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Abstract 
This paper presents a hybrid heuristic methodology for the solution of the multi-objective cell-formation 
problem. Traditional optimization methodologies employ aggregating schemes in order to transform the 
problem into a single-objective case. In this way the designer is not presented with a set of non-dominated 
solutions but with a single compromise solution based on pre-specified weighting priorities. The proposed 
methodology combines a traditional hierarchical clustering analysis technique with a genetic programming 
algorithm that is based on the principles of evolutionary computation. The hybrid methodology evolves an 
approximation of the Pareto set of solutions for multi-objective cell-formation problems. The benefits brought 
by the proposed approach in comparison to traditional optimization methodologies are illustrated using a 
typical example taken from the literature. 
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1 INTRODUCTION 
While most practical manufacturing optimization problems 
require the simultaneous optimization of multiple (usually 
conflicting) objectives, research in this area has been 
relatively limited. A typical example is the problem of 
designing cells in a cellular manufacturing production 
system. A considerable number of methodologies have 
been proposed for the solution of the single-objective 
version of the problem over the last four decades. The 
multiobjective version of the cell-formation problem has 
received limited attention. However, a number of 
researchers indicate ([12], [14]) that multiobjective 
considerations are very frequent during the design of a 
manufacturing system.   
Evolutionary Algorithms (EAs) are particularly suited for the 
solution of multiobjective optimization problems since their 
search mechanism is based on the use of a population of 
candidate solutions. This feature has been exploited by a 
number of researchers that have proposed evolutionary 
systems which search not for a single solution but for the 
Pareto set of solutions (Multiobjective Evolutionary 
Algorithms, MOEAs). These MOEAs have been reported to 
provide efficient solutions to non-trivial multiobjective 
optimization problems (see [13] for an excellent review of 
MOEA research). 
The methodology presented in this paper combines an EA-
based methodology for the solution of single-objective cell-
formation problems (GP-SLCA [16]) with NSGA-II [17], a 
state-of-the-art evolutionary technique for multiobjective 
optimization. A typical example taken from the literature is 
used to illustrate the benefits gained from the proposed 
methodology. 
The rest of this paper is organized as follows: A brief 
review of the multiobjective cell formation problem is 
provided in section 2. Section 3 provides a description of 
the proposed solution methodology. Section 4 illustrates its 
application to an example problem taken from the literature 
and reviews the experimental findings. The conclusions of 
this research and possible future developments are 
discussed in section 5. 

2 THE MULTIOBJECTIVE CELL-FORMATION 
PROBLEM 

Cellular Manufacturing (CM) is the application of the 
organizational approach called Group Technology (GT) [1] 
at the shop floor production level. It states that there are 
considerable benefits to be gained by grouping machines 
into cells that process similar parts. CM has been shown to 
provide considerable cost benefits to practical 
manufacturing environments [14]. Despite the advent of 
new production design techniques such as Just In Time 
(JIT) systems and Agile manufacturing, CM is still 
considered to be a useful design principle since its 
application requires limited capital investment.  
The general multiobjective cell-formation problem can be 
stated as follows: A grouping of machines into cells and 
parts into associated families needs to be identified that will 
simultaneously optimize a number of objectives. A single 
solution that simultaneously optimizes all objectives 
considered does not generally exist for this problem. 
Instead, there exists a set of solutions, known as the 
Pareto set of solutions, which dominate every other 
solution in the solutions' space with respects to all 
objectives considered. The solutions belonging to the 
Pareto set do not dominate each other since no solution is 
better than the other with respect to all objectives 
considered. The aim of multiobjective optimization 
methodologies is to provide the decision maker with the 
Pareto set of solutions or at least a close approximation of 
this set. It is the task of the decision maker to choose a 
solution that fits best his/her preferences by considering all 
potential trade-offs. 
While a considerable number of analytic and heuristic 
methodologies have been proposed for the solution of the 
single objective cell-formation problem, a limited number of 
methodologies have addressed the multiobjective version 
of the problem. As illustrated in the recent reviews 
contacted by Mansouri [12] and Dimopoulos [19], the 
majority of these techniques perform multiobjective 
optimization by aggregating all objectives considered into a 
single compromise solution [5], [8], [9], [10]. This 
mechanism allows the use of typical single-objective 
optimization techniques for the solution of multiobjective 
optimization problems; however, it does not provide the set 
of non-dominated solutions to the decision maker.   



A small number of researchers in the field of evolutionary 
computation have proposed solution methodologies that 
attempt to generate the Pareto set of solutions for specific 
versions of the multiobjective cell-formation problem. 
Venugopal and Narendran [6] designed an evolutionary 
algorithm that evolved two populations of potential 
solutions in parallel, each one responsible for the 
optimization of a particular objective. There was no attempt 
to explicitly generate the Pareto set of solutions; however 
the designer could consider a number of alternative trade-
off solutions by observing the set of solutions already 
evolved in each population.  
Gupta et al. [7] addressed a multiobjective cell-formation 
problem using a similar evolutionary algorithm, however, 
the mutliobjective solutions were identified indirectly from 
the population of solutions that was evolved for the 
optimization of individual objectives.  
Recently, Solinmanpur et al. [20] proposed the first 
genuine MOEA for the solution of a multiobjective cell-
formation problem. They employed an improved version of 
a primitive MOEA technique called VEGA [3] to drive the 
simultaneous optimization of all objectives considered. 
While their approach was able to automatically generate a 
set of alternative solutions, the use of the VEGA technique 
is rather outdated, since a number of state-of-the-art 
EMOA techniques exist that have been reported to provide 
improved performance [13].  
The algorithm presented in this article, follows on the 
guidelines discussed in [12] and [19] and introduces a 
robust multiobjective optimization methodology for the cell-
formation problem that attempts to provide the decision 
maker with a good approximation of the Pareto set of 
solutions. This methodology is described in the following 
section. 
 
3 THE MULTIOBJECTIVE GP-SLCA METHODOLOGY 

3.1 Introduction 
The methodology presented in this article is based on the 
combination of GP-SLCA [16], an established methodology 
for solving single-objective cell-formation problems, with 
NSGA-II [17], a state of-the art EMOA technique. While it is 
not possible to describe in detail the operation of the 
individual techniques , an outline of the algorithms, as well 
as a basic introduction on evolutionary computation 
concepts will be provided in the following paragraphs. A 
number of references are provided where interested 
readers can find additional information as well as 
experimental results. 

3.2 Evolutionary Algorithms and Genetic 
Programming 

Evolutionary Algorithms are heuristic optimization 
techniques that base their operation on a rough analogy to 
the process of natural selection of species and the principle 
of the survival of the fittest. Their search is contacted from 
a population of suitably encoded solution points in parallel. 
Each solution in the population receives a fitness value 
based on its performance on the problem considered. This 
value stochastically determines the probability of a solution 
'surviving' to a subsequent 'generation' of solutions. In this 
way more efficient ('fitter') solutions are continuously 
promoted, however, since the process of selection is not 
deterministic, less efficient solutions can survive to 
subsequent generations. This mechanism ensures that 
evolutionary algorithms have the ability of escaping local 
optima in a particular solutions' space. During the 
evolutionary process new solutions are created either 
through the exchange of 'genetic material' between existing 
solutions ('crossover'), or through the random modification 
of existing solutions ('mutation'). The evolutionary cycle 

continues for a pre-specified number of generations. An 
optimal or a near-optimal solution is normally found by the 
end of this process, however, convergence cannot be 
mathematically guaranteed for the majority of optimization 
problems. 
Several variants of Evolutionary Algorithms exist. They all 
share the basic algorithmic structure described in the 
previous paragraph, but they use different solution 
representation techniques or selection strategies. The 
evolutionary algorithm described in this paper is based on 
Genetic Programming, a technique that evolves solutions 
in the form of computer programs. These programs are 
normally evolved as parse trees, structures that many 
computers use internally to represent computer programs. 
In this paper Genetic Programming is employed for the 
evolution of computer programs that correspond to 
similarity coefficients, i.e. structures that calculate the level 
of similarity between a pair of entities. An excellent 
introduction to the basic principles and types of 
Evolutionary Algorithms can be found in [18].     

3.3 GP-SLCA 
The operation of GP-SLCA is based on the Single Linkage 
Cluster Analysis (SLCA) cell-formation technique, originally 
introduced by McAuley [2].  
SLCA uses Jaccard's similarity coefficients to calculate a 
measure of similarity (similarity coefficient) between all 
pairs of machines for a given problem. A dendrogram of 
potential solutions is then generated based on the values 
of similarity coefficients. A particular configuration of cells 
is created by choosing a threshold similarity value on the 
dendrogram of solutions. A simple step-by-step illustration 
of the SLCA process is provided in the Appendix of this 
article.  
GP-SLCA employs a similar structure; however, instead of 
using Jaccard's similarity coefficient, a population of 
similarity coefficients is evolved through a Genetic 
Programming machine. The first generation of coefficients 
is created randomly. The similarity inputs used by GP-
SLCA for the construction of similarity coefficients are the 
following (the same inputs are used by the multiobjective 
GP-SLCA methodology): 

:ija  number of parts processed by both machines i and j 

:ijb  number of parts processed by machine i but not by 

machine j 
:ijc  number of parts processed by machine j but not by 

machine i 
:ijd  number of parts processed by neither machine j nor 

machine i 
 
The formulas of the similarity coefficients are created by 
combining the previous inputs with a typical set of 
mathematical operators (addition, subtraction, 
multiplication, division) . 
Initially, the SLCA process is applied to each coefficient 
evolved. During this process all cell groupings in the 
respective dendrogram of solutions are recorded and their 
performance is evaluated based on the optimization 
objective. The best objective value found in the 
dendrogram of solutions is assigned as the fitness value of 
the corresponding coefficient. 
The evolutionary process continues with the selection and 
recombination steps, where coefficients are modified using 
typical recombination operators (crossover and mutation) 
until a new population of coefficients is formed.   
In algorithmic terms, the operation of GP-SLCA is the 
following: 
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Procedure GP-SLCA  
initialise population of randomly created similarity 
 coefficients  
run procedure SLCA for each coefficient 
loop 
 loop 
  select coefficients for crossover or  
    mutation 
  apply genetic operators and form  
    new coefficients 
  until a new generation of coefficients 
    has been formed 
 run procedure SLCA for each coefficient 
until termination criterion is true 
 
Procedure SLCA 
compute similarity matrix 
construct dendrogram 
loop 
 create machine cells for the highest level of  
  similarity coefficient 
 assign parts to machine cells 
 calculate the fitness value of the cell  
  configuration 
 if solution is the best recorded so far,  
  best=current solution 
until a single cell has been formed 
assign the best solution found as fitness of the individual 
 
GP-SLCA creates a considerable number of alternative 
similarity coefficients and corresponding cell groupings 
which are continuously optimized through the evolutionary 
process. The efficiency of GP-SLCA has been illustrated 
on a wide range of simple cell-formation problems that 
have been published in the literature [16], as well as on 
advanced versions of the problem [11]. It has also been 
shown that it is extremely easy to incorporate any cell-size 
or cell-number constraints in the algorithm, a feature that is 
not readily available in many alternative solution 
methodologies [11].  

3.4 NSGA-II 
Multiobjective GP-SLCA employs the NSGA-II evolutionary 
multiobjective technique as the driving force of the 
evolutionary algorithm [17]. Unlike the traditional 
evolutionary cycle which attempts to find a single optimal or 
near-optimal solution, NSGA-II promotes the evolution of a 
set of solutions that is ideally a close approximation of the 
Pareto-set of solutions for the problem considered. 
In short, this is mainly achieved by using a ranking scheme 
for all solutions evolved. All non-dominated solutions found 
in a population of solutions are assigned with rank '1' and 
removed from consideration. The set of non-dominated 
solutions found in the remaining population are assigned 
with rank '2'. The process continues until all solutions have 
been assigned with a rank. The selection of solutions that 
will form the next generation of coefficients is based on 
their current ranking value and the set of non-dominated 
solutions that have already been found during the 
evolutionary process, which is kept separately.  
The algorithm contains special mechanisms that prevent 
the premature convergence of the algorithm on a particular 
non-dominated solution by penalizing solutions that are 
situated very close to each other in the multiobjective 
space.  Note that NSGA-II is an elitist algorithm, thus the 
final generation of solutions contains all non-dominated 
solutions that were evolved during the experimental run.  A 
detailed description of the NSGA-II mechanism together 
with experimental results that illustrate its efficiency can be 
found in [17]. 

3.5 Multiobjective GP-SLCA 
The proposed methodology combines the GP-SLCA 
methodology, a mechanism for generating potential 
solutions for the cell-formation problem, with the NSGA-II 
MOEA technique, a mechanism that allows the 
simultaneous evolution of a set of non-dominated solutions 
based on the conflicting objectives considered.  Due to the 
consideration of multiple objectives, some modifications 
are necessary to the algorithmic structure of the single-
objective GP-SLCA algorithm. 
The major modification is related to the fitness assignment 
process of GP-SLCA: The evolutionary process requires 
that a fitness value is associated to each evolved 
coefficient. However, since this is a multiobjective problem, 
a single 'best' solution does not generally exist in the set of 
solutions found in the dendrogram of the SLCA process. 
Instead, there exist multiple equally 'good' non-dominated 
solutions with respect to all objectives considered. Since a 
set of objective values for each coefficient is needed by the 
NSGA-II process for a ranking of solutions to take place, a 
random similarity threshold value is associated with each 
coefficient evolved. This threshold value is used as input 
for the SLCA algorithm. It specifies the cell configuration 
that corresponds to the similarity coefficient from the 
respective dendrogram of solutions. In this way, each 
evolved coefficient generates only one machine-cell 
configuration unlike the original GP-SLCA algorithm. The 
objective values that correspond to this configuration 
constitute the objective values of the coefficient and are 
subsequently used by the NSGA-II evolutionary technique 
in order to rank solutions according to their Pareto 
efficiency. Note that each time a new coefficient is 
produced through the processes of crossover or mutation, 
an associated similarity threshold value is randomly 
generated by the GP machine. 
In algorithmic terms, the operation of the multiobjective 
GP-SLCA is the following: 
Procedure multiobjective GP-SLCA  
initialize population of randomly created similarity 
 coefficients  
run procedure mod-SLCA for each coefficient 
rank solutions using the NSGA-II process based on the 
 objective values 
loop 
 loop 
  select individuals for crossover or  
    mutation 
  apply genetic operators and form  
    new coefficients 
 until a new generation has been formed 
 run procedure SLCA for each coefficient 
 rank solutions using the NSGA-II process based 
 on the objective values 
until termination criterion is true 
 
Procedure mod-SLCA 
compute similarity matrix 
create machine cells for the associated random similarity 
 threshold value   
assign parts to machine cells 
calculate the objective values for the cell configuration 
 
 
4 EXPERIMENTAL RESULTS 
In the case of the single-objective cell-formation problem a 
large number of test problems exist for which comparative 
results are available. However, the same cannot be said for 
the case of the multiobjective cell-formation problem. The 
review of Mansouri et al. [12] depicts that the majority of 
published solution methodologies have been tested on 



individual cases for which comparative results do not exist. 
This is mainly due to the fact that a standardised 
mathematical model of the multiobjective cell-formation 
problem does not exist. The various models that have been 
proposed by researchers differ significantly in terms of the 
input data used, the criteria that need to be optimised and 
the constraints that must not be violated [12]. 

A graphical illustration of all evolved solutions can be found 
in Figure 1. Multiobjective GP-SLCA automatically evolved 
a set of non-dominated solutions. Venugopal and 
Narendran indirectly identified only one of these solutions 
by manually observing the strings of solutions evolved for 
the optimization of individual objectives. 

The multiobjective GP-SLCA methodology presented in the 
previous section was applied on a large-sized test problem 
taken from the literature (Venugopal and Narendran [6]). 
This problem involves 15 workstations and 30 parts. 20 
runs of the algorithm were contacted on the test problem. It 
is customary for Genetic Programming algorithms to 
describe the parameters of the experimental runs through 
the so-called Koza tableau. The respective table for 
multiobjective GP-SLCA is illustrated in Table 1.  

Table 1: Parameter settings for multiobjective GP-SLCA 
experimental runs 

Parameters Values 
Objective: Simultaneous minimisation 

of total intercell moves and 
total cell-load variation 

Terminal set: αij, bij, cij, dij (defined in 
section 3.3) 

Function set: +, -, ×, % (protected division 
function) 

Population size: 500 
Crossover probability: .5 
Mutation probability: .5 
Selection: Tournament selection 
Number of generations: 50 
Initialisation method: Ramped half and half 
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Figure 1: Evolved solutions in the solutions' space. 

A closer look at the results of the multiobjective GP-SLCA 
application reveals that solutions range from the extreme 
case of each workstation forming an independent cell 
(F1=0), up to the extreme case of all workstations forming 
a single cell (F2=0).  The rest of the solutions comprise 
various cell configurations spread throughout the 
approximation of the Pareto set. This is the desired 
condition for multiobjective decision making, since 
decisions can be made based on the information of the 
entire trade-off surface.  
One of the solutions that was generated through the 
multiobjective GP-SLCA process is illustrated in Figure 2 
(F1=22.657, F2=455).  Note that a non-zero entry in the 
table indicates the workload induced by the part of the 
corresponding column to the workstation of the 
corresponding row. The identified cells are enclosed in 
borders. Due to space limitations it is not possible to 
present all evolved solutions; however, all cell 
configurations are available on request.   

 
Multiobjective GP-SLCA attempted to find groupings of 
machine cells and associated part families that would 
simultaneously optimize the following objectives (based on 
the model proposed by Venugopal and Narendran): 
F1: Minimization of total intercell moves 
This objective is calculated as the total sum of intercell  
moves for a given cell configuration. Any move made by a 
part between workstations that belong to different cells is 
considered to be an intercell move.  

 
5 CONCLUSIONS  
In this article a novel methodology for the solution of 
multiobjective cell-formation problems was presented. 
Multiobjective GP-SLCA combines a modified version of 
GP-SLCA, a standard methodology for the solution of 
single-objective cell-formation problems, with NSGA-II, an 
evolutionary technique for multiobjective optimization. The 
proposed methodology was applied to a typical test 
problem taken from the literature. Although a much larger 
experimental base is needed for a proper evaluation of the 
methodology, these preliminary results indicate the benefits 
gained from its application: 

F2: Minimization of within cell-load variation 
This objective is calculated as the difference between the 
workload induced by a part on a specific workstation and 
the average workload induced by the part on the 
workstation's cell. The minimization of this objective 
ensures the smooth processing flow of materials within 
cells.  
The objectives F1 and F2 are conflicting in nature, thus a 
single solution that simultaneously minimizes both 
objectives does not generally exist.  

  • Unlike existing techniques, multiobjective GP-SLCA 
automatically generates a set of alternative trade-off 
solutions that can be used by the designer of the 
cellular manufacturing system. 

All non-dominated solutions that were found during the 
experimental runs were recorded. The cumulative results of 
the experimental runs are presented in Table 2: 

Table 2: Experimental results 
 • The decision maker does not need to pre-specify the 

total number of cells in the plant. Cell configurations for 
all possible number of cells are generated during a 
single experimental run. All existing methodologies 
require the specification of the total number of cells in 
the plant before the application of the algorithm on 
specific problems. 

Multi GP-SLCA 
solutions 

Venugopal and 
Narendran solutions 

F1 F2 F1 F2 
0 18647 8.596 918 

2.045 18332   
3.772 12759   
5.822 9818   
6.412 6722   
8.596 918   
22.657 455   
38.152 0   

 • If cell-size constraints are required by the decision 
maker, then these can be easily incorporated in 
multiobjective GP-SLCA by simply penalizing all 
solutions that violate the constraints. A similar approach 
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These preliminary results provide promising indications for 
the efficiency of the multiobjective GP-SLCA methodology; 
however, as stated earlier, a wider experimental basis is 
needed for a more detailed evaluation of the proposed 
methodology. It is in the author's intentions to present the 
results of this experimentation in the future.  

was followed successfully for the single-objective GP-
SLCA algorithm [11].   

 • Multiobjective GP-SLCA provides the decision maker 
with significant support on the design and redesign of a 
cellular manufacturing system. Since solutions are not 
generated based on weighting assumptions, any cost 
model can be recursively applied to them. 
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Figure 2: Cell configuration for a typical solution evolved by multiobjective GP-SLCA (F1=22.657, F2=455). 
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7 APPENDIX 
 

McAuleys Single Linkage Clustering Analysis (SLCA) 
Algorithm 

 

 p1 p2 p3 p4 p5 
m1 1 0 1 0 0 
m2 0 1 0 1 1 
m3 1 0 1 0 0 
m4 1 1 0 1 0 

Figure 3: Example matrix for the illustration of SLCA. 
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:ija  number of parts processed by both machines i and j 

:ijb  number of parts processed by machine i but not by 

machine j 
:ijc  number of parts processed by machine j but not by 

machine i 
Figure 4: Jaccard's similarity coefficient. 
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Figure 5: Calculation of similarities using Jaccard’s 
similarity coefficient. 

 

 m1 m2 m3 
m2 0 * * 
m3 1 0 * 
m4 0.25 0.5 0.25 

Figure 6: Similarity matrix for the example problem. 

 

Figure 7: Dendrogram of solutions for the example problem 
based on the similarity matrix. 

Solution 1 (initial)  cell 1: m1 

   cell 2: m2 

   cell 3: m3 

   cell 4: m4 

Solution 2 (T=1)  cell 1: m1, m3 

   cell 2: m2 

   cell 3: m4 

Solution 3 (T=0.5) cell 1: m1, m3 

   cell 2: m2, m4 

Solution 4 (T=0.25) cell 1: m1, m2, m3, m4 

Figure 8: Potential solutions for the example problem. 
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