
A Fast Algorithm on Finding the Non-dominated Set in Multi-objective
Optimization

Lixin Ding
State Key Laboratory of Software Engineering,Wuhan

University, Wuhan 430072, P.R. China
lx ding@263.net

Sanyou Zeng
Dept. of Computer Science, China University of

GeoSciences, Wuhan 430074, P.R. China

Dept. of Computer Science, Zhuzhou Institute of
Technology,Zhuzhou 412008, P.R. China

sanyou-zeng@263.net
Lishan Kang

Dept. of Computer Science, China University of
GeoSciences,Wuhan 430074 , P.R.China

kang@whu.edu.cn

Abstract- A fast algorithm is proposed to find the non-
dominated set for multi-objective optimization problems
in this paper. Two accelerated techniques are adopted
in the algorithm. One is that the algorithm can yield
an integer rank set after it indexes the the search space.
Based on this, the goal is changed into determination of
the non-dominated set of the integer rank set. The other
is that the non-dominated check sequence follows that
the likely non-dominated members are first checked,
and that the check process is stopped when the remain-
ing members in the non-dominated check sequence are
dominated. The computational complexity of the new
algorithm is analyzed theoretically. Experimental re-
sults show that the new method performs much better
than KLP(a famous effective algorithm) when the search
space contains a large non-dominated set. Moreover,
the two new techniques introduced in this paper are
very useful for multi-objective evolutionary algorithms
(MOEAs) to improve the computational speed.
Keywords: non-dominated set, partial ordered relation,
multi-objective optimization.

1 Introduction

Almost every real-world problem involves simultane-
ous optimization of several incommensurable and often
competitive objectives. And in wide sense, to solve
a multi-objective problem is to find the set of Pareto-
optimal solutions, mathematically, the non-dominated
set of the search space. Classical optimization meth-
ods can at best find one solution in one simulation run,
while evolutionary algorithms (EAs) can find multi-
ple optimal solutions in one single simulation run due
to their search based on population. Thus, EAs are
ideal candidates for solving multi-objective optimiza-
tion problems. Some typical MOEAs include Vector
Evaluated Genetic Algorithm (VEGA)([Schaffer85]),
Pareto-based Ranking Procedure (FFGA)([Fonseca93]),
Niched Pareto Genetic Algorithm (NPGA)([Horn93],

[Horn94]), Non-dominated Sorting Genetic Algorithm
(NSGA)([Srinivas94), Strength Pareto Evolutionary Al-
gorithm (SPEA)([Zitzler99]) and Generalised Regression
GA (GRGA)([Tiwari02). Recently, there are some new
approaches or modified versions of proposed methods
yet, for instance, NSGAII([Deb00]), SPEA2([Zitzler01]),
rMOGAxs([Purshouse01]) and Pareto-Archived Evolution
Strategy (PAES)([Kwnowles00]) and so on. It is well
known that almost all MOEAs can’t avoid searching a
non-dominated set, thus, in some sense, the pitfall of
MOEAs is time-consuming. Upon the above consideration,
it is important for us to develop a fast procedure to find the
non-dominated set of an objective vector population.

In this paper, a fast method is proposed to find the
non-dominated set of a vector set. Enlightened by the
effective method KLP ([Kung et al75]), in which sorting
technique was adopted, the new algorithm indexes the
original set in another way just like the indexing oper-
ation in database system and yields an integer rank set
corresponding to the original set. Therefore, the goal is
converted to find the non-dominate set of the integer rank
set, instead of finding the non-dominated set of the original
set. Since computers deal with integers very fast, finding
an integer non-dominated set will be very fast. Based on
the indices, the check sequence statistically follows that
the non-dominated members are first checked, and when
the remaining members are dominated, the check process
is stopped. In this way, the computational expenditure is
reduced effectively.

The remaining part of this paper is organized as follows.
In Section 2, we briefly mention the Non-dominated Set and
an efficient algorithm for finding non-dominated set. Then,
the new fast method is presented in Section 3. Thereafter,
Section 4 gives some numerical experiments and the related
discussion. Finally, we outline the conclusions of this paper
in Section 5.

2 Preliminaries

Let X be a set X = {x(i)|i = 1, 2, ..., N}, where x(i) =

(x
(i)
1 , x

(i)
2 , ..., x

(i)
M) is a vector. We can also regard X as

a matrix X = [x
(i)
j]N×M , where the ith row x(i) =

(x
(i)
1 , x

(i)
2 , ..., x

(i)
M), i = 1, 2, ..., N , the jth column xj =

(x
(1)
j , x

(2)
j , ..., x

(N)
j)T , j = 1, 2, ..., M .

Definition 1 For any two vectors x(i1), x(i2) ∈ X,

x(i1) = x(i2) ⇐⇒ ∀j ∈ 1, 2, ..., M : x
(i1)
j = x

(i2)
j

x(i1) ≤ x(i2) ⇐⇒ ∀j ∈ 1, 2, ..., M : x
(i1)
j ≤ x

(i2)
j

x(i1) < x(i2) ⇐⇒ x(i1) ≤ x(i2) ∧ x(i1) 6= x(i2)

(1)

The relation ”≤” on X is a partial order relation, and ”<”
a strict partial order relation. X with relation ”<” is a strict
partial order set, where we denote it by (X, <).
Definition 2 A member x′ ∈ X is said to be a non-
dominated member of (X, <) iff

6 ∃x ∈ X : x < x′ (2)

The set

M(X, <) = {x ∈ X|x is

a non − dominated member of |(X, <)}
(3)

is called the non-dominated set of (X, <).
The Pareto-optimal set in a multi-objective optimization

problem is the non-dominated set of the feasible decision
space. This paper will focus on the method for finding the
non-dominated set of the strict partial order set (X, <).

Let us introduce an efficient method proposed by Kung,
H. T., Luccio, F. and Preparata, F. P.([Kung et al75]), where
we denote it by KLP.
Algorithm 1 Identifying the Non-dominated Set:KLP

1. Sort the set X according to the descending order of
importance of the first column component.

2. Nondominance(X): If |X| = 1, then return X as the
output of Nondominance(X).

Otherwise, T = Nondominance(X(1)−X(
|X|
2)) and

B = Nondominance(X(
|X|
2 +1) − X(|X|)), where

X(1) − X(
|X|
2) is the top half of X, X(|

|X|
2 +1) − X(|X|)

the bottom half. For any member x(i) ∈ B, if x(i) is
not dominated by all members in T, create a merged
set M = T

⋃

{x(i)}. Return M as the output of the
output of Nondominance(X).

The complexity of this method is O(N(log N)M−2) for
M ≥ 4 and O(N(log N)) for M = 2, 3. For more exist-
ing algorithms about finding non-dominated set, See Deb
(Deb01]).

3 A Fast Algorithm

The significant idea of our algorithm is mainly that the most
likely non-dominated members are first checked. For con-
venience, denote the new method by MLNFC

3.1 Indexing and the Rank Set

Many multi-objective evolutionary algorithms sort popula-
tion according to the objectives in order to improve conver-
gence rate. One of the reason why the KLP is efficient lies
in the use of sort technique. Enlightened by those works, the
new approach indexes the X in the same way as indexing a
table in a database system: the members x(1), x(2), ..., x(N)

are like records and the columns x1, x2, ..., xM are like at-
tributes. An index contains pointers to all the members in
X and is sorted by the search key values. We index the X
in M different ways. The first index I1 is based on the sort-
ing order of the first column called the first search key, for
members with equal values in the first column, the order is
determined by that of the second column called the second
search key, do in such way until the last column called the
M th search key; the first search key of the second index I2
is the second column, the second search key the third col-
umn, ..., the (M − 1)th search key the M th column, the
M th search key the first column;; the first search key
of the M th index IM is the M th column, the second search
key the first column, ..., the M th search key the (M − 1)th
column. Let’s see an example
Example 1

X =













(5.5 6.5 7.0)
(2.5 8.5 5.0)
(4.5 7.0 7.0)
(5.5 7.5 9.5)
(9.5 1.5 8.5)













(4)

We have I1, I2, I3 (See (5), (6) and (7) bolow)

X =













(5.5 6.5 7.0)
(2.5 8.5 5.0)
(4.5 7.0 7.0)
(5.5 7.5 9.5)
(9.5 1.5 8.5)













I1 =













2
3
1
4
5













(5)

»»»»»»9 »»»»»»9 HHHHHHY

¾
¾

X =













(5.5 6.5 7.0)
(2.5 8.5 5.0)
(4.5 7.0 7.0)
(5.5 7.5 9.5)
(9.5 1.5 8.5)













I2 =













5
1
3
4
2













(6)
¡

¡
¡

¡
¡¡ª

XXXXXXy

¾
¾

Z
Z

Z
Z

ZZ}

X =













(5.5 6.5 7.0)
(2.5 8.5 5.0)
(4.5 7.0 7.0)
(5.5 7.5 9.5)
(9.5 1.5 8.5)













I3 =













2
3
1
5
4













(7)

»»»»»»9 »»»»»»9 HHHHHHY

»»»»»»9 XXXXXXy

On the other hand, each member x(i) (i = 1, 2, ..., N)
in X has its position (or rank) r

(i)
j in each index Ij (j =

1, 2, ..., M) according to the search key order, then x(i) has a
corresponding rank vector r(i) = (r

(i)
1 , r

(i)
2 , ..., r

(i)
M). Thus,

X determines a set R = {r(1), r(2), ..., r(N)} which is called
the rank set of X. That the indices I1, I2, ..., IM also
index the rank set R is just like they index X. For the
above example, x(1) has its rank 3, 2, 3 in indices I1, I2,
and I3 respectively. Therefore, it determines a rank vector
r(1) = (3, 2, 3). Similarly, x(2) determines r(2) = (1, 5, 1),
and so on(See (8) below). For the rank set, see (9) below.

x(1) =
(

5.5 6.5 7.0
)

−→ r(1) =
(

3 2 3
)

x(2) =
(

2.5 8.5 5.0
)

−→ r(2) =
(

1 5 1
)

x(3) =
(

4.5 7.0 7.0
)

−→ r(3) =
(

2 3 2
)

x(4) =
(

5.5 7.5 9.5
)

−→ r(4) =
(

4 4 5
)

x(5) =
(

9.5 1.5 8.5
)

−→ r(5) =
(

5 1 4
)

(8)

X =













(5.5 6.5 7.0)
(2.5 8.5 5.0)
(4.5 7.0 7.0)
(5.5 7.5 9.5)
(9.5 1.5 8.5)













⇐⇒ R =













(3 2 3)
(1 5 1)
(2 3 2)
(4 4 5)
(5 1 4)













(9)

Obviously, the creation of the rank set R implies an one-one
map between X and R: x(i) ←→ r(i), (i = 1, 2, ..., N). By
this map, it is easy to see that the non-dominated sets of
both X and R determines each other. Therefore, the goal
to find non-dominated set M(X, <) may be converted to
find non-dominated set M(R, <), and the computational
efficiency can be obviously improved because of the
well-known reasons.

3.2 Determination of Check Sequences

The order of R sorted by Ij is actually a topological order
by the strict partial order relation (See definition 1), which
means that the non-dominated members stay in front and
the dominated ones remain in rear. We hope that the likely
non-dominated members are checked first and skip the
dominated ones. Therefore, we have the following check
order (Denote the member pointed by Ij(i) by Ij(i)

′s):
first, check I1(1)′s, I2(1)′s, ..., IM (1)′s; secondly, check
I1(2)′s, I2(2)′s, ..., IM (2)′s; and so on. The process is

at most a N loop iterations called check iteration and
yields a sequence I1(1), I2(1), ..., IM (1); I1(2), I2(2), ...,
IM (2);; I1(N), I2(N), ..., IM (N) called indices check
sequence. Under the control of the index check sequences,
members checked in R are non-dominated ones or not.
To avoid checking duplicate members, we must perform
as follows: before checking a member, we shall first see
whether it has been checked; if it is not checked, then we
check its non-dominance and set it checked, else skip it and
deal with the next member. Therefore, a non-dominance
check sequence yields.

For the example 1, we have the index check sequences:
I1(1), I2(1), I3(1); I1(2), I2(2), I3(2); I1(3), I2(3), I3(3);
I1(4), I2(4), I3(4); I1(5), I2(5), I3(5) (See (10) below).

I1 I2 I3












2
↪→3
↪→1
↪→4
↪→5













→
→
→
→
→













5
1
3
4
2













→
→
→
→
→













2←↩

3←↩

1←↩

5←↩

4













(10)

The corresponding member order is r(2), r(5), r(2), r(3),
r(1), r(3), r(1), r(3), r(1), r(4), r(4), r(5), r(5), r(2), r(4),
while the non-dominated check sequence is

I1(1), I2(1), I1(2), I2(2), I1(4) (11)

and the actual member check order is

r(2), r(5), r(3), r(1), r(4) (12)

Since the order determined by each index is that the non-
dominated members stay in front and the dominated ones
stay in rear. Statistically, the check of the non-dominated
members precedes that of the dominated. In order to de-
sign a fast algorithm to find non-dominated set, we have
done some researches for the check sequence. The follow-
ing propositions are a few internal rules discovered in the
check sequence.
Proposition 1 Suppose Ij1(i1), Ij2(i2), ..., IjN

(iN) is the
non-dominance check sequence, then the index entry se-
quence i1, i2, ..., iN is ascendent.

For the example 1, the index entry sequence correspond-
ing to the check sequence is 1, 1, 2, 2, 4(See (11) above).
Proposition 2 Ij(1)′s must be non-dominated.

For the example 1, the members I1(1)′s (i.e. r(2)) ,
I2(1)′s (i.e. r(5)) are non-dominated by the proposition
2 (See (11) and (12) above). The algorithm in this paper
will make such members be the initial members of the non-
dominated set.
Proposition 3 Ij(i)

′s is not dominated by Ij(i+1)′s, Ij(i+
2)′s, ..., Ij(N)′s

By propositions 3, in order to determine the non-
dominance of Ij(i)

′s , comparing Ij(i)
′s with Ij(1)′s,

Ij(2)′s, ..., Ij(i− 1)′s will do. For the example 1, although
the current non-dominated set is {r(2), r(5), r(3)}, in order
to determine the non-dominance of I2(2)′s (i.e. r(1)), we
only need to compare it with I2(1)′s (i.e. r(5)).
Proposition 4 Suppose Ij(i) stays in the non-dominated
check sequence, then Ij(i)

′s has its all ranks (components)
more than or equal to i.

For the example 1, in the non-dominance check sequence
(See (11) above), I1(4)′s is (4, 4, 5) and I1(2)′s is (2, 3, 2),
which verifies the proposition 4.
Proposition 5 If a checked member has its all ranks less
than or equal to i′, then it dominates the remaining mem-
bers of the non-dominated check sequence, where the cor-
responding index entries are larger than or equal to i′.

It is easy to verify proposition 5 by proposition 1 and 4.
Therefore, if all ranks of a non-dominated member are less
than or equal to i′, the check iteration should be stopped
before i′ by proposition 5. From this point we observe that
the computational process is shortened.

3.3 The Procedure of MLNFC

Based on the above indices, rank set and propositions,
we have the following procedure which identifies the non-
dominated set as soon as possible.
Algorithm 2 Identifying the Non-dominated Set: MLNFC.
Input: X.
Output:The non-dominated set —X′ of X

(R′ store the non-dominate set of rank set R).
Using quick-sort method to create indices I1, I2, ..., IM and
rank set R;
Initiate R′ with I1(1)′s, I2(1)′s, ..., IM (1)′s, eliminate
duplicate ones;
for(i = 1; i≤N; i++) Set r(i) not checked;
stop = N;// Set initial termination position N ;
for(i=2;i≤stop;i++){

//Search at the ith entries of the indices;
for(j=1;j≤M;j++){//Search at the ith entry of index Ij;

if(Ij(i)
′s not checked){

Compare it with the non-dominated ones among
Ij(1)′s, Ij(2)′s, ..., Ij(i − 1)′s and set it checked;
if(Ij(i)

′s is not dominated by any of them){
put it in R′;
i′ =max of its ranks(or components);
stop=min{stop, i′};//Update termination posi-

tion;
}

}
}

}
Get X′ corresponding to R′ and output it as the non-

dominated set of X;

4 Discussion and Experimental Results

4.1 Computational Complexity

X is created at random. The computation is divided into two
parts. The first is the computation of indexing the X in M

different ways by using quick-sort. It is well known that the
number of comparisons in quick-sort is about O(N log N).
Therefore, the number of comparisons on indexing in our
algorithm is

S1 = O(MN log N) (13)

The second part is the number of comparisons for finding
Non-dominated set based on the indices. For computational
convenience, suppose each component of each vector in R
has its value taken evenly from the set {1, 2, ..., N}. Regard
randomly generating an X(R) with size M × N as an ex-
periment, the size of the sample space Ω is CN

NM . Consider
the following N events

E1 = {R|∃r(i0) ∈ R, r
(i0)
j = 1, j = 1, 2, ..., M}

E2 = {R|∃r(i0) ∈ R, r
(i0)
j ≤ 2, j = 1, 2, ..., M}

......

EN = {R|∃r(i0) ∈ R, r
(i0)
j ≤ N, j = 1, 2, ..., M}

(14)

It is easy to know that

E1 ⊂ E2 ⊂ ... ⊂ EN = Ω

|E1| = CN−1
NM

|E2| = CN
NM − CN

NM−2M

...

|EN−1| = CN
NM − CN

NM−(N−1)M

|EN | = CN
NM

(15)

The events we are interested in are

E′
1 = E1, E

′
2 = E2 − E1, ..., E

′
N = EN − EN−1 (16)

Obviously

E′
i

⋂

E′
j = Φ; i, j = 1, 2, ..., N ; i 6= j

N
⋃

i=1

E′
i = Ω

|E′
i| = CN

NM−(i−1)M − CN
NM−iM , i = 1, 2, ..., N − 1

|E′
N | = CN

NM−(N−1)M

(17)

In fact, it is easy to assert that the number of iterations in
the new algorithm is i for finding nondominated set when
the R created stays in E′

i, i = 1, 2, ..., N . Therefore, the

expectation of the number of iterations is

L =
N
∑

i=1

|E′
i
|

CN

NM

× i

=
CN

NM
−CN

NM −1M

CN

NM

× 1 + ...

+
CN

NM−(N−2)M
−CN

NM−(N−1)M

CN

NM

× (N − 1)

+
CN

NM−(N−1)M

CN

NM

× N

=
CN

NM

CN

NM

+
CN

NM −1M

CN

NM

+ ... +
CN

NM −(N−1)M

CN

NM

=
N−1
∑

i=0

CN

NM −iM

CN

NM

(18)

To verify the above analysis, we get an average number
of iterations of the new algorithm from 500 repetition exper-
iments, and denote the average by L0. Experimental results
in Table 1 show that L0 approximates L.

Table 1: Verifying the expectation of the number of itera-
tions L in the new algorithm. L0 denotes the average num-
ber of iterations of the new algorithm from 500 repetition
experiments.

Size of X L L0

100 × 3 19.70 18.64
100 × 5 37.01 35.83
1000 × 3 89.77 89.74
1000 × 5 231.11 228.94

Now, under the condition that I1(1), I2(1), ..., IM (1);
I1(2), I2(2), ..., IM (2);; I1(i), I2(i), ..., Ij−1(i) have
been checked, we consider the probability that Ij(i)

′s is not
checked, and denote the probability by pi,j . It is easy to
know

p1,1 = 1
p1,2 = 1 − 1

N

...

p1,M =
(

1 − 1
N

)M−1

p2,1 =
(

1 − 1
N

)M−1

p2,2 =
(

1 − 1
N

)M−2 (

1 − 2
N

)

...

p2,M =
(

1 − 2
N

)M−1

......

pN−1,1 =
(

2
N

)M−1

pN−1,2 =
(

2
N

)M−2 (

1
N

)

...

pN−1,M =
(

1
N

)M−1

pN,1 =
(

1
N

)M−1

pN,2 = 0
...

pN,M = 0

And it is easy to verify that
N
∑

i=1

M
∑

j=1

pi,j = N

To determine the non-dominance of Ij(i)
′s, we only

need to compare it with I1(i)′s, I2(i)′s, ..., Ij−1(i)
′s, that is,

we only need i−1 comparisons. Without loss of generality,
suppose that the expectation of the number of the iteration
L (See (18) above) is an integer, the average member of
comparisons for the new algorithm to find non-dominated
set is

S2 = (1 + (1 − 1
N

) + ... + (1 − 1
N

)M−1) × 0
+((1 − 1

N
)M−1 + (1 − 1

N
)M−2(1 − 2

N
)+

... + (1 − 2
N

)M−1) × 1+
............

+((1 − L−1
N

)M−1 + (1 − L−1
N

)M−2(1 − L
N

)+
... + (1 − L

N
)M−1) × (L − 1)

= N × ((1 − 1
N

)M − (1 − 2
N

)M) × 1+
... + N × ((1 − L−1

N
)M − (1 − L

N
)M) × (L − 1)

= N × ((1 − 1
N

)M + (1 − 2
N

)M+
... + (1 − L−1

N
)M − (L − 1)(1 − L

N
)M)

< N(L − 1)

(19)

Thus, the sum of comparisons of the new algorithm is

SMLNFC = S1 + S2 = O(MN log N) + O(NL) (20)

where L =
N−1
∑

i=0

CN

NM −iM

CN

NM

.

4.2 Experimental Results

The search of non-dominated sets was performed in a com-
puter of Pentium 4 with 1.80GHz CPU and 256M memory.
The Table 2, 3, 4 and 5 below give the running time compar-
ison of MLNFC with KLP for finding non-dominated set.
The results show that when M is small(or original set has
small non-dominated set), MLNFC is a little slower than
KLP, but when M is relatively larger(or original set has
a larger non-dominated set), MLNFC is much faster than
KLP.

Table 2: The time comparison of MLNFC with KLP , where
M = 3, Q is the size of non-dominated set.

Running Time(Second)
N × M —————— Q

KLP MLNFC
1000 × 3 0.0150 0.0160 26
5000 × 3 0.0780 0.1250 45
10000 × 3 0.1720 0.2820 49
20000 × 3 0.3440 0.6250 68
50000 × 3 0.9530 1.8120 83

Table 3: The time comparison of MLNFC with KLP, where
M = 5, Q is the size of non-dominated set.

Running Time(Second)
N × M —————— Q

KLP MLNFC
1000 × 5 0.0320 0.0460 172
5000 × 5 0.2030 0.2500 317
10000 × 5 0.3910 0.5620 278
20000 × 5 0.9070 1.1880 513
50000 × 5 2.5150 3.8750 806

Table 4: The time comparison of MLNFC with KLP, where
M = 10, Q is the size of non-dominated set.

Running Time(Second)
N × M —————— Q

KLP MLNFC
1000 × 10 0.1560 0.0780 732
5000 × 10 2.7970 0.8900 2962
10000 × 10 10.7810 2.7030 5091
20000 × 10 36.5000 8.7350 8321
50000 × 10 200.1410 45.7660 16385

Table 5: The time comparison of MLNFC with KLP, where
M = 30, Q is the size of non-dominated set.

Running Time(Second)
N × M —————— Q

KLP MLNFC
1000 × 30 0.2340 0.2190 1000
5000 × 30 6.6410 1.8130 5000
10000 × 30 30.9850 5.0160 10000
20000 × 30 137.1720 15.2500 20000
50000 × 30 938.0460 75.5470 50000

4.3 Availability

The main goal of MLNFC lies in solving multi-objective
optimization problems effectively. An MOEA must possess
two distinct features: (1) discovering solutions as close to
the Pareto-optimal solutions as possible, and (2) finding as
diverse solutions as possible in the obtained non-dominated
front. The first feature requires a procedure to find non-
dominated set. Therefore, many MOEAs employ KLP.
However, the performance of KLP is totally poorer than
MLNFC according to the above experiments, so MLNFC
may be a better choice. The second feature requires a pro-
cedure to locate in an uniformly enough distributed Pareto-
optimal front. In order to achieve these aims, many MOEAs
use some techniques such as sharing function, crowding dis-
tance, clustering and so on, which may improve the perfor-
mance of MOEAs in some extent. But, MOEAs (MOGAs)
should be recommended to employ the sorting or indexing
technique similar to MLNFC to get a higher computational
performance.

5 Conclusion

Two techniques are employed to speed up the search for
non-dominated set in MLNFC. One is that determination of
non-dominated set of the original set is converted into de-
termination of the non-dominated set of an integer rank set.
The other is that the non-dominated check sequence fol-
lows that those possible non-dominated members are first
checked, and the check process is stopped when the re-
maining members of the non-dominated check sequence
are found to be dominated. Experimental results show that
the new method performs much better than KLP when the
original set has a large non-dominated set. Actually, these
techniques adopted in the paper is very adequate for many
multi-objective evolutionary algorithms (MOEAs) to raise
the computational speed.
Acknowledgment This work was supported by the National
Natural Science Foundation of China (No.s: 60204001,
70071042, 60073043, 60133010), the Scientific Research
Foundation of Hunan Provincial Education Department(No.
02C640), Youth Chengguang Project of Science and Tech-
nology of Wuhan City(No.:20025001002) and the Opening
Research Foundation at State Key Lab of Software Engi-
neering respectively.

Bibliography

[Deb00] Deb, K., Agrawal, S., Pratap, A. and Meyarivan,
T. (2000) ” A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimization: NSGAII,”
In M. S. et al. (Ed.), Parallel Problem Solving from
Nature-PPSN VI, Berlin, pp. 849-858. Springer.

[Deb01] Deb K. (2001) ” Multi-objective Optimiza-
tion Using Evolutionary Algorithms,” JOHN WI-
LEY&SONS, LTD, 2001 pp.33-43

[Fonseca93] Fonseca, C. M. and P. J. Fleming (1993) ” Ge-
netic algorithms for multiobjective optimization: For-
mulation, discussion and generalization,” In S. Forrest
(Ed.), Proceedings of the Fifth International Confer-
ence on Genetic Algorithms, San Mateo, California,
pp. 416C423. Morgan Kaufmann.

[Horn93] Horn, J. and N. Nafpliotis (1993) ” Multiobjec-
tive optimization using the niched pareto genetic al-
gorithm,” IlliGAL Report 93005, Illinois Genetic Al-
gorithms Laboratory, University of Illinois, Urbana,
Champaign.

[Horn94] Horn, J., N. Nafpliotis, and D. E. Goldberg(1994)
” A niched pareto genetic algorithm for multiobjective
optimization,” In Proceedings of the First IEEE Con-
ference on Evolutionary Computation, IEEE World
Congress on Computational Computation, Volume 1,
Piscataway, NJ, pp. 82C87. IEEE.

[Kwnowles00] Knowles, J. D. and Corne, D. W.(2000)
” Reducing local optima in single-objective prob-
lems by multi-objectivization,” In Proceedings of the
First International Conference on Evolutionary Multi-
Criterion Optimzation (EMO-2000),pp. 269-283.

[Kung et al75] Kung, H. T., Luccio, F. and Preparata, F. P.
(1975) ” On finding the maxima of a set of vectors,”
Jornal of the Association for Computing Machinery
22(4) 469-476.

[Purshouse01] Purshouse, R. C., Fleming, P. J. (2001)
” The Multi-objective Genetic Algorithm Applied to
Benchmark Problems–an Analysis,” Research Report
No. 796. Department of Automatic Control and Sys-
tems Engineering University of Sheffield, Sheffield,
S1 3JD, UK.

[Schaffer85] Schaffer, J. D. (1985) ” Multiple objective op-
timization with vector evaluated genetic algorithms,”
In J. J. Grefenstette (Ed.),Proceedings of an Interna-
tional Conference on Genetic Algorithms and Their
Applications, Pittsburgh, PA, pp. 93C100. sponsored
by Texas Instruments and U.S. Navy Center for Ap-
plied Research in Artificial Intelligence (NCARAI).

[Srinivas94] Srinivas, N. and K. Deb (1994) ” Multiob-
jective optimization using non-dominated sorting in
genetic algorithms,” Evolutionary Computation 2(3),
221C248.

[Tiwari02] Tiwari, A., Roy, R.(2002) ” Generalised Regres-
sion GA for Handling Inseparable Function Interac-
tion: Algorithm and Applications,” Proceedings of the
seventh international conference on parallel problem
solving from nature. (PPSN VII). Granada, Spain

[Zitzler99] Zitzler, E.(1999) ” Evolutionary Algorithms
for Multiobjective Optimization: Methods and Ap-
plications,” Ph. D. thesis, Swiss Federal Institute
of Technology (ETH) Zurich, Switzerland. TIK-
Schriftenreihe Nr. 30, Diss ETH No. 13398, Shaker
Verlag, Aachen, Germany.

[Zitzler01] Zitzler, E., Laumanns, M. and Thiele, L. (2001)
” SPEA2: Improving the Strength Pareto Evolutionary
Algorithm,” TIK-Report 103. ETH Zentrum, Glorias-
trasse 35, CH-8092 Zurich, Switxerland.

