proportion of clock cycles in which I/O pins switch

An FPGA type’s vectors describe characteristics of each task type that may be ex-

ecuted on the FPGA type. Each vector contains an entry for each task type. A list of

entries in these vectors follows:

� a Boolean variable indicating whether the task type is executable on the FPGA

type

� worst-case execution time of the task type

� devices, e.g., CLBs, required to implement the task type

� energy per device switching event

� energy per I/O switching event

� proportion of clock cycles I/O pins switch

� proportion of clock cycles during which devices, e.g., CLB, are active

� number of input pins required by task type

Chapter 9: Synthesis of Dynamically Reconfigurable Embedded Systems 177

� number of output pins required by task type

The uses of some of these variables are self-explanatory, e.g., FPGA prices are used

to calculate embedded system prices. However, the purposes of some variables merit

further explanation. An FPGA is overloaded if it doesn’t have enough devices, e.g.,

CLBs, to implement the tasks assigned to it. The number of devices on an FPGA and

the devices required for different task types variables are used to ensure that FPGAs

are not overloaded. If a task type requires more devices than are available on an FPGA

type, the task type may not be executed. In the algorithm described in this dissertation,

we allow only one task type to execute on an FPGA at a time. However, this approach

was subsequently extended to allow concurrent execution of different tasks in different

portions of the same FPGA [155]. The variables associated with the number of input and

output pins available on an FPGA are used to ensure that tasks will be assigned only to

FPGAs with a sufficient number of pins. The number of bits required to reconfigure the

entire FPGA variable allows the determination of the number of bits required to program

one of the FPGA’s devices. This, in conjunction with the number of devices required for

a given task type, and the reconfiguration clock frequency, allows the reconfiguration

time required for each task type to be determined.

9.3 Scheduling

In this section, we describe the scheduling algorithm used in CORDS. When the

scheduling algorithm is invoked, CORDS has already determined PE allocations, com-

munication link allocations, task assignments, and communication link connectivities.

Thus, it is only necessary to determine the time at which each task is executed, the

communication resource to which each communication event is assigned, and the time

at which each communication event occurs. This problem is NP-hard for distributed

178

systems [112], and is further complicated by consideration of reconfiguration, i.e., on

FPGAs, the amount of time a task requires depends on the previous and next task in the

FPGA’s schedule. We, therefore, resort to a heuristic scheduling algorithm. CORDS

uses a static critical path scheduling algorithm with dynamic task reordering based on

FPGA reconfiguration time. Reordering is dynamic but the resulting schedule is static,

i.e., CORDS computes the time at which each event is carried out in order to determine

whether or not hard deadlines are met by the schedule. Such guarantees are not possible,

in general, when priorities are allowed to vary during the operation of the synthesized

architecture.

Earliest finish times are computed by conducting a topological search of a task graph,

starting from the node with no incoming edges, and assuming worst-case reconfiguration

times for all tasks that are assigned to FPGAs. Latest finish times are computed by

conducting a backward topological search of the task graph, starting from the nodes

that have deadlines, and assuming worst-case reconfiguration times for all tasks that are

assigned to FPGAs.

Reconfiguration delay is the amount of reconfiguration time an FPGA would require

to change from the configuration capable of executing the task most recently scheduled

on the FPGA, to a configuration capable of executing another task. Suppose two tasks,
�

and � , are both assigned to the same FPGA. If
�

was the task most recently scheduled

to the FPGA, then the FPGA is configured to execute a task of
�

’s type. If � is the same

type of task as
�

, then the FPGA need not be reconfigured between their execution,

otherwise the FPGA needs to be reconfigured. Some FPGAs are capable of partial

reconfiguration. For such FPGAs, the reconfiguration time for a pair of configurations

depends on the number of CLBs used by each configuration, in addition to the similarity

between the configurations.

Chapter 9: Synthesis of Dynamically Reconfigurable Embedded Systems 179

There is a reconfiguration delay associated with every task that is assigned to an

FPGA. The reconfiguration delay for a task of type � , assigned to an FPGA whose most

recently scheduled task was also of type � , is zero. Reconfiguration delay is dynami-

cally adjusted during the execution of the scheduling algorithm. Every time a task is

removed from the pending list, a dynamic check is first made to determine whether or

not executing another task first would be likely to reduce total FPGA reconfiguration

time without causing deadlines to be missed. Dynamic priority is defined to be the sum

of a task’s negative slack and its weighted negative reconfiguration delay. If � is slack,

� is reconfiguration weight, and
�

is reconfiguration delay, then the dynamic priority, � ,

is as follows:

� � �
�
� � � �

Reconfiguration weight is a positive scalar that is used to manipulate the contribution

of reconfiguration delay to dynamic priority. In practice, a value ranging from one to

two produces good results. We used a value of one for the experiments in this chapter.

It may seem counter-intuitive to increase the dynamic priority of tasks with low recon-

figuration times. However, this encourages similar tasks to be scheduled on an FPGA

consecutively, reducing the amount of reconfiguration necessary. If the task, � , that was

just removed from the pending list is assigned to an FPGA, then the dynamic priorities

of all the other tasks in the pending list that are assigned to the same FPGA as � are

compared with � ’s dynamic priority. If another task has a higher dynamic priority than

� , it is removed from the pending list and scheduled immediately, after which time �

is again considered for scheduling. When two tasks have equal dynamic priorities, the

task belonging to the earlier copy of a task graph is scheduled first.

Suppose there are two tasks, � and � , in the pending list and assigned to the same

FPGA. Suppose � has a slack of 4 ms and a reconfiguration delay of 5 ms, and task �

has a slack of 8 ms. The task most recently scheduled to � ’s FPGA was of the same

180

type as � . Therefore, � ’s reconfiguration delay is 0 ms. Assuming a reconfiguration

weight of one, task � has a dynamic priority of

���
� �

� � � �
� ���

� �

Task � has a dynamic priority of

� �
� �

� �
� �

� � �
� �

Thus, although task � has less slack than task � , i.e., it lies along a more critical path,

task � will be scheduled first. Scheduling � before another task is scheduled to its

FPGA is likely to reduce the reconfiguration time required. Consider, next, a comparison

between task � and task � that has a slack of 1 ms, a reconfiguration delay of 5 ms, and

a resulting dynamic priority of

� �
� �

� � � �
� � � � �

Although scheduling � first has the potential to reduce the reconfiguration time of � ’s

FPGA, � ’s extremely low slack makes it dangerous to take a chance on delaying � .

Therefore, � will be scheduled before � .

The first step of scheduling an individual task, � , is to schedule all of its incom-

ing edges, i.e., communication events. Each edge is scheduled to a communication

resource connecting the PE to which � is assigned and the PE to which � ’s parent is

assigned. When multiple communication resources are available, CORDS selects the

communication resource upon which the communication event will complete at the ear-

liest time. If either of the communicating PEs does not have communication buffers,

CORDS schedules the communication event to the unbuffered PEs, as well. If there

are no communication resources connecting the PEs involved, CORDS notes this in the

architecture’s cost set as a unschedulable communication event.

Chapter 9: Synthesis of Dynamically Reconfigurable Embedded Systems 181

9.4 Experimental results

We use a set of task graphs, processors, and communication resources produced

by TGFF [129] based on information found in trade journals [156], datasheets [153],

and discussions with a representative of Xilinx Corporation. The same optimization

parameters, e.g., solution pool size, are used by CORDS for all of the examples within

each of the following tables. Each of our 35 examples contains five task graphs. Each

task graph contains an average of 20 tasks. There are 15 types of tasks, five types

of processors, ten types of FPGAs, and five types of communication resources. The

tightness of the deadlines differs from example to example. The depth of a task is the

number of tasks on the longest path between it and the start task. The tasks in Example

A1 that have deadlines, have an average deadline of 70 ms multiplied by the depth

of the task. In each subsequent example, the average task deadline increases by 450

ms, multiplied by the depth of the task. Thus, the average task deadline in Example

A5 is 1.87 s times the depth of the task. The seed given to TGFF’s random number

generator for each example is equivalent to that example’s number, e.g., TGFF is seeded

with three for Example A3 and Example C3. The processors have an average price of

$20, with a variability of $10, i.e., processor prices range from $10 to $30. Tasks have

an average execution time of 300 ms, with a variability of 285 ms, on the processors.

Preemption time has an average of 150 � s with a variability of 140 � s. Execution time

and preemption time are both inversely correlated to processor cost. Tasks executed on

processors require an average of 40 KiB of memory, with a variability of 28 KiB. 9.7%

of processors lack communication buffers. Communication resources have an average

price of $20 with a variability of $10. Communication time is 50 � s per KiB, with a

variability of 40 � s per KiB. Communication events have an average size of 42 KiB

with a variability of 40 KiB. Memory has a price $3.17 per MiB, with a minimum unit

size of 256 KiB.

182

For FPGAs, average task execution time is 20 ms with a variability of 19 ms. The

average task execution time on FPGAs, relative to the average task execution time on

processors, is approximately one twelfth as high, a conservative estimate based upon

the literature, in which speedups of 20-100 times are frequently reported. The average

memory load of a task executed on an FPGA is 42 KiB with a variability of 28 KiB, in

addition to the memory required to hold the CLB contents for the task. XC6200 family

parts have price ranging from $200 to $400. The XC6200 family is a low-volume and

high-cost part used primarily for research. Xilinx Corporation is, however, integrating

many of the features present in the XC6200 family into high-volume Virtex parts. The

prices given here are rounded to the nearest $100 at the request of a representative of

Xilinx Corporation.. The average number of CLBs required by a task implemented on a

6200 family FPGA is 2000, with a variability of 1970. Task reconfiguration time for the

6200 family is 5 ns per CLB. The XC6216 provides 4096 CLBs. The XC6264 provides

16386 CLBs.

Eight XC4000 series parts are used in the examples. Their price ranges from ap-

proximately $30 to $400. Their CLB counts range from 100 to 1024. XC4000 series

members do not support partial reconfiguration, i.e., each reconfiguration requires the

entire FPGA to be programmed. Therefore, task CLB counts only affect the total mem-

ory requirements of the tasks, not their XC4000 series FPGA’s reconfiguration time.

Note that although our algorithm and model support it, for these examples, we

do not optimize power consumption. We are currently in the process of integrating

our optimization infrastructure with scheduling algorithms [155] and a power model

[157], [158] developed by a colleague.

For each example, CORDS required less than 15 CPU minutes on a 200 MHz Pen-

tium Pro processor. Deadline violation is the amount by which an architecture overran

its deadlines, as a percentage of the sum of the maximum deadlines in each copy of

Chapter 9: Synthesis of Dynamically Reconfigurable Embedded Systems 183

Table 9.1: Resource modification experiments

Price ($) or Price ($) Price ($)
Example � deadline viol. (%) � w. processors w. processors

w. processors only and XC4000s and XC6200

A1 � unsched. � 162 360
A2 � 65.32 � 32 175
A3 � 1.47 � 45 226
A4 � 3.48 � 66 346
A5 � 0.15 � 61 503
A6 89 39 65
A7 108 43 91
A8 60 23 32
A9 116 20 117

A10 38 29 38
A11 54 54 62
A12 16 16 16
A13 63 54 70
A14 34 36 34
A15 52 31 52

the task graph. When forced to use processors only, CORDS was unable to produce

a solution for Example A1 in which all tasks were scheduled within the hyperperiod,

even when deadline violations were allowed. The second column in Table 9.1 shows the

best architectures produced by CORDS when it uses only processors. For high example

numbers, in which deadlines are loose, processors alone are sufficient to produce valid

architectures. For the examples with tighter deadlines, CORDS is able to synthesize

valid architectures by using a combination of processors and FPGAs. The third column

shows the best architectures produced by CORDS when using processors and XC4000

series FPGAs. The fourth column shows the best architectures produced when using

processors and XC6200 family FPGAs.

184

Table 9.2: Conventional vs. rapid reconfiguration FPGAs

Price ($) or
� deadline viol. (%) � Price ($)

Example
w. processors

w. processors

and XC4000s
and XC6200s

B1 72 589
B2 � 1.05 � 178
B3 27 228
B4 � 6.80 � 647
B5 62 504

In general, by using XC4000 series and XC6200 family parts, CORDS was able

to produce valid architectures for a number of examples that could not be solved us-

ing only processors. Using XC4000 series FPGAs typically resulted in a reduction of

price, when compared to architectures using only processors. As a result of the high

price of 6200 family parts, architectures containing processors and 6200 family parts

are generally more expensive than architectures containing processors and 4000 series

parts. However, in some cases the more rapid reconfiguration of 6200 family parts al-

lows the satisfaction of specifications that are not met using only processors and 4000

series parts. This is especially true for examples in which reconfiguration time is similar

to computation time. The examples shown in Table 9.2 differ from those in Table 9.1 in

three ways: the amount of time spent executing tasks and communicating data are re-

duced such that reconfiguration time and execution time for tasks associated with a 4000

series part are similar, there are five task types instead of fifteen, and tasks with dead-

lines have an average deadline of 32 ms times the depth of the task. In general, when

CORDS produces a valid architecture using either processors and 4000 series parts, or

processors and 6200 family parts, the architecture composed of processors and 4000

series parts is less expensive. However, a design using processors and 6200 family parts

Chapter 9: Synthesis of Dynamically Reconfigurable Embedded Systems 185

Table 9.3: Dynamic priority experiments for XC4000 series

Price ($) or
� deadline viol. (%) � Price ($)

PriceExample
w.o. dynamic

w. dynamic
decrease (%)

priority
priority

C1 48 49 -2.08
C2 78 64 17.95
C3 56 25 55.36
C4 � 0.02 � 133 n.a.
C5 90 56 37.78
C6 32 33 -3.12
C7 81 77 4.94
C8 27 10 62.96
C9 90 51 43.33

C10 61 55 9.84
C11 62 67 -8.06
C12 25 10 60.00
C13 70 47 32.86
C14 72 34 52.78
C15 69 24 65.22

are sometimes capable of meeting specifications that are not met using processors and

4000 series parts.

The examples shown in Table 9.3 are different from those shown in Table 9.1 in one

way: the tasks in examples in Table 9.3, which have deadlines, have an average deadline

of 310 ms times the depth of the task. Table 9.3 compares the quality of the architec-

tures produced by CORDS running in two different modes. The second column shows

architectures produced when CORDS only considers static task slack during scheduling.

The third column shows the architectures produced when CORDS reorders tasks based

on their dynamic priorities. In example C4, reordering based on dynamic task priorities

186

allowed CORDS to produce a valid architecture when scheduling based on static pri-

orities alone produced no architectures that met their deadlines. Reordering based on

dynamic priority improved architecture price in 11 of the examples. For three examples,

reordering resulted in a slight increase in price. However, for the 14 examples for which

reordering resulted in a change in price, the average price reduction was approximately

30%.

9.5 Conclusion

CORDS is the first co-synthesis system to consider the effects of dynamically recon-

figuring FPGAs during the operation of an embedded system, and reduce the amount of

FPGA reconfiguration time. Experimental results indicate that time multiplexing tasks

on dynamically reconfigurable FPGAs has the potential to decrease system price and

allow otherwise infeasible specifications to be met.

Chapter 10

Analysis of Energy Consumption in

Embedded Operating Systems

The increasing complexity and software content of embedded systems has led to the

frequent use of system software to help applications access hardware resources easily

and efficiently. In this chapter, we present a method for detailed analysis of real-time

operating system (RTOS) power consumption. RTOSs form an important component of

the system software layer. Despite the widespread use of, and significant role played by,

RTOSs in mobile and low-power embedded systems, little is known about their power

consumption characteristics. This work presents a method of producing a hierarchi-

cal energy consumption profile for applications as they interact with an RTOS. As a

proof-of-concept, we use our infrastructure to produce the power profiles for a commer-

cial RTOS, � C/OS [159], running several applications on an embedded system based

on the Fujitsu SPARClite processor [160]. These examples demonstrate that an RTOS

can consume a significant fraction of system power and, in addition, impact the power

consumed by other software components. We discuss ways in which application soft-

ware can be designed to use an RTOS in a power-efficient manner. We believe that this

work is a first step towards establishing a systematic approach to power optimization of

embedded systems containing RTOSs.

187

188

10.1 Introduction

Embedded systems often contain programmable processors and peripherals in ad-

dition to application-specific hardware. The complexity of applications and underly-

ing hardware, tight performance and power budgets, as well as aggressive development

schedules, require application developers to use run-time support software. This support

usually takes the form of an RTOS, run-time libraries, and device drivers [161]–[167].

RTOSs are used in embedded systems with soft real-time constraints, as well as for-

mal real-time systems with hard real-time constraints. In the interest of brevity, we will

use the term RTOS to refer to all operating systems (OSs) targeting time-constrained

embedded systems.

An RTOS provides a number of services to an embedded system designer. In Figure

10.1, the boxes at the upper-left corner depict different applications that may be run on

an embedded system. The ovals depict the tasks composing a personal communication

Memory
manager

Basic
IO

manager
Task

IPC

ISRTimer

ABS

etc.

Applications

MPEG
encoding

RTOS
services

Communication

Micro−
browser

Message
composer Database

Organizer

Tasks

Hardware

Other hardware

Network interface

Processor Memory

Timer

Figure 10.1: Overview of RTOS services.

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 189

device application. The arrows between these ovals represent communication or syn-

chronization between tasks. The RTOS is depicted in the center of the figure. Hardware

resources are shown to the right. An RTOS’s services provide an interface between ap-

plications and an embedded system’s hardware, thereby simplifying the work of appli-

cation designers. For example, the RTOS provides the designer with timer management

routines that may be used without detailed knowledge about the timer hardware in the

embedded system.

In addition to simplifying the use of hardware, the interrupt service routines (ISRs)

provided by an RTOS allow hardware to signal an application. The device driver and

memory management portions of an RTOS simplify embedded system design by pro-

viding the designer with routines to ease the management of hardware resources. In

addition, an RTOS manages the execution of, and interaction between, tasks in an appli-

cation. It schedules the tasks in an application, ensuring that the highest-priority task has

access to an embedded system’s hardware resources at any given time. It also provides

for communication and synchronization among tasks. In short, it manages the details of

task interaction and provides a simplified interface to hardware resources.

Unlike general-purpose operating systems, RTOSs often sacrifice some functionality

for the sake of compactness, predictability, and speed. A number of services typically

provided by general-purpose operating systems are not useful in most embedded ap-

plications, e.g., support for multiple users or complex file-systems. By omitting such

features, the size of an RTOS may be reduced, decreasing memory requirements and,

therefore, embedded system cost. General-purpose operating systems usually try to

complete their duties quickly. However, they typically do not provide a hard guarantee

that a task will complete by a certain time. True RTOSs differ from general-purpose

operating systems by making hard real-time guarantees about the time requirements of

the critical services they provide. Note that some people refer to all embedded operating

190

systems as RTOSs, even if that do not provide hard guarantees on OS service execution

times.

Typical applications involve significant use of RTOS primitives, the complex inter-

actions among which are hidden from the application software developer. Although

abstracting away the detailed behavior of RTOS services allows embedded system de-

signers to more easily manage complexity, tight performance and power constraints

sometimes demand more detailed analysis. An RTOS accounts for a significant frac-

tion of the computational effort expended by an embedded system. Therefore, designers

need to be aware of the potential performance and power impact of RTOS use. Com-

mercial RTOS manuals and datasheets typically include estimates of the execution times

for various parts of the RTOS running on specific hardware configurations. However,

vendors do not provide information about RTOS power consumption characteristics. In

addition, state-of-the-art techniques in embedded software power analysis do not clearly

separate and analyze power consumed in RTOS components. We propose and demon-

strate a method of conducting a detailed hierarchical analysis of the power consumption

and execution time of embedded system applications running on a multi-tasking RTOS.

In addition, our work is a first step towards analyzing and characterizing power con-

sumptions of different RTOS components.

The rest of this chapter is organized as follows. Section 10.2 introduces related

research and summarizes our contributions. Section 10.3 demonstrates the impact of the

RTOS on embedded software energy consumption, using various illustrative examples.

It also describes how insights into RTOS effects on energy can be used to optimize

software to reduce energy consumption. Section 10.4 describes our energy analysis

infrastructure, and presents an overview of the � C/OS RTOS. Section 10.5 presents

quantitative experimental results on several example embedded software systems, on

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 191

which we base our analysis of RTOS energy effects. Section 10.6 concludes and makes

recommendations to designers of low-power embedded systems that use RTOSs.

10.2 Related work and contributions

The importance of reducing power consumption in embedded systems has now been

widely recognized, and a large body of work has focused on estimating, managing, and

reducing power consumption in various system components. For hardware design, tech-

niques have been developed to estimate and optimize power consumption starting from

the algorithm and architectural design phases, down to the circuit design and technology

optimization steps [168]–[172]. Application, semiconductor technology, cost, and time-

to-market trends are causing a shift toward increased software content in embedded sys-

tems and systems-on-chip. As a result, designers and users of embedded software must

be increasingly aware of power issues. While power dissipation is inherently a property

of the underlying system hardware, a knowledge of the embedded software that runs on

the hardware is useful in order to analyze and improve the system’s power consumption

characteristics.

Recognizing the important role played by embedded software in determining sys-

tem power consumption, researchers have started to investigate techniques for soft-

ware power analysis and power-efficient software design. Power analysis techniques

have been proposed for embedded software based on instruction-level characteriza-

tion [173] and simulation of the underlying hardware [174]. Techniques to improve

the efficiency of software power analysis through statistical profiling have been pro-

posed [175]. The system-on-chip design paradigm, which enables integration of proces-

sors, peripherals, busses, and complex user-defined logic blocks, has fueled research in

192

hardware and software power consumption estimation [176]–[180]. Reducing embed-

ded software power consumption through compiler optimizations [181], source-level

transformations [178], [182], customized memory management schemes [183], power

management schemes [168], [184], device driver and operating system policies [185],

and variable-voltage processors [186]–[190] has been investigated. Researchers have

also investigated sophisticated methods of using operating systems to dynamically dis-

able peripherals in order to save power [191]–[193]. Others have advocated re-designing

page allocation and communication policies to decrease energy consumption [194].

Our work focuses on understanding and characterizing the power effects of RTOS

and application software. Our goal is to provide designers with a method of determining

the system-specific changes to the interaction between application software and RTOS

that will most effectively reduce system power consumption. The steps required to re-

duce system power consumption are necessarily dependent on the specific RTOS and

processor being used. We applied this method to the � C/OS RTOS [163] and applica-

tions running on the Fujitsu SPARClite processor. However, our method of hierarchi-

cally analyzing RTOS and application software power consumption [195] can be applied

to different processors and RTOSs, e.g., an ARM processor running Linux [196]. Others

have subsequently used a simulation-based approach to analyze RTOS power consump-

tion [197], [198]. We modeled the SPARClite processor’s sleep mode. It was observed

that the RTOS, itself, can consume a significant amount of power. We present quanti-

tative results for energy and time consumed by different operating system tasks, such

as context switching, scheduling, inter-process communication, and timer management.

In addition, we present concrete examples of the ways in which information derived

from RTOS power analysis can be used to optimize embedded software power con-

sumption. Our method of RTOS power analysis can be used for research on high-level

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 193

power-modeling of different RTOS components. These models can be incorporated into

power-aware system-level design tools.

10.3 Motivation for RTOS energy analysis

In this section, we illustrate, with examples, the impact of an RTOS usage on system

energy and time consumption. The RTOS energy analysis infrastructure described in

Section 10.4 is used to provide a quantitative breakup of the energy and time consumed

by different parts of the application and RTOS. Our analysis identifies the key sources

of energy consumption in the system. Significant savings in energy consumption are ob-

tained by re-writing the application software to use the RTOS in a more energy-efficient

manner.

Energy consumption information is generally more useful, when optimizing an em-

bedded systems’s battery lifespan, than power consumption information. Even in sit-

uations requiring the optimization of power consumption, e.g., building an embedded

system with limited short-term heat dissipation, one may frequently convert an energy-

reduced system to a power-reduced system by reducing the system’s clock rate, putting

it in a reduced power consumption sleep mode part of the time, or reducing the voltage

at which some of its components operate. Therefore, we focus on the energy consump-

tion of a number of simulated embedded systems in this chapter. In addition, we give

time consumption profiles for these examples. Note that the power consumption profile

follows directly from the energy and time consumption profiles.

194

Y

N

Brake
pedal

ABS
process

Brake
action

sensor
Wheel

Timer

Time

Sense speed and
pedal conditions

Compute
acceleration

Brake decision

Actuate brake

Sleep

Timer
transition?

Figure 10.2: A straightforward implementation of the ABS example.

10.3.1 Anti-lock braking example

Our first example is based on embedded software used in an automotive anti-lock

braking system (ABS) [199]. The system uses a timer wake-up signal to trigger ex-

ecution of the ABS process. The flow chart shown in Figure 10.2 depicts part of an

ABS. The ABS process calls the Sense brake pedal and Sense speed functions that

sense the brake pedal and the current angular velocity of the wheel, respectively. It

then computes the current speed and acceleration of the automobile, and uses the speed,

acceleration, and brake pedal status to decide whether to apply the brakes, pump the

brakes, release the brakes, or do nothing. This braking decision is conveyed to the Ac-

tuate brake function, which clamps the brake calipers, if appropriate. The simulated

vehicle was subjected to an input trace during which its speed and brake pedal condi-

tions change multiple times. The energy consumption profile is shown in the non-gate

bar of Figure 10.4a.

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 195

N

Y

N

Y

Brake
pedal

ABS
process

Brake
action

sensor
Wheel

Timer

Time

Sense speed and
pedal conditions

Compute
acceleration

Brake decision

Actuate brake

Pedal
pressed?

Timer
transition?

Sleep

Figure 10.3: An energy-optimized implementation of the ABS example.

In the straightforward implementation of the ABS example, illustrated in Figure

10.2, the processor is awakened and the ABS process executes with every timer tick.

Note that even this straightforward implementation is power-aware: it uses the pro-

cessor’s sleep mode between sensor sampling events instead of continuously leaving

the processor in its high-power active mode. However, it frequently executes without

changing the condition of the brake calipers. This unnecessary execution requires en-

ergy that might otherwise be conserved. By changing the algorithm slightly, such that

it only wakes up the processor on a timer tick if the brake pedal is depressed (as shown

in Figure 10.3), the embedded system’s energy consumption is reduced. As shown in

the gated energy bar of Figure 10.4a, the energy-optimized implementation of the ABS

example consumes 65.0% less energy than the straightforward implementation. Most

of the energy savings result from allowing the SPARClite processor to remain in the

sleep mode, and the DRAM to remain in a low-power self-refresh mode, through timer

ticks during which it is certain that the brake calipers need not be clamped. As the ex-

ecution time in each case was 14 seconds (see Figure 10.4b), power consumption also

196

���

������
������
������
������
������
������
������
������
������
������
���

�����
�����
���

���

������
������
������
������
���	�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�	

�

�

�

�

�

�

�

�

�

�

�

�

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
�������������
������
���

������
���������
������
���

������
������

�����
�����
�����
�����
����������
�����
�����
�����
���������������
���

��

 � �

!�!
!�!
"�"
"�"
#�##�#$�$$�$
%�%
%�%
&�&
&�&'�'
'�'
(�((�()�)
)�))�)
)�))�)
)�))�)
)�)

*�**�*
*�**�*
*�**�*
*�**�*+�+
+�++�+
+�++�+
+�++�+

,�,,�,
,�,,�,
,�,,�,
,�,

-�--�-.�..�.

/�//�/
/�/
0�00�0
0�0

1�11�1
1�1
2�22�2
2�2

3�34�4
5�56�6
7�78�89�9
9�9
:�:
:�:

;�;;�;<�<<�<
=>=>=?>?>?

Application

Floating−point

Initialization

Input/output

Interrupt

Memory

Mailbox

Misc.

Scheduling

@>@>@A>A>A

B�BB�BC�CC�C

D>D>DD>D>D
D>D>D
E>E>EE>E>E
E>E>E

F�F
F�F
G�G
G�G

Sleep

Synchronization

Task control

Semaphore

(a) (b)

E
ne

rg
y

(m
J)

non−gate

gate

T
im

e
(m

s)

non−gate

gate

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

Figure 10.4: ABS example: (a) energy, and (b) execution time consumption by RTOS
service category.

reduced by 65.0% in the energy-optimized version. In both versions of this example,

operating system and board support services accounted for approximately half of the

system’s energy consumption. In this example, floating point service routines account

for the majority of RTOS energy consumption. Although some of the functions listed

in the bar chart’s key account for little energy, we have listed all categories to keep the

keys of different figures consistent.

10.3.2 Commodity trading agent example

In our second example, we consider a market composed of commodity trading

agents. As shown in Figure 10.5, each agent has money, and four different types of

commodities. The starting quantity of each commodity is randomly initialized. Ran-

domly selected agents broadcast, to all other agents, their desire to sell a particular

commodity. Agents receiving the broadcast respond with an offer price computed from

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 197

Broadcast

Price advertisement

Sale

Key

Agent 6

Agent 2

Agent 5 Agent 4

Agent 3

Money
Commodity 1
Commodity 2
Commodity 3
Commodity 4

Agent 1

Figure 10.5: An overview of the commodity trading agent example.

the agent’s supply-price curve for the commodity under consideration. The seller agent

uses its supply-price curve to determine whether the highest received offer is higher than

its internal valuation of the commodity under consideration at the quantity it currently

owns. If so, it sells one unit of the commodity to the agent making the highest offer.

The mail bar of Figure 10.6a shows the energy consumption profile for an embed-

ded system running the commodity trading example, when implemented using RTOS

mailboxes to transmit messages between agents. In addition, the mail version relies on

the RTOS scheduler to manage the activity of different agents. The tuned bar shows

the energy consumption for code that is carefully hand-tuned to use shared memory for

message communication, and avoid the use of RTOS mailboxes or scheduler. In the mail

198

���

��
�����
���
���

�����	�	
�
�
��

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
���

��
�����
�����
���
���������������������
��

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������������

 � � !�!!�!

"�""�"#�##�#
$�$%�%
&�&'�'
(�()�)
�+�+

,�,,�,
,�,
-�--�-
.�.�.
.�.�.
/�/�/
/�/�/

Application

Floating−point

Initialization

Input/output

Interrupt

Memory

Mailbox

Misc.

Scheduling

0�0�01�1�1

2�22�2
2�2
3�33�3
3�3

4�4�44�4�45�5�55�5�5

6�6
6�6
7�7
7�7

Sleep

Synchronization

Task control

Semaphore

8�8�89�9
:�:�:�:�:
:�:�:�:�:
:�:�:�:�:
:�:�:�:�:

;�;�;�;
;�;�;�;
;�;�;�;
;�;�;�;<�<�<=�=

>�>�>
>�>�>
?�?
?�?

@�@�@
@�@�@
@�@�@

A�A
A�A
A�A

B�B�BC�CD�D�D

E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EF�F�FF�F�FF�F�F
G�GG�G
G�G

H�H�H
H�H�H
I�I
I�I

J�J�JK�KL�L�L

M�MM�M
M�MM�M
M�MM�M
M�MM�M
M�MM�M
M�MM�M
M�MM�M
M�MM�M
M�MM�M
M�MM�M
M�MM�M
M�MM�M
M�MM�M

N�N�NN�N�NN�N�NN�N�N

O�OO�O
O�OO�O

(b)(a)

Agent Ethernet

buf
non−buf

tuned
m

ail

E
ne

rg
y

(m
J)

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

Figure 10.6: (a) Commodity trading agent example energy, and (b) Ethernet interface
example energy by RTOS service category.

version, the RTOS is responsible for 95.5% of the embedded system’s energy consump-

tion. Interrupt handling, mailbox services, and scheduling, alone, account for 27.6% of

the energy consumption. In the tuned version, the RTOS is responsible for 92.2% of the

energy consumption. Interrupt handling, mailbox services, and scheduling account for

2.0% of the energy consumption.

As shown in Figure 10.6a, there is an energy cost associated with using the RTOS

scheduler and mailboxes to allow a more versatile and maintainable implementation.

The tuned version required only 70% of the energy of the mail version. However, adding

new prioritized tasks to the mail version is simple, while changing the behavior of the

tuned version is more difficult. In this case, a designer may trade off flexibility and

maintainability for energy savings.

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 199

Checksum computation
and output

Checksum
computation

Get packet

Compute
checksum

Procure
Ethernet
controller

Transfer
packet

Release
Ethernet
controller

Get packet

Compute
checksum

Procure
Ethernet
controller

Transfer
packet

Release
Ethernet
controller

Buffer
management

Output

(a) (b)

Figure 10.7: (a) A straightforward implementation, and (b) a multi-process implemen-
tation of the Ethernet interface example.

10.3.3 Ethernet interface example

In our third example, we consider checksum computation and interfacing with an

Ethernet controller that has high per-access overhead. This action occurs at the low-

est level of a TCP/IP protocol stack. Incoming packets are processed to derive their

checksums. The packets are subsequently transmitted to the output device.

The most straightforward implementation of this algorithm, shown in Figure 10.7a,

processes each packet as soon as it is available. However, in this example, preparing the

Ethernet controller to receive a packet, represented by the procure Ethernet controller

operation in Figure 10.7a, is costly. The non-buf bar in Figure 10.6b shows the energy

200

consumed by this straightforward implementation, broken down by RTOS service and

application categories.

It is possible to amortize the cost of procure Ethernet controller over the transmis-

sion of multiple packets by decoupling packet generation from transmission to the Eth-

ernet controller. In this energy-optimized implementation, the application is broken into

three tasks, as shown in Figure 10.7b. The checksum computation task communicates

packets to the buffer management task via shared memory. When the buffer manage-

ment task has enqueued a number of packets, it transfers them to the output task that

procures the Ethernet controller and transmits all the packets in its queue.

The buf energy bar in Figure 10.6b shows the energy consumed by the energy-

optimized version of the Ethernet interface example. Although some energy or time

is consumed by functions in each of the classifications listed in the key, some of these

classifications account for very little energy or time consumption, and are barely visible

in the bar charts.

Energy optimization of the Ethernet interface example results in a 23.1% overall de-

crease in energy consumption, with most of the savings resulting from reduced reliance

on hardware access synchronization and initialization services. Power consumption re-

duced by 0.1%, i.e., the energy savings resulted from a reduction in execution time, not

average power consumption. The energy saved in the hardware access synchronization

and initialization services was sufficient to more than offset a 2.9% increase in energy

resulting from the increased complexity of the multiple-task implementation. One could

easily convert some of these energy savings into power savings by putting the processor

and memory into sleep mode for the amount of time saved in the buffered version. In

this example, the RTOS consumed only 1.2% of the overall energy in the version that

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 201

was not energy-optimized, and a similar percentage of overall energy in the energy-

optimized version. However, in a number of other examples shown in Section 10.5, the

RTOS consumes a substantial fraction of the embedded system’s energy.

The examples presented in this section demonstrate the manner in which an RTOS

power analysis infrastructure may be used to determine promising areas for power op-

timization and evaluate the tradeoffs between power and other costs. Understanding

the effects of an RTOS on time and energy enables a designer to optimize the energy

consumption of an embedded system.

10.4 Energy analysis infrastructure

In this section, we present our RTOS energy analysis framework. We first describe

the inputs and outputs of our framework. Next, we present a high-level view of its

building blocks, and the manner in which they interact to analyze the system energy

consumption. We then present some details of individual building blocks.

10.4.1 Inputs and outputs

Our framework can be used to analyze the energy consumption of an application,

consisting of multiple tasks, executing under a multi-tasking operating system. These

tasks interact with each other, as well as with peripheral devices such as universal asyn-

chronous receivers and transmitters (UARTs), brake sensors, and other hardware com-

ponents. The embedded system is simulated to obtain a detailed report of the energy

consumed by different application and RTOS functions.

202

Application
code

OS code

External
stimulus

SPARClite
compiler

Timer
model

UART
model

Models for
other

peripherals

Instruction−level
energy model

SPARClite ISS

SPARClite cache
simulator

interface
unit model

Bus

model

Cache
controller

Memory
energy model

Memory model

Energy by call
tree position for

task A

���������������������
�����	
��
����
����

�����������������
����
���

����
����
�

��������
����
 !!!
!!!
""""
""

#$%&''(())*
*

+,-�-./01
1223455
55
5
66
66
67899::

;<;=><>><>?
?@�@�@AB<BCD<DD<DE
EF<FF<F

F<FF<F
F<F
GG
GG
GH<HH<HIIJ<JK

L<LMN�N�NN�N�NN�N�N
N�N�NO�OO�OO�OO�OP<PP<PQ
Q

R<RST<TUV<VWX<XX<XX<X
X<XX<XX<XX<X
X<XX<X
YYYY
YYYY
Y

Z<Z[<[\�\�\]�]�]^<^^<^_<__<_`<``<`a<ab<bb<bc<cc<cd<dd<dd<d
d<dd<dd<dd<d
d<dd<dd<d

e<ee<ee<ee<e
e<ee<ee<ee<e
e<ee<e

fghhiijj
jjjkkkk
kllll
ll
mmmm
mm

nopqrrssttu
u

vwx�xx�xyyz{|}~��
��
��
�

��
��
�����
�����

�<���<��������
�<��<����<�
�<��<���
��<��<�

�<��<�
��
���<���<�

�<���

Energy by call
tree position for

task B

main()

OSSem()

OSSched()

Figure 10.8: Energy analysis framework.

Figure 10.8 depicts our energy analysis framework. The application, which consists

of multiple processes, is compiled and linked together with the � C/OS RTOS and Fu-

jitsu’s SPARClite run-time libraries. In addition, a model of the system’s environment

or external stimuli is provided to our framework.

The outputs of our software, shown at the right of Figure 10.8, include call-trees for

each task and the RTOS. Each call-tree node corresponds to a function call, and has

a child node for each function call instance that occurs within it. Recursive functions

are supported. The time and energy resulting from recursive function invocations are

recorded in that function’s call tree node. An edge from function foo to function bar

indicates that foo calls bar. The nodes of the call-tree are annotated with the functions

they represent, and the energy and time consumed by each invocation of the function.

The contributing sources of energy consumption within the function, e.g., instruction

execution, stalls, dynamic random access memory (DRAM) refreshing, are recorded.

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 203

Table 10.1: Hierarchical call-tree for the semaphore example

Function Energy ��� J �
invocation Energy (%) Time (ms) Calls

realstart init tvecs 1.31 0.00 0.00 1
25.40 mJ total init timer liteled 4.26 0.00 0.00 1

2.43 % 18.01 mJ total
1.72 %

startup do main 7363.11 0.70 5.57 1
7.39 mJ total save data 5.08 0.00 0.00 1

0.71 % init data 4.23 0.00 0.00 1
init bss 2.86 0.00 0.00 1
cache on 8.82 0.00 0.01 1

Task1 win unf trap 6.09 1.16 9.43 1999
508.88 mJ total OSDisableInt 0.98 0.09 0.82 1000

48.69 % OSEnableInt 1.07 0.10 0.92 1000
OSSemPend win unf trap 6.00 0.57 4.56 999

104.59 mJ total OSDisableInt 0.94 0.18 1.56 1999
10.01 % OSEnableInt 0.94 0.18 1.56 1999

OSEventTaskWait 13.07 1.25 9.89 999
OSSched 66.44 6.35 51.95 999

OSSemPost OSDisableInt 0.96 0.09 0.78 1000
9.82 mJ total OSEnableInt 0.98 0.09 0.81 1000

0.94 %
OSTimeGet OSDisableInt 0.84 0.08 0.66 1000
4.62 mJ total OSEnableInt 0.98 0.09 0.81 1000

0.44 %
CPUInit BSPInit 3.52 0.00 0.00 1

0.29 mJ total exceptionHandler 15.51 0.02 0.17 15
0.03 %
printf win unf trap 6.18 0.59 4.87 1000

368.07 mJ total vfprintf 355.04 33.97 257.55 1000
35.22 %

Note that if a function h is called from two functions f and g, we create separate nodes

in the call-tree corresponding to these two scenarios. This ensures that the energy con-

sumption statistics of a function are separated by caller. Each call instance’s energy

information can be examined separately or the call-instances may be combined in order

to find the total energy consumed by all of the instances of a function located at a given

position in the call-tree. At each position in the call-tree, detailed information is re-

ported about the sources of energy consumption within the function. In addition, a total

hierarchical energy consumption, equal to the sum of the total energy consumptions of

a node’s children, is given.

204

Table 10.1 shows a portion of the automatically formatted output of the system when

analyzing a semaphore example. In this example, concurrent tasks are synchronized

through the use of RTOS services. We present this table in order to give the reader a

concrete idea of the sort of output the embedded system power analysis tool produces.

Note that each context, e.g., realstart and Task1, is a separate start node in the call-tree

hierarchy. The same function may appear more than once in the call-tree, if it is called

from different locations, e.g., the window underflow trap service routine win unf trap in

Task1. Although only energy per invocation, percentage of total energy, total time, and

number of calls are displayed in this table, the analyzer also produces more detailed re-

ports on embedded system attributes, e.g., it can separate energy consumption into sleep

energy, stall energy, cache stall energy, memory access energy, memory idle energy, and

instruction processing energy.

For the sake of brevity, the call-tree has been pruned to limit its depth and breadth.

We have truncated the call-tree at a depth of three and omitted the Task2 context. For

example, the table shows information about the realstart and Task1 contexts. Task1

calls OSSemPend that, in turn, calls a number of other functions, including OSSched.

Although OSSched calls other functions, they are omitted from the table for brevity.

OSSemPend consumed 104.59 mJ, including the energy consumed by all of the other

functions it calls. OSSched consumed 66.44 mJ per invocation and it is invoked 999

times at this position in the call-tree. Including the energy of the other functions it

calls, it consumes 6.35% of the total system energy and executes for a total of 51.95 ms.

Note that the figure produced by multiplying the energy consumption of each child

function called by OSSemPend by the number of times the child function is called is

slightly lower than OSSemPend’s total energy consumption. The difference between

these figures is the amount of energy consumed by local instructions in OSSemPend,

i.e., computations that do not involve function calls.

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 205

bus
Processor

Brake
sensor

SPARClite 86832

Other ASICs
and peripherals

IBM
0118160PT3−60

DRAM

IBM
0118160PT3−60

DRAM

EPROM

LEDs

UART

Timer

On−chip cache

Fujitsu

Interrupts

Figure 10.9: Modeled architecture.

10.4.2 System overview

We now describe the operation of our energy analysis framework. The simulated

embedded system consists of a processor interacting with a set of application-specific

integrated circuits (ASICs) and other peripherals. As shown in Figure 10.9, our en-

ergy analysis infrastructure models a Fujitsu SPARClite processor, connected to two

fast page-mode DRAMs, a timer, a UART, and a number of other peripherals. Cycle-

accurate simulators have a reputation for being slow. However, this approach is suffi-

ciently fast to handle substantial applications; a similar simulation infrastructure sub-

sequently built by colleagues booted Linux in less than five minutes on a Pentium III

processor running at 667 MHz [196].

206

In order to analyze the energy consumption of the system, we need detailed func-

tional models and energy models of its constituent parts. Instruction-level power mod-

els for the Fujitsu SPARClite processor and internal cache can be found in the liter-

ature [173]. The internal operation of the SPARClite processor is simulated using a

power-aware version of an instruction set simulator (ISS) built by Li and Henkel [178]

that was, in turn, built upon work by Ye et al. [200]. We modified this ISS to handle inter-

action with other components in the modeled embedded system. We have implemented

an easy-to-use, object-oriented, inheritance-based method of adding new hardware to

the simulated system, e.g., the brake sensors used in the ABS example. Application-

specific devices may interrupt the operation of the processor. We use interrupt routines

based on those found in the Fujitsu MB86832 evaluation kit, and � C/OS. Applications

run under � C/OS. The addition of hardware interrupts to the embedded system sim-

ulator required significant changes to maintain correct simulation. In particular, it is

not possible to use off-line hardware models in the presence of co-processor generated

interrupts.

The ISS simulates the cycle-by-cycle execution of the processor, i.e., it accounts for

effects such as branch delays, pipeline flushes, control-flow mispredictions, etc. We

have enhanced this ISS in a number of ways. In order to account for the effects of

cache misses, we added an on-line cache simulator designed specifically to model the

SPARClite processor’s cache. It is necessary to use an on-line cache simulator in or-

der to know, during execution, whether or not a cache miss has occurred. An off-line

cache simulator would not allow the correct simulation of an embedded system because,

due to races with interrupts generated by other peripherals, the presence or absence of

a miss penalty may change the flow of execution. The cache simulator accounts for

the cache and memory behavior. We model a number of SPARClite-specific features.

Among these, low-power sleep mode is particularly important. In addition, we model

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 207

external memory. Specifically, we simulate the cache and on-board bus interface unit

of a Fujitsu MB86832 [160], [201], as well as the operation of two IBM0118160PT3-

60 low-power fast page-mode DRAMs [202]. Memory energy consumption is derived

from the manufacturer’s data-sheet, and depends on the DRAM’s mode of operation. We

consider the energy required to drive the processor-memory bus. Our power model is

built from datasheets [202] and published current measurements [173]. If the hardware

implementation of an additional device a designer wants to integrate into the system

is known, its energy consumption can be computed using known energy analysis tech-

niques [168], [169], [172].

As mentioned earlier, our energy analysis framework organizes energy consump-

tion data by function. Therefore, in addition to evaluating the energy consumed by the

system in a cycle, our energy analyzer needs to keep track of the function and process

that are currently being executed. In general, the manner in which the context is deter-

mined is specific to the operating system, and the processor being considered. � C/OS

performs scheduling and context switch occurs through the function OSSched. Our

framework uses this information to keep track of context switches. Function calls are

performed using the jmpl instruction from the SPARC assembly language. The name

of the function to which control flow is transferred is determined from the symbol ta-

ble. The symbol table associates an address with each function and global variable. The

problem of tracking returns from function calls is complex and requires information spe-

cific to the instruction set architecture of the processor being used, the manner in which

the compiler translates different control-flow constructs in the high-level programming

language into assembly code, and information specific to the RTOS code that performs

context switching.

Our energy analysis technique is non-intrusive. This differs with many well-known

software debugging and performance analysis techniques that augment the program to

208

be analyzed with monitoring code in order to enhance observability of the program state

and internals. While the addition of monitoring code eases analysis, it results in a loss

of accuracy because the monitoring code modifies the parameters that needs to be mea-

sured: execution time and energy. Additionally, this extra code may change the order

in which tasks execute in an embedded system containing multiple hardware devices.

The need to perform cycle-accurate performance analysis is heightened in the presence

of external devices that communicate with the processor. Inaccuracies in timing can

cause a change in the functionality of the system being implemented, leading to inaccu-

rate control-flow and energy results. Since we use cycle-accurate processor and cache

energy models, our framework does not suffer from this problem. When run on a 336

MHz UltraSPARC-II with four gigabytes of memory, the simulator takes approximately

40 minutes to simulate the 14-second original version (i.e., non-gate) of the ABS ex-

ample and approximately 12 minutes to simulate the 2.5-second original version (i.e.,

non-buf) of the Ethernet interface example.

There is one caveat regarding the power model used for the SPARClite processor.

We selected the Fujitsu SPARClite MB86832 for simulation because an evaluation kit

for this processor is currently available from Fujitsu, allowing us to use their develop-

ment tool’s electrically programmable read-only memory (EPROM) code to facilitate

the simulation of a concrete embedded system core. However, we do not currently have

a power model for the MB86832. We used the instruction-level power model for the

Fujitsu SPARClite MB86934 that is available [173]. The core clock frequency for the

modeled processor is 80 MHz, while the core clock frequency used to build the power

model is 20 MHz. The I/O clock frequency for the modeled processor is 26.7 MHz,

while the core clock frequency used to build the power model is 10 MHz. It was neces-

sary to scale the current values in the power model in order to account for the increased

core clock frequency. According to the MB86832 data-sheet, current scales linearly with

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 209

clock frequency [201]. This behavior is to be expected for conventional, low-leakage

CMOS processes. The instruction-level power model does not separate the power con-

sumed in the processor core from the power consumed in the I/O circuits. We relied on

the relative contributions given in the MB86934 data-sheet in order to scale the separate

components of the overall current correctly [203].

10.4.3 System details

In this section, we describe the operation of two key components of our target system

architecture: the processor and the operating system. We first present an overview of

the processor, and then briefly describe the � C/OS RTOS.

Our system is built around a Fujitsu SPARClite MB86832, a 32-bit RISC processor,

operating at 80 MHz, with an external bus speed of 26.7 MHz. It implements a superset

of the SPARC v8 instruction set architecture. Its integer unit has a five-stage pipeline

that can handle data interlocks, and a branch handler to perform control-flow transfers

efficiently. The bus interface unit is capable of providing single-cycle access to the on-

chip cache. The processor has 136 registers, organized into eight overlapping register

windows, and 8 KiB instruction and data caches. Multiply and divide operations are

supported by dedicated, on-chip hardware that can complete 32-bit multiplications in

five cycles. The processor also has a power-down mode that can be employed to reduce

energy consumption.

We have taken care to simulate the context-dependent IBM0118160PT3-60 memory

and MB86832 bus interface unit timing in sufficient detail to ensure that memory ac-

cesses require the number of cycles implied by the timing diagrams in the specifications.

In addition, we simulate stalls resulting from periodic distributed DRAM refreshes.

� C/OS is Jean Labrosse’s portable real-time kernel for microprocessors and micro-

controllers. We use the version Brad Denniston ported to the MB86832 processor.

210

� C/OS has been used in many commercial applications, and its performance is com-

parable to that of other commercial RTOSs. � C/OS supports multitasking, and can

handle up to 63 concurrent processes. The kernel is fully preemptive. The RTOS is

designed to be scalable, i.e., designers who do not require some of its features may

save memory by easily building a light-weight version. The RTOS provides a number

of services such as scheduling, task management, inter-process communication, mem-

ory management, interrupt handling, and timer-related services. We chose � C/OS for

our experiments because it is modular, well-designed, and well-documented; its source

code is readily available. Further information on � C/OS can be found on the Internet at

http://www.uCOS-II.com, or in Labrosse’s book [163].

10.4.4 Extending our approach to other embedded systems

Our approach for analyzing RTOS and application software power consumption can

be extended to other processors and operating systems. However, there are system-

dependent components in this approach.

It is necessary to have ISSs for the processors used in the target embedded system.

There must be a method for tracing the status of the simulated processor cycle by cycle,

in order to record energy consumption, detect context switches, and simulate interaction

with other hardware in the embedded system. Although it is conceivable for an ISS to

provide a run-time interface meeting these requirements, it is our belief that, in practice,

the ISS source code will be required. ISSs are available for a number of popular archi-

tectures. Vendors sometimes provide simulators for more exotic processors. A designer

who wants to use our power analysis method on complex processors for which ISSs

are not available will face a substantial burden. Fortunately, getting access to simula-

tion modules for system-specific ASICs is likely to be straightforward, as the in-house

simulators used to design and debug the ASICs are likely to be available.

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 211

Ideally, the source code of the RTOS, including low-level system support software,

will be available. Our approach is useful even if the RTOS source code is not available.

However, in this case it will be more difficult to apply. It is necessary for the embed-

ded system simulator to detect context switches. However, the way in which a context

switches is RTOS-dependent. If the RTOS source code is not available, it is necessary

to learn how the RTOS handles context switches based on disassembled binaries and

EPROM images. In addition, it is important for the designer to understand how dif-

ferent components of an RTOS interact in order to best optimize its usage. Unless the

documentation of the RTOS is detailed, a designer interested in making the best possi-

ble use of the RTOS without access to its source code will be forced to learn about its

operation by tracing its execution at the instruction level, or by disassembling it. This

sort of reverse engineering can be time-consuming and costly. However, even in the

absence of the RTOS source code, our approach remains useful. By indicating which

RTOS services have high energy consumption, it allows the designer to focus attention

on understanding, i.e., reverse engineering, those services.

Unless power consumption was a primary consideration in RTOS design, minor

changes to an RTOS can significantly improve its power consumption characteristics.

A feature of � C/OS provides support for this observation. When no user-defined pro-

cesses are running, an idle task executes. Normally, this task repeatedly increments a

variable. By comparing the actual number of increments in a given time-span with the

maximum number of increments possible in that time-span, � C/OS keeps track of the

percentage of time spent idle. This behavior is beneficial, as long as one is not trying

to minimize power consumption. There are sophisticated approaches one could use to

dramatically reduce idle power consumption. However, even the straightforward ex-

pedient of preventing the variable from being incremented eliminates numerous writes

to the processor’s write-through cache, thereby reducing memory power consumption.

212

The ability to make changes to the source code of an RTOS increases the designer’s

flexibility in optimizing embedded system power consumption. However, even if the

source code is not available, our approach allows a designer to modify the use of RTOS

services in order to reduce power consumption.

Finally, it is necessary to have power models for the embedded system devices that

consume a significant amount of power. It is our hope that, in the future, hardware

vendors will see the competitive advantage of providing customers with detailed power

information about their products. Until this practice becomes common, designers who

want to apply our approach will be forced to rely on power models and analysis tech-

niques found in the literature [168], [169], [172], [173], internally developed power mod-

els, or the limited power information found in conventional datasheets. Note that, for

some processors, this power information is sufficient to allow a reasonable estimate of

power consumption.

10.5 Results and case studies

We analyzed the energy consumption of � C/OS RTOS when running several em-

bedded applications. In all cases, we targeted the Fujitsu SPARClite processor based

embedded system presented in Section 10.4.2. Some applications were abstracted from

real embedded system application software, while others were designed to exercise spe-

cific RTOS functions and services. Overall, care was taken to ensure that key RTOS

functions and services were used by the chosen applications.

For each example, we categorized energy consumption by RTOS and application

service type, as explained in the following list.

� Application: Non-RTOS functions.

� Floating-point: Integer operations to simulate floating point math.

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 213

� Initialization: Embedded system initialization functions. This is typically exe-

cuted only once during an application’s run.

� Input/output: Input and output formatting and communication with the system’s

UART channels.

� Interrupt: Interrupt service routines.

� Mailbox: Code to handle task communication with mailboxes.

� Memory: Memory initialization, allocation, and copying functions.

� Misc.: Functions not in other categories.

� Scheduling: Task scheduling.

� Semaphore: Semaphore-based task synchronization code.

� Sleep: Sleep mode.

� Synchronization: Non-semaphore-based task synchronization code.

� Task control: Task management, e.g., task creation.

214

�����
�����
���
���

��������
�����
�����
���
�������������
������	�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

������
������
������
������
������
������
������
������
������
������
���

��
��
���
���

���

������
������
������
��������������������������������������

������
������
������
���

����������
���������
���������
���������
���������

���������
���������
���������
�������������������
 � � !�!�!"�"�"
"�"�"
"�"�"

#�#�#
#�#�#
#�#�#
$�$�$$�$�$
%�%�%%�%�%&�&�&

'�'�'(�(�((�(�((�(�(
)�)�))�)�))�)�)

��*+�+�+,�,�,,�,�,
-�-�--�-�-.�.�.

/�/�/0�0�00�0�00�0�0
1�1�11�1�11�1�1

2�2�23�3�34�4�4�4�44�4�4�4�44�4�4�4�44�4�4�4�44�4�4�4�44�4�4�4�44�4�4�4�44�4�4�4�44�4�4�4�44�4�4�4�44�4�4�4�4

5�5�5�5�55�5�5�5�55�5�5�5�55�5�5�5�55�5�5�5�55�5�5�5�55�5�5�5�55�5�5�5�55�5�5�5�55�5�5�5�55�5�5�5�56�6�6
6�6�6
7�7�7
7�7�7
8�8�89�9�9:�:�:
:�:�:
;�;�;
;�;�;
<�<�<=�=�=>�>�>

?�?�?

@�@�@A�A�AB�B�B�B�BB�B�B�B�B
C�C�C�C�CC�C�C�C�CD�D�D�D�DE�E�E�E�E
F�F�F
F�F�F
G�G�G
G�G�GH�H�HI�I�IJ�J�JK�K�KL�L�L

M�M�M

N�N�NO�O
P�P�P�P�P
P�P�P�P�P
Q�Q�Q�Q
Q�Q�Q�QR�R�RS�S

T�T�T
T�T�T
U�U
U�U

V�V�V
V�V�V
W�W
W�WX�X�X

X�X�X
X�X�X

Y�Y
Y�Y
Y�Y

Z�Z�Z
Z�Z�Z
Z�Z�Z
Z�Z�Z
Z�Z�Z
Z�Z�Z
Z�Z�Z
Z�Z�Z
Z�Z�Z
Z�Z�Z
Z�Z�Z
Z�Z�Z
Z�Z�Z
Z�Z�Z
Z�Z�Z

[�[
[�[
[�[
[�[
[�[
[�[
[�[
[�[
[�[
[�[
[�[
[�[
[�[
[�[
[�[

\�\�\\�\�\\�\�\
]�]]�]
]�]

^�^�^_�_

`�`a�a
b�bc�cd�d�d�d
d�d�d�d
d�d�d�d
d�d�d�d

e�e�e�e
e�e�e�e
e�e�e�e
e�e�e�e
f�fg�gh�h
h�h
h�h
h�h

i�i
i�i
i�i
i�i
j�j
j�j
j�j
j�j
j�j
j�j
j�j
j�j
j�j
j�j
j�j

k�k
k�k
k�k
k�k
k�k
k�k
k�k
k�k
k�k
k�k
k�kl�lm�m
n�no�o

p�pp�p
p�p
q�qq�q
q�q

r�rr�rs�ss�s

t�tt�tu�uu�u
v�v
v�v
w�w
w�w

x�xy�y
z�z
z�z
{�{
{�{
|�|
|�|
}�}
}�}

~�~~�~������
�����
�����
�����
�����

Application

Floating−point

Initialization

Input/output

Interrupt

Memory

Mailbox

Misc.

Scheduling

����������

������
���
������
���

����������
�����
����������
�����

������

Sleep

Synchronization

Task control

Semaphore

E
ne

rg
y

(m
J)

gate
non−gate

ABS

tuned

m
ail

Agent Ethernet

non−buf

buf

SemaphoreMailbox

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000
1050

Figure 10.10: Energy consumption profiles.

����������
������

����������
������

����������
������

��������
��������
��������
��������

����������
������
������������

Application

Floating−point

Initialization

Input/output

Interrupt

Memory

Mailbox

Misc.

Scheduling

������������

����������
������

 � � � � � �
¡�¡�¡¡�¡�¡

¢�¢�¢£�£

Sleep

Synchronization

Task control

Semaphore

¤�¤�¤

¥�¥¥�¥
¥�¥¥�¥
¥�¥¥�¥
¥�¥¥�¥
¥�¥¥�¥
¥�¥¥�¥
¥�¥¥�¥
¥�¥¥�¥
¥�¥¥�¥
¥�¥¥�¥
¥�¥

¦�¦�¦
¦�¦�¦
§�§
§�§¨�¨�¨©�©ª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ª

«�««�«
«�««�«
«�««�«
«�««�«
«�«¬�¬�¬¬�¬�¬¬�¬�¬¬�¬�¬¬�¬�¬¬�¬�¬¬�¬�¬¬�¬�¬¬�¬�¬¬�¬�¬¬�¬�¬

��
��
��
��
��
�

®�®®�®
®�®®�®
®�®®�®
®�®®�®
®�®®�®
®�®®�®
®�®®�®
®�®®�®
®�®®�®
®�®®�®
®�®®�®
®�®®�®
®�®®�®
®�®®�®
®�®®�®
®�®®�®
®�®®�®

¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
¯�¯¯�¯
°�°±�±²�²³�³´�´
´�´´�´
µ�µµ�µ
µ�µ¶�¶
¶�¶¶�¶
¶�¶

·�··�·
·�··�·

¸�¸�¸¹�¹�¹
º�º�º�º�º
º�º�º�º�º
º�º�º�º�º
º�º�º�º�º
º�º�º�º�º

»�»�»�»�»
»�»�»�»�»
»�»�»�»�»
»�»�»�»�»
»�»�»�»�»¼�¼�¼
¼�¼�¼
½�½�½
½�½�½
¾�¾�¾¿�¿�¿À�À�À
À�À�À
Á�Á�Á
Á�Á�ÁÂ�Â�ÂÃ�Ã�ÃÄ�Ä�Ä

Å�Å�ÅÆ�Æ�ÆÆ�Æ�Æ
Ç�Ç�ÇÇ�Ç�Ç

È�È�ÈÉ�É�ÉÊ�Ê�ÊË�Ë�ËÌ�Ì�Ì

Í�Í�ÍÎ�Î�ÎÎ�Î�ÎÎ�Î�Î
Ï�Ï�ÏÏ�Ï�ÏÏ�Ï�Ï

Ð�Ð�ÐÑ�Ñ�ÑÒ�Ò�Ò�Ò�ÒÒ�Ò�Ò�Ò�ÒÒ�Ò�Ò�Ò�ÒÒ�Ò�Ò�Ò�ÒÒ�Ò�Ò�Ò�ÒÒ�Ò�Ò�Ò�ÒÒ�Ò�Ò�Ò�ÒÒ�Ò�Ò�Ò�ÒÒ�Ò�Ò�Ò�ÒÒ�Ò�Ò�Ò�ÒÒ�Ò�Ò�Ò�Ò

Ó�Ó�Ó�Ó�ÓÓ�Ó�Ó�Ó�ÓÓ�Ó�Ó�Ó�ÓÓ�Ó�Ó�Ó�ÓÓ�Ó�Ó�Ó�ÓÓ�Ó�Ó�Ó�ÓÓ�Ó�Ó�Ó�ÓÓ�Ó�Ó�Ó�ÓÓ�Ó�Ó�Ó�ÓÓ�Ó�Ó�Ó�ÓÓ�Ó�Ó�Ó�ÓÔ�Ô�ÔÕ�Õ�ÕÖ�Ö�Ö×�×�×Ø�Ø�Ø
Ø�Ø�Ø
Ù�Ù�Ù
Ù�Ù�Ù
Ú�Ú�ÚÛ�Û�ÛÜ�Ü�Ü

Ý�Ý�Ý

Þ�Þ�Þß�ß�ßà�à�à�à�àá�á�á�á�áâ�â�â�â�âã�ã�ã�ã�ã
ä�ä�ä
ä�ä�ä
å�å�å
å�å�åæ�æ�æ
æ�æ�æ
ç�ç�ç
ç�ç�ç
è�è�èé�é�éê�ê�ê

ë�ë�ë

ì�ì�ì
ì�ì�ì
í�í�í
í�í�íî�î�î�î�î
î�î�î�î�î
ï�ï�ï�ï�ï
ï�ï�ï�ï�ïð�ð�ðñ�ñ�ñ
ò�ò�òó�ó�óô�ô�ôõ�õ�õ
ö�ö�ö
ö�ö�ö
÷�÷�÷
÷�÷�÷
ø�ø�ø
ø�ø�ø
ø�ø�ø
ø�ø�ø
ø�ø�ø
ø�ø�ø
ø�ø�ø
ø�ø�ø
ø�ø�ø
ø�ø�ø
ø�ø�ø
ø�ø�ø
ø�ø�ø

ù�ù�ù
ù�ù�ù
ù�ù�ù
ù�ù�ù
ù�ù�ù
ù�ù�ù
ù�ù�ù
ù�ù�ù
ù�ù�ù
ù�ù�ù
ù�ù�ù
ù�ù�ù
ù�ù�ùú�ú�úú�ú�úú�ú�ú
û�û�ûû�û�ûû�û�ûü�ü�üü�ü�ü
ý�ý�ýý�ý�ý

þ�þÿ�ÿ
���
���
���
���
�������
�������
�������
�������

�������
�������
�������
�������

���
���
���
���
���
���
���
���

	�	
	�	
	�	
	�	
�

�

�

�

�

�

�

�

�

�

�

���
���
���
���
���
���
���
���
���
���
���
����������

T
im

e
(m

s)

gate
non−gate

ABS

tuned

m
ail

Agent Ethernet

non−buf

buf

SemaphoreMailbox

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0

25

50

75

100

125

150

175

200

225

250

275

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Figure 10.11: Time consumption profiles.

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 215

Figure 10.10 shows the energy consumed by different RTOS services and the ap-

plications, themselves. Each vertical bar represents a distinct example. Vertical bars

are divided to indicate functions. For instance, in the mailbox example, I/O primitives

used by the RTOS account for a larger portion of the energy consumption than any

other function category. Figure 10.11 presents a similarly formatted breakdown of time

consumption by RTOS service and function category.

The Ethernet and ABS examples are described in Section 10.3. The ratio of proces-

sor energy consumption to DRAM energy consumption varied from 2.71 (in the energy-

optimized version of the Ethernet interface example) to 2.94 (in the energy-optimized

version of the ABS example). The results in this section, and in Section 10.3, indicate

that an embedded system’s RTOS may be directly responsible for a significant portion

of the embedded system’s energy consumption. The percentage of system energy di-

rectly consumed by the RTOS may vary dramatically from approximately 1% (in the

energy-optimized version of the Ethernet interface example) to 99% (in the mailbox ex-

ample), depending on the degree to which the application code relies on RTOS services.

Even when the RTOS does not directly consume a significant percentage of the system’s

energy, one can significantly reduce overall energy consumption by more wisely using

RTOS services, as demonstrated by the different versions of the ABS example.

The mailbox example illustrates the use of mailboxes for inter-process communi-

cation. It consists of three application tasks that communicate via the shared mem-

ory mailbox communication service provided by � C/OS. The tasks also perform writes

to the UART. Figure 10.10 shows that, in this example, the main sources of energy

consumption are input/output primitives, interrupt service routines, task scheduling, as

well as RTOS and processor initialization code. Mailbox management services also

consume a small but significant fraction of the system’s energy. Formatting and trans-

mitting data to the UART can be energy-intensive, and should be sparingly used in an

216

energy-constrained implementation. The application code relies heavily on RTOS and

processor support routines. As a result, the application code only consumes 1.0% of

the total system energy, with RTOS and processor support services consuming the other

99.0%.

In the semaphore example, concurrent tasks are synchronized through the use of

RTOS services. RTOS primitives that post and release semaphores account for a small

but significant portion of the system’s energy consumption. The application code con-

sumed 1.2% of the total system energy, with RTOS and processor support services con-

suming the other 98.8%.

From the results presented above, one can observe that the embedded system con-

sumed significantly less power during sleep mode (14.2–18.0 mW depending on exam-

ple) than when running in other modes. As described in Section 10.4, a call-tree node

holds the total time and energy of all function calls located at a given position in the call-

tree. The average power consumption of call-tree nodes, i.e., context-dependent function

execution, varied from 769 mW (OSEnableInt) to 1,047 mW (uart delay). However, the

differences among the power consumption of RTOS service classes were smaller. Aver-

age RTOS service class power consumption varied from 842 mW (for interrupt service

routines) to 976 mW (for floating-point routines). While there was a strong correla-

tion between execution time and energy consumption for the examples in which sleep

mode was not used, it would be unwise to generalize this observation to all embed-

ded systems. In embedded systems containing peripheral processors that consume a

substantial amount of energy, and whose control is relegated to a subset of the RTOS

service classes, there would be substantial differences between the power consumptions

of different RTOS service and function categories.

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 217

Table 10.2: RTOS service energy per invocation

Minimum MaximumService
energy (� J) energy (� J)

AgentTask 3.13 4727.88
fpdiv parts 4.23 261.22
BSPInit 3.52 3.55
fpmul 21.57 40.66

CPUInit 286.98 291.39
fpmul parts 4.73 43.83

GetPsr 0.38 0.55
fptodp 17.46 49.72
GetTbr 0.38 0.67
fstat 4.61 16.34

InitTimer 2.53 2.56
fstat r 7.83 31.42
OSCtxSw 46.63 65.65
init bss 2.86 3.07

OSDisableInt 0.84 1.31
init data 4.23 4.51

OSEnableInt 0.84 1.31
init timer 18012.10 20347.00

OSEventTaskRdy 26.45 30.54
init tvecs 1.31 1.31

OSEventTaskWait 11.62 13.75
isatty 1.77 1.77

OSEventWaitListInit 30.35 31.48
liteled 4.26 4.26
OSInit 7036.20 7057.59
litodp 10.22 225.33

OSMboxCreate 41.04 43.25
localeconv 1.74 2.35
OSMboxPend 10.11 130.59
localeconv r 0.42 0.83
OSMboxPost 7.78 129.06
lshrdi3 2.63 3.37

OSMemCreate 31.37 31.61
make dp 9.87 40.44
OSMemGet 10.00 12.34
malloc r 71.09 71.50

Continued on next page.

218

Table 10.2: RTOS service energy per invocation (continued)

Minimum MaximumService
energy (� J) energy (� J)

OSMemInit 4432.06 4432.59
mbtowc 3.21 4.07

OSMemPut 9.71 11.89
memchr 1.95 15.19
OSQInit 60.02 62.72
memmove 3.91 20.67
OSSched 10.24 80.73

morecore r 57.07 57.27
OSSemCreate 41.60 43.40

pack d 6.01 24.65
OSSemPend 9.83 112.72
pack f 3.49 7.66

OSSemPost 9.24 115.69
printf 367.52 890.27

OSStartHighRdy 20.53 20.82
putCharPort1 19.22 32.51
OSTCBInit 42.31 45.68
putchar 6.78 7.40

OSTaskCreate 84.28 87.98
putchar r 5.56 6.07

OSTaskCreateExt 2123.10 2145.03
putstr 64.01 66.09

OSTaskCreateHook 1.92 1.94
rand 2.35 3.15

OSTaskStkInit 16.54 31.76
rand range 912.52 1003.22

OSTaskSwHook 0.53 1.13
rdtbr 0.38 0.88

OSTimeGet 4.62 5.29
rint 3.70 435.11

Roulette 957.48 5684.69
save data 5.08 5.22

agent broadcast 990.70 4714.15
sbrk 4.86 19.06

agent buy 7.22 8.94
sbrk r 7.14 33.56

Continued on next page.

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 219

Table 10.2: RTOS service energy per invocation (continued)

Minimum MaximumService
energy (� J) energy (� J)

agent init 71.19 211.09
sfvwrite 44.19 648.40

agent offer 239.13 1279.00
sinit 35.45 36.31

agent price 227.02 830.43
sitofp 7.67 86.79

agent sell 6.26 933.14
smakebuf 94.37 118.08
cache off 3.18 3.18
sprint 47.51 651.70
cache on 8.68 8.82

std 8.95 9.36
do global ctors 3.26 3.26

swbuf 152.65 152.65
dpadd 31.31 139.92
swrite 149.93 607.27
dpcmp 18.68 23.27

swsetup 101.59 125.31
dpdiv 28.58 291.14

uart delay 14.25 14.68
dpmul 29.08 74.04

unpack d 5.24 8.59
dpsub 26.54 286.74

unpack f 3.60 6.10
dptoli 8.44 16.75

vfprintf 354.51 872.99
exceptionHandler 15.26 18.86

vfprintf r 346.54 859.51
fflush 159.41 625.94

win ovf trap 11.25 12.09
fpadd parts 3.59 255.83
win unf trap 6.00 11.84
fpcmp parts 3.47 5.76

write 143.41 577.06
fpdiv 21.17 72.81
write r 146.30 591.68

220

Table 10.2 shows the minimum and maximum energy per invocation for each RTOS

service, board support package routine, and standard library routine used in our exam-

ples. These routines might consume less energy than the minimum in the table, or more

energy in the maximum in the table, if they are used in a manner not encountered in

any of our examples. However, for applications similar to our examples, these values

provide a reasonable range for the energy costs of RTOS services and other support

routines.

10.6 Conclusions and recommendations

In this chapter, we have described the design and implementation of an RTOS power

analysis infrastructure. Examples were presented to illustrate the application of this in-

frastructure. By analyzing a commercial RTOS, � C/OS, running several applications,

we have demonstrated that the manner in which the RTOS is used has a significant im-

pact on an embedded system’s power consumption. Insights derived from such RTOS

power analysis may be used to optimize embedded software power consumption and

drive research on high-level power modeling of different RTOS components. Further-

more, this work enables power-efficient RTOS and application design, and may be in-

corporated into power-aware system-level design tools.

Based upon our observations, we have found a few general guidelines that de-

signers should follow in order to use an RTOS in a power-efficient way. However,

before presenting these guidelines, we must first mention a few caveats. The most

power-efficient implementation of embedded system software is processor-dependent

and RTOS-dependent. We strongly suggest implementing a prototype without expend-

ing heroic efforts on low-level power optimization. One should start trading off code

flexibility and maintainability for power efficiency only after it is clear, e.g., via energy

Chapter 10: Analysis of Energy Consumption in Embedded Operating Systems 221

profiling, which portion of the RTOS or application code is unnecessarily consuming

power. The guidelines we present, here, are no substitute for using a detailed power

analysis infrastructure, of the sort presented in this chapter, during the design of an

embedded system.

A number of energy reduction options are available to an embedded system designer

with access to an RTOS, as follows.

� Rewrite high energy consumption portions of an application to avoid unnecessary

use of the RTOS scheduler.

� When synchronization between tasks is implicitly carried out, do not use RTOS

services to carry out (redundant) synchronization. This may be easier said than

done because redundant synchronization can make code more robust.

� Take advantage of RTOS primitives, e.g., process support, to allow easy imple-

mentation of multi-process schemes that amortize the costs of high-overhead op-

erations.

� If power analysis indicates that memory management consumes a substantial pro-

portion of embedded system power, consider custom, e.g., uniform block, mem-

ory management for commonly allocated and deallocated data types.

� Concentrate on special modes available in the processor. Most designers already

pay some attention to code execution time and, in the absence of special proces-

sor modes, there is a strong correlation between execution time and energy for

general-purpose processors. However, using special processor modes, e.g., sleep

mode, can dramatically reduce power consumption. One can leverage an RTOS

to easily retrofit an existing application for power reduction, e.g., one may use a

low-priority task that puts a processor into sleep mode.

222

We emphasize that the above recommendations are not exhaustive; they will not

be beneficial for every embedded system. Our strongest suggestion is to examine an

embedded system’s RTOS and application energy profile before attempting to power-

optimize code.

Chapter 11

Comparisons with Related Work

In this chapter, we describe three algorithms that are closely related to our work and

point out differences with our work.

Axelsson compared the performance of a tabu search algorithm, a simulated anneal-

ing algorithm, and a genetic algorithm on the real-time partitioning problem [65]. His

tabu search algorithm and simulated annealing algorithm had better performance than

his genetic algorithm. However, it would be dangerous to consider his three algorithm

instances to be representatives of the three algorithm classes. In addition, it would be

dangerous to generalize results obtained for the real-time partitioning problem to the

hardware-software co-synthesis problem.

An early version of MOGAC, running in simulated annealing mode, was capable

of generating high-quality solutions for problem instances in which link synthesis was

not necessary. Even in these instances, adding crossover resulted in faster convergence

to results with the same quality. The main problem with Axelsson’s results is that they

compare naive versions of the three algorithm types: simulated annealing, genetic, and

tabu search. Although it is easier to get simulated annealing and tabu search functioning

at a basic level, than it is to get genetic algorithms working well, simulated annealing and

tabu search lack the ability to share information between different solutions. In addition,

simulated annealing and tabu search are poorly suited to multiobjective optimization,

223

224

when compared with genetic algorithms. In short, Axelsson’s comparison is not relevant

to the problems we are dealing with for the following reasons:

� His work solves a significantly simpler problem than that tackled by our co-

synthesis and system synthesis software.

� The genetic algorithm he implemented does not attempt to preserve locality.

� His conclusion, “... genetic algorithms are less suitable, due to the difficulty in

defining a reasonable crossover operator,” is nearly correct. However, he has

succeeded in finding a fault only with his implementation, not with genetic al-

gorithms, in general.

In our evolutionary algorithms, care is taken to preserve locality in string encodings

and crossover. We use a clustering method to prevent the production of structurally

invalid solutions. Although the resulting genetic algorithm is complicated, it is effective.

In summary, Axelsson’s results are interesting and valuable. However, they should not

be generalized beyond their proper scopes.

Teich et al. applied a multiobjective genetic algorithm to the heterogeneous dis-

tributed system co-synthesis problem [79]. Their approach does not target systems with

hard real-time constraints. Power consumption is not considered. Multi-rate systems,

and systems containing task graphs with periods less than their deadlines, are not han-

dled. They use a method of crossover that randomly selects bits to swap and does not

attempt to preserve sequences of bits describing related attributes, i.e., it does not at-

tempt to preserve locality. As described in Section 4.3, if � is the solution pool size,

this may result in up to an � � �
 � slowdown in the rate at which solutions are implicitly

evaluated, when compared to a genetic algorithm using a locality preserving crossover

method [120]. In this work, solutions that are not valid, and that cannot be made valid

Chapter 11: Comparisons with Related Work 225

by the application of a repair operator, are immediately terminated. Multiobjective opti-

mization is not performed. Their experimental results consist of one small example and

no comparisons are made with other co-synthesis systems.

Oh and Ha applied a heuristic to the heterogeneous distributed system co-synthesis

problem [75]. They compare the results produced by their algorithm with those pro-

duced by MOGAC. Their algorithm is able to find lower-price solutions than MOGAC

using less CPU time for some problem. However, we have subsequently improved our

optimization infrastructure, allowing our algorithm to produce superior solutions to two

of the task sets for which they reported results, as shown in Section 6.9.

226

Chapter 12

Contributions and Conclusions

We have presented algorithms for hardware-software co-synthesis and embedded

system synthesis. The optimization framework, upon which they are built, produces so-

lutions to the conventional co-synthesis problem that match or surpass those produced

by prior work. The CPU times required by these algorithms are often orders of magni-

tude better than many prior algorithms. Their CPU time requirements increase slowly

with increasing problem complexity. In addition, we have presented a framework for

the energy analysis of real-time operating systems (RTOSs).

Although we carefully compared the results produced by our optimization frame-

work with those produced by prior art, our primary goal was solving new problems.

Each algorithm tackles a different class of embedded systems and considers essential

details that have typically been ignored in past work, for the sake of simplicity. Com-

parisons between these algorithms and alternative approaches that do not model physical

details with as much accuracy indicate that it is important for an embedded system syn-

thesize algorithm to consider some detailed physical realities, even during high-level

design.

We believe that embedded system synthesis is an inherently multiobjective problem

and, to the best of our knowledge, we were the first to formulate hardware-software

co-synthesis as a multi-objective optimization problem.

227

228

We were the first to formulate and solve the heterogeneous system-on-chip synthe-

sis problem. We consider intellectual property (IP) core clock selection. Our algorithms

take physical realities, e.g., routing congestion, wire delay, and bus topology, into con-

sideration. We developed a novel and efficient bus topology generation algorithm that

optimizes communication contention under routability constraints. We proposed a new

system-on-chip clock selection method. Our experiments demonstrate that it is impor-

tant to consider a number of low-level details during system-on-chip synthesis [204].

We were the first to synthesize heterogeneous distributed systems containing dynam-

ically reconfigurable hardware [205], although others had started work on this problem

at our time of publication [69]. Our scheduler considers, and minimizes, inter-task re-

configuration delay. We demonstrate that considering reconfiguration delay allows the

synthesis of superior embedded system architectures.

We were also the first to solve the limited bandwidth client-server system synthesis

problem. We took care to pipeline the execution of tasks associated with different clients

while maintaining identical client designs. During synthesis, tasks automatically mi-

grate across wireless communication resources in order to improve system price, power

consumption, and speed [206].

All of our work considers the power consumption of the synthesized real-time em-

bedded system. Our work was among the first to consider power during heterogeneous

distributed system synthesis [207]. To our knowledge only Dave and Jha [128] as well

as Kirovski and Potkonjak [208] preceded us.

In addition to power consumption, the following costs may be considered, depend-

ing on the problem targeted: price, soft deadline violation, and area. Instead of col-

lapsing these costs into a scalar with a weighting sum, these costs are simultaneously

optimized by allowing multiple solutions that trade off the different costs to evolve in

Chapter 12: Contributions and Conclusions 229

parallel. Ours was the first system synthesis work to conduct multiobjective optimiza-

tion in this manner. In addition, to the best of our knowledge, we were the first to devise

an arbitrary-dimension dynamic locality preserving crossover selection method. This

method is used within our evolutionary algorithm based system synthesis framework.

We were the first to build and describe an infrastructure that analyzes the contribu-

tion of an application and real-time operating system to an embedded system’s power

consumption [195]. This simulator provides detailed information about the power con-

sumption impact of each portion of an embedded system’s software. It allows one to

find bounds on the energy consumptions of operating system service routines.

We initially set out with the goal of automating the design of a broad class of embed-

ded systems. In the process of working toward this goal, we have explored, and solved, a

number of specific problems within this research area. We attempted to select problems

that are likely to become more important in the next few years and tested our ideas by

complete implementation in software, comparison against past work, and execution on

high-quality benchmarks. It is our hope that others can benefit from our work. If you

found this work interesting, and would like to discuss it, please contact me.

Robert P. Dick

dickrp@ee.princeton.edu

230

Appendix A

Task Graphs for Free

In this appendix, we present a user-controllable, general-purpose, pseudorandom

task graph generator called Task Graphs For Free (TGFF). TGFF creates problem in-

stances for use in allocation and scheduling research. It has the ability to generate in-

dependent tasks as well as task sets that are composed of partially ordered task-graphs.

A complete description of a scheduling problem instance is created, including attributes

for processors, communication resources, tasks, and inter-task communication. The user

may parametrically control the correlations between attributes. Sharing TGFF ’s param-

eter settings allows researchers to reproduce the examples used by others, regardless of

the platform on which TGFF is run. This work was done in collaboration with David L.

Rhodes and Wayne Wolf.

A.1 Introduction

Research in embedded real-time systems and operating systems, as well as in more

general allocation and scheduling fields, is hampered by the lack of a common base of

examples. In general, an example used in allocation and scheduling research consists

of a task set and a database of processors and communication resources. A task set is a

231

232

collection of task graphs, each of which is a directed acyclic graph (DAG) of commu-

nicating tasks. Generation of sample task sets is often a requirement when comparing

allocation or scheduling methods with each other [209], [210]. There are generally no

standard task sets available, making comparison of different methods all but impossible.

Moreover, since task set generation is only a secondary aspect of scheduling research,

the details necessary to enable exact recreation of another researcher’s task sets are usu-

ally lacking. At best, re-implementation of another researcher’s random task set gen-

eration algorithm is tedious. At worst, the new implementation subtly differs from the

algorithm used in the work with which a comparison is made, resulting in misleading

experimental results. These problems conspire to make it difficult to compare one’s new

allocator or scheduler with existing algorithms.

This situation would be improved by the existence of a standard, shareable base of

task sets that are sufficiently general to enable applicability to a wide range of areas

(e.g., embedded systems and parallel computing) and that can be tuned to particular

problem domains. Shareable examples have been critical to progress in other areas such

as computer-aided design and computer science, e.g., the standard ISCAS digital circuits

used to compare digital circuit simulators [211] or the DIMACS Boolean formula sets

used for satisfiability solvers [212]. However, a survey in the area of task sets reveals

that researchers are ‘on their own’; this is true among both the industrial and academic

research communities. Allocation and scheduling research is a sufficiently broad area

that any static set of examples meeting the needs of the majority of researchers would be

gigantic. TGFF gives researchers the flexibility to dynamically tailor examples to their

work while making it easy for others to regenerate these examples, given knowledge of

the parameters used. It has been used by numerous scheduling and allocation researchers

in published work.

Appendix A: Task Graphs for Free 233

Some allocation and scheduling research for very high-level system design assumes

that there are no data dependencies between different tasks in a task set, while at the

other extreme, directed, cyclic task-graphs usually arise in low-level or small-grain are-

nas, for example, in instruction-level code analysis. TGFF’s task graph format, the DAG,

is commonly used in medium-level and high-level allocation and scheduling research in

academia and industry [67], [76], [81]. TGFF is nonetheless capable of generating sets

of independent tasks as a special case of the sets of DAGs for which it is primarily

intended.

TGFF includes a pseudorandom number generator [213]. This generator behaves

identically on any machine that represents mantissas with 24 or more bits. Given the

same command line options, TGFF will generate the same task set, processors, and

communication resources when run on nearly any architecture that supports floating

point computation.

A.2 Task set generation

Task graphs may be roughly categorized by their structural properties. DAGs gen-

erated to solve some numeric or algorithmic method, for example an FFT computation

or a Quicksort, exhibit a particularized (and predictable) structure. Although there also

appears to be a lack of shareable task graphs in this ‘structured-graph’ regime, these

types of graphs are more easily documented and re-created than more randomly struc-

tured graphs. Thus, the TGFF effort focuses on random task graph generation subject to

the limitations and parameters provided by the user.

TGFF generates a given number of random task graphs, where the graph nodes are

tasks and the graph arcs represent communication between tasks. Arcs are associated

234

with parametrically controlled data volume scalars; they represent inter-process commu-

nication and impose a partial order on nodes. TGFF accepts a random number generator

seed parameter, among others. The value of the seed affects both the structure as well

as other aspects of the task set. Task set families containing an arbitrary number of task

sets may be generated by varying the seed while holding all other parameters constant.

Terse documentation of each commend-line parameter is provided with the software.

Therefore, only a high-level description is given here. One of the most challenging

aspects of generating task graphs is developing an algorithm for defining their structure.

For TGFF, there are a number of parameters relevant to the task graph structure: the

average, � , and multiplier, � , for the lower bound on the number of nodes in a graph,

and the maximum in-degree,

��

, and out-degree, �
�

, of graph nodes. While

��

and �
�

are fixed for every task graph generated in the task set, a value for the lower bound is

selected at random from the uniform range � �
�

� � �
�

�
�
.

Let � be a lower bound on the number of nodes in a task graph, as randomly selected

from the uniform range � �
�

� � �
�

�
�
. The task graph is constructed by first creating

a single-node graph and then iteratively augmenting it until the number of nodes in the

graph is greater than or equal to � .

The augmentation operates as follows. First randomly select either a fan-out step or a

fan-in step (with equal probability). If it is a fan-out step, find the set of nodes that have

the largest amount of ‘available’ out-degree, i.e., those with the maximum difference

between �
�

and the actual number of out-arcs, and call this maximum difference � .

Assuming that � � �
, randomly pick a node, � , from the set, and then add � nodes and

arcs to the graph from � to each of these new � nodes where � is a random number

ranging from 0 to � .

If it is a fan-in step, find a set of existing nodes that are not over their �
�

limit and

call the cardinality of this set � . Assuming that � � �
, randomly select a value � in the

Appendix A: Task Graphs for Free 235

range �
�
�
��
� � � � � � � � . Add a single node to the graph and � arcs from � nodes from the

set to this new node.

This procedure generates DAGs that honor the in-degree and out-degree limits, con-

tain at least � nodes, have a single start node, and do not have duplicated arcs (e.g.,

those between the same pair of nodes). The actual number of nodes in the generated

task graph ranges from � to � � �
� � �

.

TGFF associates a deadline with every terminal node (a node that has no outgo-

ing arcs) in the task graphs it produces. A heuristic is used to generate deadlines that

are likely to be challenging but tractable. If depth � is the length of the maximum-

length path from a task graph’s start node to a given node,
�

is the user-specified average

amount of time taken to execute a task, and laxity � is an arbitrary scalar, then the dead-

line
�

for that node is set in the following manner:

� � � � � � �
Task sets containing task graphs with differing periods are termed multi-rate task

sets. TGFF is capable of parametrically generating the periods of task graphs in multi-

rate task sets. The user specifies an array of period multipliers that is used to determine

the relative periods of different task graphs in the task set. Selecting only small integer

multipliers allows one to generate a task set that can feasibly be scheduled with the

least common multiple scheduling method [105]. However, a user is free to specify

multipliers that are vastly different or for which the least common multiple is large,

relative to the individual multipliers. Given ���
� ���

(an array of user-provided period

multipliers), � � 	 � � � � (a user-provided scalar), and
��� ���

(an array containing all the

task graphs in the task set), TGFF uses the algorithm in Figure A.1 to assign a period to

each task graph. This algorithm generates periods that are based on the period multiplier

array provided by the user and are loosely related to the deadlines of individual task

graphs.

236

���
� ���

is a user-specified array of multipliers
� � ���

is an array of task graphs

���
� � � is an empty list

�
� ���
	���

is a user-specified scalar

while ���
� � ��� �

�
� � �	�

� � �
� � ��� � �

�
� � �	�

� � :

select ���
�

randomly from ���
� ���

append ���
�

to ���
� � �

sort ���
� � � in increasing order

sort
� � ���

in order of increasing deadlines

� � � � � ��� � last
� � �

�
� � �

� � � ���
� � � � last

�

for each � in all task graph indexes:
� � ��� � � � � ���

�

�
� � � � � ���

� � � � � � � � � ���
	���
Figure A.1: Period computation algorithm

An important characteristic of task sets is the relation between the deadlines and the

periods of their task graphs. While some schedulers allow periods that are less than

deadlines (e.g., [67], [214]), many do not. If requested, TGFF prevents the period of any

task graph from being greater than any of the deadlines within it.

Appendix A: Task Graphs for Free 237

TASK_GRAPH 0
 Period= 900
 In/Out Deg Limits= 3 / 3

0

1 2 3

4

5

6

7 8

9

d=100

d=500 d=500

d=400

Figure A.2: Result for tgff -n1 -e3:3 -g10:2 -r5

TASK_GRAPH 0
 Period= 500
 In/Out Degree Limits= 1 / 2

TASK_GRAPH 1
 Period= 1500
 In/Out Degree Limits= 1 / 2

TASK_GRAPH 2
 Period= 500
 In/Out Degree Limits= 1 / 2

0

1

2 3

4

5

6

7 8

9 10

0

1

2

3 4

5 6 7

8 9

10 11

12

13 14 15

16 17 18 19

20

21

22

23 24

25

0

1 2

3 4 5

6

7

8

9

10

11

12 13

14

15

16 17

18 19

20 21

d=200

d=600

d=700 d=700

d=500

d=700

d=800 d=800 d=800

d=900

d=200

d=500 d=500

d=600

d=200

d=400

d=700

d=400

d=700 d=700

d=600 d=600

d=300 d=300

Figure A.3: Result for tgff -e1:2 -g15:14

238

TASK_GRAPH 0
 Period= 1350
 In/Out Degree Limits= 3 / 4

TASK_GRAPH 1
 Period= 450
 In/Out Degree Limits= 3 / 4

TASK_GRAPH 2
 Period= 1350
 In/Out Degree Limits= 3 / 4

0

1 2

3

4 5 6 7

0

1 2 3 4

0

1

2

3

4 5 6 7

8 9

10 11 12 13

14 15 16 17 18

19

d=300 d=300 d=300 d=300

d=100 d=100 d=100 d=100

d=400 d=400

d=700 d=700 d=700 d=700

d=800

Figure A.4: Result for tgff -e3:4 -g20:18 -r3

In addition to the primary output file, a PostScript file depicting the task set is gen-

erated. Figure A.2 shows an example task graph output by TGFF’s PostScript facility.

This is a problem instance with a single task graph (-n1), a maximum in-degree and out-

degree of two (-e3:3), a number of nodes ranging from eight to twelve per task graph

(-g10:2), and a random seed of five (-r5). In this illustration, each task is represented

by a square and is labeled with its number. In addition to its task number, each termi-

nal node is labeled with its deadline. A task graph family of 50 single task graphs can

be generated by running TGFF with the following flags, ‘-n 1 -s � ,’ where � is given

integer values in the set � � � � � � � ����� � � � � . This statement is sufficient documentation

to enable other researchers to reproduce the same family. Figure A.3 shows the task

set produced when TGFF is run with its in-degree restricted to one and its out-degree

restricted to two (-e1:2), forcing TGFF to generate out-trees rather than more general

Appendix A: Task Graphs for Free 239

Random0.3

0.2

A

B

C

Communications
resource type

Parameter

price packet
size

packet
power

−653 price = 5 + jitter(3 * 0.3,)
packet_size = 10 + jitter(5 * 0.3,)

Average

Multiplier

5 10 10

j
j

jpacket_power = 10 + jitter(−6 * 0.3,)

Figure A.5: Setting communication resource attributes

DAGs. As another example, Figure A.4 shows the generation of three task graphs with

widely varying numbers of tasks.

A.3 Database generation

Some work in allocation and scheduling optimizes multiple attributes, e.g., execu-

tion time, power consumption, testability, and cost. TGFF supports this by allowing an

arbitrary number of attributes that may be correlated or uncorrelated, to be associated

with each processor and communication resource.

Although attribute generation for processors and communication resources is simi-

lar, communication resource attribute generation is more straightforward. This process

is most easily illustrated with an example. Figure A.5 depicts attribute generation for

communication resources. TGFF generates a random scalar (� � � � � 	 �
�
), ranging from

-1 to 1, for each communication resource. The user specifies an average, 	 , and a mul-

tiplier (�) value for each communication resource attribute, as well as a jitter,
�
, for the

task set. Given a scalar, � , and the task set jitter,
�
, the function � ��������� � � � � � returns a

240

randomly selected number, ��� , from the uniform range � � � � ��� � � � � � � ��� � � � . With

this function, and the parameters specified by the user, TGFF generates the attributes, � ,

for each communication resource, i.e.,

� � 	
� � � � � � � � � � ��� � � � � �

A processor has attributes that are independent of tasks, as well as attributes that

indicate the behavior of each task on that processor. Independent attribute generation is

analogous to communication resource attribute generation. Task-processor intersection

attributes that provide information about a task’s execution on a particular processor,

are generated with procedure similar to the one illustrated in Figure A.5. However, for

task-processor intersections, the procedure operates in three dimensions instead of two.

In addition to an array of random numbers associated with processors, there is a similar

array associated with tasks. Each attribute depends on the processor and task for which

the attribute is being generated.

TGFF has a number of default attributes: cost for processors, cost and transmi-

trate for communication resources, and exec time for tasks. These attributes can be

augmented or altered. As an example demonstrating TGFF’s generality, consider the

following scenario: one wants to add an attribute that defines a setup time for communi-

cation resources. This attribute is, in general, to be inversely related to cost. By giving

TGFF the following command-line flag, -C ’10:5:t:cost 100:-80: f:setup’, one declares

that cost has an average value of 10, a multiplier of 5, and is an integer. Similarly, setup

has a average value of 100, a multiplier of -80, and is a real number. Setting cost’s multi-

plier to a positive value and setup’s multiplier to a negative value causes these variables,

in general, to be inversely related to each other. A portion of the resulting output appears

in Figure A.6.

Appendix A: Task Graphs for Free 241

@COMMUN 0 �
cost setup

12 68.5145

�

@COMMUN 1 �
cost setup

9 119.64

�

@COMMUN 2 �
cost setup

10 92.5214

�
Figure A.6: Commu-
nication resource at-
tributes

A.4 Conclusions

TGFF provides a standard method for generating random allocation and scheduling

problem instances involving periodic or non-periodic task sets. Users have paramet-

ric control over an arbitrary number of attributes for tasks, processors, and commu-

nication resources. TGFF is capable of generating problem instances that are tuned

to particular domains in allocation and scheduling research. However, the ease with

which its parameters can be changed allows it to be applied to many allocation and

242

scheduling domains. Although TGFF simplifies the rapid production of large fami-

lies of examples, this work’s primary goal is to encourage comparison of allocation

and scheduling algorithms by making it practical to reproduce the examples used by

other researchers. The source code for TGFF is available via the “projects” link on the

http://www.ee.princeton.edu/˜cad web page.

Appendix B

Implementation

This appendix is included as a reference to researchers who are interested in using

our implementations as a starting point for their own research. We implemented the

hardware-software co-synthesis and embedded system synthesis algorithms described

in this dissertation in the C++ programming language, with heavy use of the standard

template library (STL). We wrote a foundation library that is used extensively in our

system synthesis software. It is 10,000 lines long and contains code for the following

data structures and algorithms:

� 2-D associative matrices

� arbitrary-dimension geometric hypercubes

� arbitrary-dimension ragged and hypercube dynamically resizable arrays

� binary trees

� dereferencing containers and iterators

� fast static-dimension arrays

� floating-point epsilon comparison

243

244

� function objects

� generic object management interfaces for cloning, printing, and debugging

� high-quality lagged Fibonacci random number generator

� highly efficient and type-safe graphs

� highly efficient bidirectional maps

� highly efficient interval sets

� memory tracking

� minimal spanning trees

� numerous deterministic and probabilistic mathematical operations

� numerous numerical search algorithms

� numerous other data structures and debugging support routines.

� parsing operations

� smart pointers

This foundation library is portable to machines with up-to-date C++ compilers.

The unified (MOCSYN, CORDS, and COWLS) system synthesis algorithms con-

sist of approximately 25,000 lines of code, in addition to the 18,000 lines used for the

separate MOGAC. These include a floorplanner, interconnect performance estimation

model, bus topology generator, etc. Initially, the synthesis algorithms were implemented

separately. However, in the current implementation, code is shared between the different

algorithms, when practical. As a result, it is possible to change multiple algorithms by

Appendix B: Implementation 245

changing the code in one place. The data structures and algorithms within this imple-

mentation provide clean interfaces. They have been used as a starting point by a number

of researchers. This system synthesis software is portable with one exception: we use a

Linux-specific method of determining the memory usage of the current process in order

to control the size of the architecture cache described in Section 6.7.

246

Bibliography

[1] Z. Luo, M. Martonosi, and P. Ashar, “Edge-endpoint-based configurable hard-

ware architecture for VLSI layout design rule checking,” VLSI Design, vol. 10,

no. 3, pp. 249–263, 2000.

[2] J. Cong and Z. Pan, “Interconnect performance estimation models for design

planning,” IEEE Trans. on Computer-Aided Design, pp. 739–752, June 2001.

[3] P. Thoma, “Automotive electronics - A challenge for systems engineering,” in

Proc. of Design, Automation and Test in Europe Conf., p. 4, Mar. 1999.

[4] R. Hersch, “Embedded processor and microcontroller primer and frequently

asked questions.” Posted monthly to the comp.arch.embedded USENET group.

These figures initially came from World Semiconductor Trade Statistics.

[5] J. Turley, “Embedded processors by the numbers,” Embedded Systems Program-

ming, vol. 12, May 1999.

[6] J. Turley, “ARM the big winner for 1998; Motorola’s 68K still on top,” Microde-

sign Resources, vol. 31, Jan. 1999. Cahners Electronics Group.

[7] J. Child, “Survey finds embedded efforts lagging, lacking,” EE Times, Apr. 2001.

[8] S. Napper, “Embedded system design plays catch-up,” Computer, pp. 118–120,

Aug. 1998.

247

248

[9] N. Sherwani, Algorithms for VLSI Physical Design Automation: Second Edition.

Kluwer Academic Publishers, Boston, 1995.

[10] A. Raghunathan, N. K. Jha, and S. Dey, High-level Power Analysis and Optimiza-

tion. Kluwer Academic Publishers, Boston, 1997.

[11] W. H. Wolf, Computers as Components: Principles of Embedded Computing

System Design. Morgan Kaufmann Publishers, CA, 2001.

[12] J. K. Adams and D. E. Thomas, “The design of mixed hardware/software sys-

tems,” in Proc. of Design Automation Conf., pp. 515–520, June 1996.

[13] G. De Micheli and R. K. Gupta, “Hardware/software co-design,” Proc. of IEEE,

vol. 85, pp. 349–365, Mar. 1997.

[14] R. Ernst, “Codesign of embedded systems: Status and trends,” IEEE Design and

Test of Computers, vol. 12, pp. 45–54, Apr. 1998.

[15] L. Garber and D. Sims, “In pursuit of hardware-software codesign,” Computer,

vol. 31, pp. 12–14, June 1998.

[16] G. Goossens, J. V. Praet, D. Lanneer, W. Geurts, A. Kifli, C. Liem, and P. G.

Paulin, “Embedded software in real-time signal processing systems: Design tech-

nologies,” Proc. of IEEE, vol. 85, pp. 436–454, Mar. 1997.

[17] K. G. Shin and P. Ramanathan, “Real-time computing: A new discipline of com-

puter science and engineering,” Proc. of IEEE, vol. 82, pp. 6–23, Jan. 1994.

[18] W. H. Wolf, “Hardware-software co-design of embedded systems,” Proc. of

IEEE, vol. 82, pp. 967–989, July 1994.

Bibliography 249

[19] B. Dasarathy, “Timing constraints of real-time embedded systems: Constructs

for expressing them, methods of validating them,” IEEE Trans. on Software En-

gineering, vol. 11, pp. 80–86, Jan. 1985.

[20] J. Gong, D. D. Gajski, and S. Bakshi, “Model refinement for hardware-software

codesign,” ACM Trans. on Design Automation of Electronic Systems, vol. 2,

pp. 22–41, Jan. 1997.

[21] J. P. Calvez and O. Pasquier, “Performance analysis of embedded HW/SW sys-

tems,” in Proc. of Int. Conf. on Computer Design, pp. 5–22, Jan. 1998.

[22] T. Benner, R. Ernst, I. Konenkamp, P. Schuler, and H.-C. Schaub, “A prototype

system for verification and emulation in hardware-software cosynthesis,” in Proc.

of Int. Workshop on Rapid System Prototyping, pp. 54–59, June 1995.

[23] S. L. Coumeri and D. E. Thomas, “A simulation environment for hardware-

software codesign,” in Proc. of Int. Conf. on Computer Design, pp. 58–63, Oct.

1995.

[24] K. Hines and G. Borriello, “Optimizing communication in embedded system

co-simulation,” in Proc. of Int. Workshop on Hardware/Software Co-Design,

pp. 121–125, Mar. 1997.

[25] C. Kuttner, “Hardware-software codesign using processor synthesis,” IEEE De-

sign and Test of Computers, vol. 13, no. 3, pp. 43–53, 1996.

[26] J. A. Rowson and A. Sangiovanni-Vincentelli, “Interface-based design,” in Proc.

of Design Automation Conf., pp. 178–183, June 1997.

250

[27] D. E. Thomas, J. K. Adams, and H. Schmit, “A model and methodology for

hardware-software codesign,” IEEE Design and Test of Computers, vol. 10, no. 3,

pp. 6–15, 1993.

[28] C. Castelluccia, W. Dabbous, and S. O’Malley, “Generating efficient protocol

code from an abstract specification,” IEEE Trans. on Networking, vol. 5, pp. 514–

524, Aug. 1997.

[29] L. Freund, D. Dupont, M. Israël, and F. Rousseau, “Interface optimization during

hardware-software partitioning,” in Proc. of Int. Workshop on Hardware/Software

Co-Design, pp. 75–79, Mar. 1997.

[30] A. Jirachiefpattana and R. Lai, “A rapid prototyping development system,” in

Proc. of Int. Workshop on Rapid System Prototyping, pp. 118–124, June 1995.

[31] J. Smith and G. De Micheli, “Automated composition of hardware components,”

in Proc. of Design Automation Conf., pp. 14–19, June 1998.

[32] M. Adé, R. Lauwereins, and J. A. Peperstraete, “Buffer memory requirements

in DSP applications,” in Proc. of Int. Workshop on Rapid System Prototyping,

pp. 108–123, June 1994.

[33] C. N. Coelho Jr., C.-Y. J. Yang, and V. Mooney, “Redesigning hardware-software

systems,” in Proc. of Int. Workshop on Hardware/Software Co-Design, pp. 116–

123, Sept. 1994.

[34] G. Gogniat, M. Auguin, and C. Belleudy, “A generic multi-unit architecture for

codesign methodologies,” in Proc. of Int. Workshop on Hardware/Software Co-

Design, pp. 23–27, Mar. 1997.

Bibliography 251

[35] G. Hadjiyiannis, S. Hanono, and S. Devadas, “ISDL: An instruction set descrip-

tion language for retargetability,” in Proc. of Design Automation Conf., pp. 299–

302, June 1997.

[36] P. Asar, “Towards a multi-formalism framework for architectural synthesis: The

ASAR project,” in Proc. of Int. Workshop on Hardware/Software Co-Design,

pp. 25–32, Sept. 1994.

[37] I. Bolsens, H. J. De Man, B. Lin, K. V. Rompaey, S. Vercauteren, and D. Verkest,

“Hardware/software co-design of digital telecommunication systems,” Proc. of

IEEE, vol. 85, pp. 391–418, Mar. 1997.

[38] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A framework for

simulating and prototyping heterogeneous systems,” Int. J. of Computer Simula-

tion, vol. 4, pp. 155–182, Apr. 1994.

[39] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-

Vincentelli, “A formal methodology for hardware/software co-design of embed-

ded systems,” Micro, vol. 14, pp. 26–36, Aug. 1994.

[40] P. H. Chou and G. Borriello, “Modal processes: Toward enhanced retargetabil-

ity through control composition of distributed embedded systems,” in Proc. of

Design Automation Conf., pp. 88–93, June 1998.

[41] X. Hu, J. G. D’Ambrosio, B. T. Murray, and D.-L. Tang, “Codesign of architec-

tures for automotive powertrain modules,” Micro, pp. 17–24, Aug. 1994.

[42] T. B. Ismail, M. Abid, K. O’Brien, and A. Jerraya, “An approach for hardware-

software codesign,” in Proc. of Int. Workshop on Rapid System Prototyping,

pp. 73–80, June 1994.

252

[43] A. Kalavade and E. A. Lee, “A hardware-software codesign methodology for DSP

applications,” IEEE Design and Test of Computers, vol. 3, pp. 16–28, Sept. 1993.

[44] C. Passerone, L. Lavagno, M. Chiodo, and A. Sangiovanni-Vincentelli, “Fast

hardware/software co-simulation for virtual prototyping and trade-off analysis,”

in Proc. of Design Automation Conf., pp. 389–394, June 1997.

[45] J. D’Ambrosio and X. Hu, “Configuration-level hardware/software partitioning

for real-time systems,” in Proc. of Int. Workshop on Hardware/Software Co-

Design, pp. 34–41, Aug. 1994.

[46] K. S. Chatha and R. Vemuri, “An iterative algorithm for hardware-software parti-

tioning, hardware design space exploration and scheduling,” Design Automation

for Embedded Systems, vol. 5, pp. 281–293, Aug. 2000.

[47] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System level hardware/software

partitioning based on simulated annealing and tabu search,” Design Automation

for Embedded Systems, vol. 2, pp. 5–32, Jan. 1997.

[48] R. Ernst, J. Henkel, and T. Benner, “Hardware/software cosynthesis for micro-

controllers,” IEEE Design and Test of Computers, vol. 12, pp. 64–75, Dec. 1993.

[49] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, “System-level exploration with

SpecSyn,” in Proc. of Design Automation Conf., pp. 812–817, June 1998.

[50] R. K. Gupta and G. De Micheli, “Hardware-software cosynthesis for digital sys-

tems,” IEEE Design and Test of Computers, vol. 10, pp. 29–41, Sept. 1993.

[51] J. Henkel and R. Ernst, “A hardware/software partitioner using a dynamically

determined granularity,” in Proc. of Design Automation Conf., pp. 691–696, June

1997.

Bibliography 253

[52] A. Kalavade and E. A. Lee, “The extended partitioning problem: Hard-

ware/software mapping and implementation-bin selection,” in Proc. of Int. Work-

shop on Rapid System Prototyping, pp. 12–18, June 1995.

[53] Z. Karakehayov, “A fine-grained approach to distributed embedded system de-

sign,” in Proc. of Int. Conf. on Parallel and Distributed Computing and Systems,

pp. 376–380, Oct. 1995.

[54] P. V. Knudsen and J. Madsen, “PACE: A dynamic programming algorithm for

hardware/software partitioning,” in Proc. of Int. Workshop on Hardware/Software

Co-Design, pp. 82–95, Mar. 1996.

[55] B. Koroušić-Seljak and J. E. Cooling, “Optimization of multiprocessor real-time

embedded system structures,” in Proc. of Mediterranean Electrotechnical Conf.,

pp. 313–316, Apr. 1994.

[56] C.-H. Lee and K. G. Shin, “Optimal task assignment in homogeneous networks,”

IEEE Trans. on Parallel and Distributed Systems, vol. 8, pp. 119–129, Feb. 1997.

[57] H. Liu and D. F. Wong, “Integrated partitioning and scheduling for hard-

ware/software co-design,” in Proc. of Int. Conf. on Computer Design, pp. 609–

614, Oct. 1998.

[58] M. Potkonjak and J. Rabaey, “Algorithm selection: A quantitative computation-

intensive optimization approach,” in Proc. of Int. Conf. on Computer-Aided De-

sign, pp. 90–95, Oct. 1994.

[59] D. Saha, R. S. Mitra, and A. Basu, “Hardware software partitioning using genetic

algorithm,” in Proc. of Int. Conf. on VLSI Design, pp. 155–159, Oct. 1998.

254

[60] D. Towlsey, “Allocating programs containing branches and loops within a multi-

ple processor system,” IEEE Trans. on Software Engineering, vol. 12, pp. 1018–

1024, Oct. 1986.

[61] F. Kaudel, “Comments on ‘Allocating programs containing branches and loops

within a multiple processor system’,” IEEE Trans. on Software Engineering,

vol. 16, p. 471, Apr. 1990.

[62] D. Towlsey, “Corrections to ‘Allocating programs containing branches and loops

within a multiple processor system’,” IEEE Trans. on Software Engineering,

vol. 16, p. 472, Apr. 1990.

[63] F. Vahid, T.-D. Le, and Y.-C. Hsu, “A comparison of functional and structural

partitioning,” in Proc. of Int. Symp. on System Synthesis, pp. 121–126, Nov. 1996.

[64] F. Vahid and T.-D. Le, “Towards a model for hardware and software func-

tional partitioning,” in Proc. of Int. Workshop on Hardware/Software Co-Design,

pp. 116–123, Mar. 1996.

[65] J. Axelsson, “Architecture synthesis and partitioning of real-time systems: A

comparison of three heuristic search strategies,” in Proc. of Int. Workshop on

Hardware/Software Co-Design, pp. 161–165, Mar. 1997.

[66] A. Bender, “Design of an optimal loosely coupled heterogeneous multiprocessor

system,” in Proc. of European Design and Test Conf., pp. 275–281, Mar. 1996.

[67] B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-software

co-synthesis of heterogeneous distributed embedded systems,” IEEE Trans. on

VLSI Systems, vol. 7, pp. 92–104, Mar. 1999.

Bibliography 255

[68] B. P. Dave and N. K. Jha, “COHRA: Hardware-software cosynthesis of hierar-

chical heterogeneous distributed embedded systems,” IEEE Trans. on Computer-

Aided Design, vol. 17, pp. 900–919, Oct. 1998.

[69] B. Dave, “CRUSADE: Hardware/software co-synthesis of dynamically reconfig-

urable heterogeneous real-time distributed embedded systems,” in Proc. of De-

sign, Automation and Test in Europe Conf., pp. 97–104, Mar. 1999.

[70] P.-A. Hsiung, “CMAPS: A cosynthesis methodology for application-oriented par-

allel systems,” ACM Trans. on Design Automation of Electronic Systems, vol. 5,

pp. 51–81, Jan. 2000.

[71] B. Jeong, S. Yoo, S. Lee, and K. Choi, “Hardware-software cosynthesis for run-

time incrementally reconfigurable FPGAs,” in Proc. of Asia and South Pacific

Design Automation Conf., pp. 169–174, Jan. 2000.

[72] I. Karkowski and H. Corporaal, “Design space exploration algorithm for hetero-

geneous multi-processor embedded system design,” in Proc. of Design Automa-

tion Conf., pp. 82–87, June 1998.

[73] K. Kuchcinski, “Embedded system synthesis by timing constraints solving,” in

Proc. of Int. Symp. on System Synthesis, pp. 50–57, Sept. 1997.

[74] C. Lee, M. Potkonjak, and W. Wolf, “Synthesis of hard real-time application spe-

cific systems,” Design Automation for Embedded Systems, vol. 4, no. 4, pp. 215–

242, 1999.

[75] H. Oh and S. Ha, “Hardware-software cosynthesis technique based on het-

erogeneous multiprocessor scheduling,” in Proc. of Int. Workshop on Hard-

ware/Software Co-Design, pp. 183–1878, May 1999.

256

[76] S. Prakash and A. Parker, “SOS: Synthesis of application-specific heteroge-

neous multiprocessor systems,” J. of Parallel & Distributed Computing, vol. 16,

pp. 338–351, Dec. 1992.

[77] M. Schwiegershausen and P. Pirsch, “Formal approach for the optimization of

heterogeneous multiprocessors for complex image processing schemes,” in Proc.

of European Design Automation Conf., pp. 8–13, Sept. 1995.

[78] S. Srinivasan and N. K. Jha, “Hardware-software co-synthesis of fault-tolerant

real-time distributed embedded systems,” in Proc. of European Design Automa-

tion Conf., pp. 334–339, Sept. 1995.

[79] J. Teich, T. Blickle, and L. Thiele, “An evolutionary approach to system-level

synthesis,” in Proc. of Int. Workshop on Hardware/Software Co-Design, pp. 167–

171, Mar. 1997.

[80] W. H. Wolf, “An architectural co-synthesis algorithm for distributed, embedded

computing systems,” IEEE Trans. on VLSI Systems, vol. 5, pp. 218–229, June

1997.

[81] T.-Y. Yen and W. H. Wolf, “Communication synthesis for distributed embedded

systems,” in Proc. of Int. Conf. on Computer-Aided Design, pp. 288–294, Nov.

1995.

[82] Y. Xie and W. Wolf, “Allocation and scheduling of conditional task graph in hard-

ware/software co-synthesis,” in Proc. of Design, Automation and Test in Europe

Conf., pp. 620–625, Mar. 2001.

[83] F. Kordon and W. E. Kaim, “H-COSTAM: A hierarchical communicating state-

machine model for generic prototyping,” in Proc. of Int. Workshop on Rapid Sys-

tem Prototyping, pp. 131–138, June 1995.

Bibliography 257

[84] J. Hou and W. Wolf, “Process partitioning for distributed embedded systems,” in

Proc. of Int. Workshop on Hardware/Software Co-Design, pp. 70–76, Mar. 1996.

[85] P. V. Knudsen and J. Madsen, “Graph based communication analysis for hard-

ware/software codesign,” in Proc. of Int. Workshop on Hardware/Software Co-

Design, pp. 131–135, May 1999.

[86] A. Dasdan, D. Ramanathan, and R. K. Gupta, “Rate derivation and its applica-

tions to reactive, real-time embedded systems,” in Proc. of Design Automation

Conf., pp. 263–268, June 1998.

[87] R. K. Gupta, “Framework for interactive analysis of timing constraints in em-

bedded systems,” in Proc. of Int. Workshop on Hardware/Software Co-Design,

pp. 44–51, Mar. 1996.

[88] X. Hu and R. S. Sambandam, “Multi-valued performance metrics for real-time

embedded systems,” Design Automation for Embedded Systems, vol. 5, pp. 5–28,

Feb. 2000.

[89] B.-D. Rhee, S. L. Min, S.-S. Lim, H. Shin, C. S. Kim, and C. Y. Park, “Issues

of advanced architectural features in the design of a timing tool,” in Proc. of

Workshop on Real-Time Operating Systems and Software, pp. 59–62, May 1994.

[90] T. Benner and R. Ernst, “An approach to mixed systems co-synthesis,” in Proc.

of Int. Workshop on Hardware/Software Co-Design, pp. 9–14, Mar. 1997.

[91] P. H. Chou, R. B. Ortega, and G. Borriello, “The Chinook hardware/software co-

synthesis system,” in Proc. of Int. Symp. on System Synthesis, pp. 22–27, Sept.

1995.

258

[92] D. L. Rhodes and W. Wolf, “Co-synthesis of heterogeneous multiprocessor sys-

tems using arbitrated communication,” in Proc. of Int. Conf. on Computer-Aided

Design, pp. 339–342, Nov. 1999.

[93] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software using

implicit path enumeration,” IEEE Trans. on Computer-Aided Design, vol. 16,

Dec. 1997.

[94] J. M. Rabaey and L. M. Guerra, “Exploring the architecture and algorithmic

space for signal processing applications,” in Proc. of Int. Conf. on VLSI and CAD,

pp. 315–319, Nov. 1993.

[95] Y. Xie and W. Wolf, “Co-synthesis with custom ASICs,” in Proc. of Asia and

South Pacific Design Automation Conf., pp. 129–133, Jan. 2000.

[96] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-

Vincentelli, “A formal specification model for hardware/software codesign,” in

Proc. of Int. Workshop on Hardware/Software Co-Design, Oct. 1993.

[97] B. Lee and E. A. Lee, “Hierarchical concurrent finite state machines in ptolemy,”

in Proc. of International Conf. on Applications of Concurrency to System Design,

pp. 34–40, Mar. 1998.

[98] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design of

Embedded Systems. Prentice-Hall, Englewood Cliffs, NJ, 1994.

[99] L. A. Cortéz, P. Eles, and Z. Peng, “A survey on hardware/software codesign

representation models,” tech. rep., Dept. Computer and Information Science,

Linköping University, June 1999.

Bibliography 259

[100] L. L. E. A. Yakovlev, L. Gomes, Hardware Design and Petri Nets. Kluwer Aca-

demic Publishers, Boston, 2000.

[101] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, “Design of

embedded systems: Formal models, validation, and synthesis,” Proc. of IEEE,

pp. 366–390, Mar. 1997.

[102] “The hardware-software co-synthesis benchmarks mailing list.” http://www.ee.-

princeton.edu/˜cad/cosynth-benchmarks.

[103] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Scheduling of condi-

tional process graphs for the synthesis of embedded systems,” in Proc. of Design,

Automation and Test in Europe Conf., pp. 132–139, Feb. 1998.

[104] D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and L. Thiele, “Representation of

process mode correlation for scheduling,” in Proc. of Int. Conf. on Computer-

Aided Design, pp. 54–61, Nov. 1998.

[105] E. L. Lawler and C. U. Martel, “Scheduling periodically occurring tasks on mul-

tiple processors,” Information Processing Letters, vol. 7, pp. 9–12, Feb. 1981.

[106] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software using

implicit path enumeration,” in Proc. of Design Automation Conf., pp. 456–461,

June 1995.

[107] Z. Chen and K. Roy, “A power macromodeling technique based on power sensi-

tivity,” in Proc. of Design Automation Conf., pp. 678–683, June 1998.

[108] M. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power analysis and minimization

techniques for embedded DSP software,” IEEE Trans. on VLSI Systems, vol. 5,

pp. 123–135, Mar. 1997.

260

[109] V. Tiwari, S. Malik, A. Wolfe, and M. T.-C. Lee, “Instruction level power anal-

ysis and optimization of software,” J. VLSI Signal Processing, vol. 13, no. 2–3,

pp. 223–238, 1996.

[110] “A simple method of estimating power in XC4000XL/EX/E FPGAs,” June 1997.

[111] R. Y. Chen, R. M. Owens, M. J. Irwin, and R. S. Bajwa, “Validation of an ar-

chitectural level power analysis technique,” in Proc. of Design Automation Conf.,

pp. 242–245, June 1998.

[112] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, NY, 1979.

[113] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley, Reading, MA, 1984.

[114] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms.

McGraw-Hill Book Company, NY, 1990.

[115] W. Green, Introduction to Operations Engineering. Righard D. Irwin, Inc., IL,

1971.

[116] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Opera-

tions Research, pp. 699–719, July 1966.

[117] C. H. Papadimitriou and K. Stiglitz, Combinatorial Optimization: Algorithms

and Complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[118] F. Glover and M. Laguna, Tabu Search. Kluwer Academic Publishers, Boston,

1997.

Bibliography 261

[119] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines. John Wiley

& Sons, Chichester, England, 1989.

[120] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Addison-Wesley, Reading, MA, 1989.

[121] A. Neubauer, “The circular schema theorem for genetic algorithms and two-point

crossover,” in Proc. of Genetic Algorithms in Engineering Systems: Innovations

and Applications, pp. 209–214, Sept. 1997.

[122] S. W. Mahfoud and D. E. Goldberg, “Parallel recombinative simulated annealing:

A genetic algorithm,” Parallel Computing, vol. 21, pp. 1–28, Jan. 1995.

[123] C. M. Fonseca and P. J. Fleming, “Multiobjective genetic algorithms made easy:

Selection, sharing and mating restrictions,” in Proc. of Genetic Algorithms in

Engineering Systems: Innovations and Applications, pp. 45–52, Sept. 1995.

[124] K. Ramamritham and J. A. Stankovic, “Scheduling algorithms and operating sys-

tems support for real-time systems,” Proc. of IEEE, vol. 82, pp. 55–67, Jan. 1994.

[125] S. Kim and J. Browne, “A general approach to mapping of parallel computations

upon multiprocessor architectures,” in Proc. of Int. Conf. on Parallel Processing,

vol. 2, pp. 1–8, Aug. 1988.

[126] A. E. Smith and D. M. Tate, “Genetic optimization using a penalty function,” in

Proc. of Int. Conf. on Genetic Algorithms, pp. 499–503, July 1993.

[127] T.-Y. Yen, Hardware-Software Co-Synthesis of Distributed Embedded Systems.

PhD thesis, Dept. of Electrical Engg., Princeton University, June 1996.

262

[128] B. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-software co-

synthesis of embedded systems,” in Proc. of Design Automation Conf., pp. 703–

708, June 1997.

[129] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for free,” in Proc. of

Int. Workshop on Hardware/Software Co-Design, pp. 97–101, Mar. 1998.

[130] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian optimization

algorithm,” in Proc. of the Genetic and Evolutionary Computation Conf., July

1999.

[131] “Embedded microprocessor benchmark consortium.” http://www.eembc.org.

[132] R. Weiss, “32-bit cores drive systems-on-a-chip,” Computer Design, pp. 82–89,

Sept. 1996.

[133] “Design and reuse.” http://www.design-reuse.com/.

[134] W. Wolf, “Floorplanning: The art of chip-level design,” Electronics J., pp. 8–13,

Oct. 1998.

[135] M. Kishinevsky, J. Cortadella, and A. Kondratyev, “Asynchronous interface spec-

ification, analysis and synthesis,” in Proc. of Design Automation Conf., pp. 2–7,

June 1998.

[136] L. F. G. Sarmenta, G. A. Pratt, and S. A. Ward, “Rational clocking,” in Proc. of

Int. Conf. on Computer Design, pp. 217–278, Oct. 95.

[137] S. Moore, G. Taylor, R. Mullins, and P. Robinson, “Point to point GALS intercon-

nect,” in Proc. of Int. Symp. on Asynchronous Circuits and Systems, pp. 769–775,

Apr. 2002.

Bibliography 263

[138] T. Chelcea and S. M. Nowick, “A low-latency FIFO for mixed-clock systems,”

in Proc. of IEEE Computer Society Annual Workshop on VLSI, pp. 21–28, Apr.

2000.

[139] M. Bazes, R. Ashuri, and E. Knoll, “An interpolating clock synthesizer,” J. of

Solid-State Circuits, vol. 31, pp. 1295–1300, Sept. 1996.

[140] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving net-

work partitions,” in Proc. of Design Automation Conf., pp. 173–181, June 1982.

[141] L. Stockmeyer, “Optimal orientations of cells in slicing floorplan designs,” Infor-

mation and Control, vol. 57, pp. 91–101, May/June 1983.

[142] M. Wang and M. Sarrafzadeh, “Modeling and minimization of routing conges-

tion,” in Proc. of Asia and South Pacific Design Automation Conf., pp. 185–190,

Jan. 2000.

[143] F. K. Hwang, “On steiner minimal trees with rectilinear distance,” SIAM J. on

Applied Mathematics, pp. 104–114, Jan. 1976.

[144] J. Cong, Z. Pan, L. He, C.-K. Koh, and K.-Y. Khoo, “Interconnect design for deep

submicron ICs,” in Proc. of Int. Conf. on Computer-Aided Design, pp. 478–485,

Nov. 1997.

[145] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor, and

R. Laufer, “Piperench: A coprocessor for streaming multimedia acceleration,” in

Proc. of Int. Symp. on Computer Architecture, pp. 28–39, June 1999.

[146] D. Halchin and M. Golio, “Trends for portable wireless applications,” Microwave

J., vol. 40, pp. 62–78, Jan. 1997.

264

[147] S. Komaki and E. Ogawa, “Trends of fiber-optic microcellular radio communica-

tion networks,” IEICE Trans. Electronics, vol. E79-C, pp. 98–103, Jan. 1996.

[148] G. Comparetto and R. Ramirez, “Trends in mobile satellite technology,” Com-

puter, vol. 30, pp. 44–52, Feb. 1997.

[149] F. Ananasso and F. D. Priscoli, “Issues on the evolution towards satellite per-

sonal communication networks,” in Proc. of Global Telecommunications Conf.,

pp. 541–545, Nov. 1995.

[150] R. E. Barry and J. P. Jones, “Rapid world modeling from a mobile platform,” in

Proc. of Int. Conf. on Robotics and Automation, pp. 72–78, Apr. 1997.

[151] D. W. Gage, “Telerobotic requirements for sensing, navigation, and communica-

tions,” in Proc. of National Telesystems Conf., pp. 145–148, May 1994.

[152] “Altera ARC-PCI reconfigurable computing platform.” http://www.altera.com/-

html/new/pressrel/pr arc-pci.html.

[153] “Xilinx part information.” http://www.xilinx.com/partinfo/.

[154] D. Galloway, “The transmogrifier C hardware description language and com-

piler for FPGAs,” in Proc. Symp. on FPGAs for Custom Computing Machines,

pp. 136–144, Apr. 1995.

[155] L. Shang and N. K. Jha, “Hardware-software co-synthesis of low power real-time

distributed embedded systems with dynamically reconfigurable fpgas,” in Proc.

of Int. Conf. on VLSI Design, pp. 345–352, Jan. 2002.

[156] “Computer design.” Product trends sections of vol. 35: n. 2, 6, 8, 9, vol. 36: n. 1,

9, and vol. 37: n. 1–3.

Bibliography 265

[157] L. Shang and N. K. Jha, “High-level power modeling of CPLDs and FPGAs,” in

Proc. of Int. Conf. on Computer Design, pp. 46–51, Sept. 2001.

[158] L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic power consumption in

virtexTM-II FPGA,” in Proc. of Int. Symp on Field Programmable Gate Arrays,

pp. 157–164, Feb. 2002.

[159] J. J. Labrosse, MicroC/OS-II. R & D Books, Lawrence, KS, 1998.

[160] Fujitsu Microelectronics, Inc., “MB8683x user’s guide.”

[161] S. Heath, Embedded Systems Design. Butterworth-Heinemann, Boston, MA,

1997.

[162] J. J. Labrosse, Embedded Systems Building Blocks. R & D Books, Lawrence, KS,

1997.

[163] J. J. Labrosse, MicroC/OS-II. R & D Books, Lawrence, KS, 1998.

[164] P. A. Laplante, Real-Time Systems Design and Analysis: An Engineers Hand-

book. IEEE Press, Piscataway, NJ, 1993.

[165] R. Sharma, “Distributed application development with Inferno,” in Proc. Design

Automation Conf., pp. 146–150, June 1999.

[166] D. Stepner, N. Rajan, and D. Hui, “Embedded application design using a real-

time OS,” in Proc. Design Automation Conf., pp. 151–156, June 1999.

[167] W. Warner, “Non-pre-emptive multithreading performs embedded software’s jug-

gling act,” Electronic Design News, vol. 44, pp. 117–126, July 1999.

[168] L. Benini and G. De Micheli, Dynamic Power Management: Design Techniques

and CAD Tools. Kluwer Academic Publishers, Norwell, MA, 1997.

266

[169] A. R. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS Design.

Kluwer Academic Publishers, Norwell, MA, 1995.

[170] G. Yeap, Practical Low Power Digital VLSI Design. Kluwer Academic Publish-

ers, Norwell, MA, 1998.

[171] J. Monteiro and S. Devadas, Computer-Aided Design Techniques for Low Power

Sequential Logic Circuits. Kluwer Academic Publishers, Norwell, MA, 1996.

[172] J. Rabaey and M. P. (Editors), Low Power Design Methodologies. Kluwer Aca-

demic Publishers, Norwell, MA, 1996.

[173] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: A first

step towards software power minimization,” IEEE Trans. VLSI Systems, vol. 2,

pp. 437–445, Dec. 1994.

[174] T. Sato, Y. Ootaguro, M. Nagamatsu, and H. Tago, “Evaluation of architecture-

level power estimation for CMOS RISC processors,” in Proc. Symp. Low Power

Electronics, pp. 44–45, Oct. 1995.

[175] C. T. Hsieh, M. Pedram, G. Mehta, and F. Rastgar, “Profile-driven program syn-

thesis for evaluation of system power dissipation,” in Proc. Design Automation

Conf., pp. 576–581, June 1997.

[176] L. Benini and G. De Micheli, “System-level power optimization: Techniques and

tools,” in Proc. Int. Symp. Low Power Electronics & Design, pp. 288–293, Aug.

1999.

[177] B. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-software co-

synthesis of embedded systems,” in Proc. Design Automation Conf., pp. 703–708,

June 1997.

Bibliography 267

[178] Y. Li and J. Henkel, “A framework for estimating and minimizing energy dissipa-

tion of embedded HW/SW systems,” in Proc. Design Automation Conf., pp. 188–

193, June 1998.

[179] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, and A. Sangiovanni-Vincentelli,

“Efficient power estimation techniques for HW/SW systems,” in Proc. VOLTA’99

Int. Wkshp. on Low Power Design, Mar. 1999.

[180] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M. Kan-

demir, T. Li, and L. K. John, “Using complete machine simulation for software

power estimation: The SoftWatt approach,” in Proc. Int. Symp. High Performance

Computer Architecture, pp. 141–150, Feb. 2002.

[181] V. Tiwari, S. Malik, and A. Wolfe, “Compilation techniques for low energy: An

overview,” in Proc. Symp. Low Power Electronics, pp. 38–39, Oct. 1994.

[182] T. Simunic, G. De Micheli, and L. Benini, “Energy-efficient design of battery-

powered embedded systems,” in Proc. Int. Symp. Low Power Electronics & De-

sign, pp. 212–217, Aug. 1999.

[183] J. L. da Silva, F. Catthoor, D. Verkest, and H. De Man, “Power exploration for

dynamic data types through virtual memory management refinement,” in Proc.

Int. Symp. Low Power Electronics & Design, pp. 311–316, Aug. 1998.

[184] Q. Qiu, Q. Wu, and M. Pedram, “Stochastic modeling of a power-managed sys-

tem: Construction and optimization,” in Proc. Int. Symp. Low Power Electronics

& Design, pp. 194–199, Aug. 1999.

[185] L. Benini, A. Bogliolo, S. Cavallucci, and B. Ricco, “Monitoring system activity

for OS-directed dynamic power management,” in Proc. Int. Symp. Low Power

Electronics & Design, pp. 185–190, Aug. 1998.

268

[186] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, “Power op-

timization of variable voltage core-based systems,” in Proc. Design Automation

Conf., pp. 176–181, June 1998.

[187] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically vari-

able voltage processors,” in Proc. Int. Symp. Low Power Electronics & Design,

pp. 197–202, Aug. 1998.

[188] T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation of dynamic

voltage scaling algorithms,” in Proc. Int. Symp. Low Power Electronics & Design,

pp. 76–81, Aug. 1998.

[189] N. K. Jha, “Low power system scheduling and synthesis,” in Proc. Int. Conf.

Computer-Aided Design, pp. 259–263, Nov. 2001.

[190] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power em-

bedded operating systems,” in Proc. ACM Symposium on Operating Systems

Principles, pp. 89–102, Dec. 2001.

[191] L. Benini, M. Kandemir, and J. Ramanujam, eds., Proc. Wkshp. Compilers &

Operating Systems for Low Power. Kluwer Academic Publishers, to appear in

2002.

[192] Y.-H. Lu, L. Benini, and G. De Micheli, “Power-aware operating systems for

interactive systems,” IEEE Trans. on VLSI Systems, vol. 10, Apr. 2002.

[193] T. Simunic, L. Benini, P. W. Glynn, and G. D. Micheli, “Dynamic power man-

agement for portable systems,” in Proc. MOBICOM, pp. 11–19, Aug. 2000.

Bibliography 269

[194] A. Vahdat, A. R. Lebeck, and C. S. Ellis, “Every joule is precious: The case for

revisiting operating system design for energy efficiency,” in Proc. ACM SIGOPS

European Workshop, Sept. 2000.

[195] R. P. Dick, G. Lakshminarayana, A. Raghunathan, and N. K. Jha, “Power analysis

of embedded operating systems,” in Proc. Design Automation Conf., pp. 312–315,

June 2000.

[196] T. K. Tan, A. Raghunathan, and N. K. Jha, “EMSIM: An energy simulation frame-

work for an embedded operating system,” in Proc. Int. Symp. Circuits & Systems,

May 2002.

[197] K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit, T. Zhang, and

B. Jacob, “The performance and energy consumption of three embedded real-time

operating systems,” in Proc. Int. Conf. Compilers, Architecture, and Synthesis for

Embedded Systems, pp. 203–210, Nov. 2001.

[198] T. Simunic, L. Benini, and G. De Micheli, “Cycle-accurate simulation of en-

ergy consumption in embedded systems,” in Proc. of Design Automation Conf.,

pp. 867–872, June 1999.

[199] CoWare N2C Training Manual, 1999.

[200] W. Ye, R. Ernst, T. Benner, and J. Henkel, “Fast timing analysis for hardware-

software co-synthesis,” in Proc. of Int. Conf. on Computer Design, pp. 452–457,

Oct. 1993.

[201] Fujitsu Microelectronics, Inc., “SPARClite series 32-bit RISC embedded proces-

sor MB86832 databook,” 1998.

[202] IBM, “1995 DRAM databook,” 1994.

270

[203] Fujitsu Microelectronics, Inc., “MB86934: 930 series 32-bit RISC embedded

processor datasheet,” 1996.

[204] R. P. Dick and N. K. Jha, “MOCSYN: Multiobjective core-based single-chip sys-

tem synthesis,” in Proc. of Design, Automation and Test in Europe Conf., pp. 263–

270, Mar. 1999.

[205] R. P. Dick and N. K. Jha, “CORDS: Hardware-software co-synthesis of re-

configurable real-time distributed embedded systems,” in Proc. of Int. Conf. on

Computer-Aided Design, pp. 62–68, Nov. 1998.

[206] R. P. Dick and N. K. Jha, “COWLS: Hardware-software co-synthesis of dis-

tributed wireless low-power embedded client-server systems,” in Proc. of Int.

Conf. on VLSI Design, pp. 114–120, Jan. 2000.

[207] R. P. Dick and N. K. Jha, “MOGAC: A multiobjective genetic algorithm for the

co-synthesis of hardware-software embedded systems,” in Proc. of Int. Conf. on

Computer-Aided Design, pp. 522–529, Nov. 1997.

[208] D. Kirovski and M. Potkonjak, “System-level synthesis of low-power hard real-

time systems,” in Proc. of Design Automation Conf., pp. 697–702, June 1997.

[209] T. Yang and A. Gerasoulis, “DSC: Scheduling parallel tasks on an unbounded

number of processors,” IEEE Trans. on Parallel and Distributed Systems, vol. 30,

pp. 951–967, Sept. 1994.

[210] W. Zhao, K. Ramamritham, and J. Stankovic, “Preemptive scheduling under time

and resource constraints,” IEEE Trans. on Computers, vol. 36, pp. 949–960, Aug.

1987.

Bibliography 271

[211] M. Sengupta, “ISCAS ’89 benchmark information,” Mar. 89. http://www.cbl.-

ncsu.edu/CBL Docs/iscas89.html.

[212] D. Du, J. Gu, and P. M. Pardalos, “Satisfiability problems: Theory and applica-

tions,” in DIMACS: Series in Descrete and Applied Mathematics and Computer

Science, vol. 35, American Mathematical Society, Providence, RI, 1997.

[213] G. Marsaglia and A. Zaman, “Toward a universal random number generator,”

Statistics and Probability Letters, vol. 9, pp. 35–39, Jan. 1990.

[214] R. P. Dick and N. K. Jha, “MOGAC: A multiobjective genetic algorithm for

hardware-software co-synthesis of distributed embedded systems,” IEEE Trans.

on Computer-Aided Design, vol. 17, pp. 920–935, Oct. 1998.

