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1. Introduction

In most real-life situations, decisions are made in the presence of multi-

ple objectives that are often con
icting. In addition, many of the prob-

lems are combinatorial (Nemhauser and Wolsey, 1988). Consequently,

researchers from operational research and management science have

constituted scienti�c communities dedicated to multiobjective decision-

making and combinatorial optimization, respectively; these �elds have

attracted a tremendous amount of activity during the past few decades

(cf. Steuer et al., 1996, and Dell'Amico et al., 1997, for bibliographies).

Together, they play a decisive role in multiobjective combinatorial op-

timization (MOCO; cf. Ehrgott and Gandibleux, 2000, for a survey and

White, 1990, and Ulungu and Teghem, 1994, for references to applica-

tions), for which the branch of portfolio selection is of particularly high

practical relevance. Research and development (R&D) management
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provides an especially illustrative example for corresponding implica-

tions: in the increasingly competitive, global marketplace, innovation

is often cited as an important strategy for survival and R&D therefore

has a key role to play in a �rm's future success. As a consequence, it

is imperative for enterprises to determine the \best" subset of R&D

projects out of dozens of competing proposals (i. e., to identify that

project portfolio which provides the most attractive mix of bene�ts

with respect to given management objectives).

In a multiobjective portfolio selection model, diÆculties naturally

arise in formulating an appropriate objective function. Basically, two

ways of proceeding exist. The �rst approach involves building a function

that aggregates the di�erent attributes (e. g., cash 
ow, sales or even

such intangibles as image) that characterize the attractiveness of any

given portfolio and thus, as far as possible, re
ects its overall bene�t.

A major drawback to this approach lies in the fact that it requires

extensive a priori preference information (e. g., weights, thresholds,

marginal bene�ts, or guidelines for bene�t or resource substitution

between di�erent categories). In addition empirical evidence suggests

that such an approach actually performs relatively poorly in the case of

multiple objective mathematical programming (Corner and Buchanan,

1995). A di�erent approach lies in accepting several criteria within the

model and (partially) determining the eÆcient (i. e., non-dominated

or Pareto-optimal) portfolio candidates. After this initial phase, the

decision-maker is given an opportunity to explore the solution space

on the basis of guidance provided by an interactive procedure involving

sets of alternatives that are explicitly given. This exploration continues

until a satisfactory portfolio is found. Regularly, this approach can be

undertaken without the above mentioned preference data. However, the

process involved in identifying the set of eÆcient portfolios is not trivial.

While a brute-force complete enumeration procedure can determine

them within acceptable time for comparatively small problems, that

task becomes increasingly demanding as the number of projects grows.

When decision-makers are confronted with a large number of com-

peting projects, heuristic approaches provide a tradeo� between the

quality of the solution space and the computational e�ort required to

achieve this approximation. Several adaptions of metaheuristic proce-

dures have already been proposed: the most common one being the ge-

netic algorithm (GA). Since the pioneering method by Scha�er (1985),

numerous related approaches have been published (see Fonseca and

Fleming, 1993; Horn et al., 1994; Srinivas and Deb, 1994; Murata and

Ishibuchi, 1995; Coello and Christiansen, 1998; Zitzler and Thiele, 1999;

Hanne, 2000, for examples and Coello, 2000; Deb, 2001, for surveys). A

promising alternative known as simulated annealing (SA) was discussed
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in Sera�ni (1994) and subsequently re�ned by Czyzak and Jaszkiewicz

(1998), Ulungu et al. (1998), and Hapke et al. (2000). Tabu search (TS)

approaches (e. g., Gandibleux et al., 1997; Ben Abdelaziz et al., 1999;

Hansen, 2000; Alves and Climaco, 2000) form the third major class

of heuristic procedures for multiobjective combinatorial optimization

(MOCO) problems.

We aim at providing a heuristic approach in the �eld of multiobjec-

tive portfolio selection by introducing Pareto Ant Colony Optimization

(P-ACO; cf. Doerner et al., 2001a, 2002b), an extension of the tra-

ditional Ant System (AS; cf. Dorigo, 1992, 1996) and Ant Colony

Optimization (ACO; cf. Dorigo and Di Caro, 1999), respectively. So far,

Gambardella et al. (1999) developed an ant algorithm for a bi-criterion

vehicle routing problem, basing their approach on the assumption that

the two criteria can be ordered lexicographically. This multi-colony ap-

proach uses one ant colony for each objective; its applicability is limited

to those problems for which priorities can be de�ned for the objectives.

Further, Iredi et al. (2001) and McMullen (2001) developed an Ant

Colony system for optimization problems that consist of two objectives

only and applied it to sequencing problems. Our approach di�ers not

only in the problem class but also in the number of optimization crite-

ria, e. g., �ve to ten objectives in the numerical examples. Iredi et al.

(2001) try to cover the whole set of possible weights by using 100 ants,

each of which has a di�erent deterministic weight vector. Those ants

are grouped in 10 heterogeneous populations. While this is reasonable

for problems with two objectives, this does not necessarily hold in the

case of proper multiobjective problems because of the many weighting

vectors necessary. Therefore, we use a single population with each ant

having di�erent, randomly generated weights (cf. Doerner et al., 2001a).

The increased complexity in the problem structure further requires a

tool to administrate the numerous (up to several thousands) potentially

eÆcient portfolios in reasonable computation time; for that purpose we

designed a generalized quad tree for our ACO implementation. More-

over, we used a di�erent pheromone strategy which conforms better

to the signi�cantly higher complexity. It should be noticed that the

administration of non-dominated solutions is computationally trivial

in the bi-criterion case, whereas it is not in the proper multicriteria

case. The reason lies in the number of eÆcient solutions that usually is

signi�cantly higher in the latter case. Moreover, from a computational

e�ort point of view the determination whether a given solution actually

is eÆcient and whether it dominates some other proposed eÆcient so-

lutions is expensive while it is simple in the bi-criterion case, where the

already identi�ed eÆcient solutions easily can be sorted by one criterion

and automatically are sorted (in reversed order) by the other as well.
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Then one simply has to �nd the right position for the current solution

for one criterion and immediately gets access to all relevant (potentially

dominated) solutions because they will be direct neighbours.

In contrast to the adaptive GA, SA, and TS heuristics, P-ACO

constructs its portfolios. Thus, it largely avoids infeasible portfolio

candidates by explicitly taking into consideration even complex project

interactions. The Ant Colony approach imitates the behavior shown

by real ants when searching for food. Ants communicate information

about food sources via the quantity of an aromatic essence called

pheromone, which the ants secrete as they move along. Over time,

the short direct paths leading from the nest to a food source are more

frequented than longer paths. As a result, the direct paths are marked

with more pheromone, which in turn attracts an ever increasing num-

ber of ants to follow these shorter routes and make the corresponding

pheromone trails grow faster. Arti�cial ants not only imitate the be-

havior described, but also apply additional, problem-speci�c heuristic

information. The Ant System has been applied to and provided solu-

tions for various hard combinatorial optimization problems (cf. Dorigo

and Gambardella, 1997; Bullnheimer et al., 1999b; Gambardella et al.,

1999; Stuetzle and Dorigo, 1999; Bauer et al., 2000; Doerner et al.,

2001b; Doerner et al., 2002a) and a convergence proof for a generalized

Ant System algorithm has been established (Gutjahr, 2002). In or-

der to meet multiobjective problem speci�c requirements, our P-ACO

approach implements several pheromone vectors and applies random

weights for their use. The lifespan concept and the pheromone decoding

scheme are two additional salient features that play an essential role in

modelling the portfolio selection process.

2. Problem Description

Portfolios may be described as subsets of the set of all N project

proposals; they are modeled as vectors x = (x1; : : : ; xN ), where the

binary variables xi indicate whether project i is included in the portfolio

(xi = 1) or not (xi = 0). Our approach aims at determining the eÆcient

project portfolios (i. e., for them no other feasible alternative exists that

promises higher values in at least one of the objectives and o�ers at

least the same in all the others). Following the model introduced by

Stummer (1998) and Stummer and Heidenberger (2001), respectively,

a project i is characterized both by the bene�ts bi;l;t it provides in

the B bene�t categories l (e. g., cash 
ow, sales, and patents) and the

T planning periods t (e. g., �nancial years), as well as by its resource

consumption ri;q;t in the R resource categories q (e. g., funds, manpower,
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and production capacity). The bene�t value for a portfolio x is given

by

bl;t(x) =
NX
i=1

bi;l;t � xi +
VX
j=1

vj(x) � vj;l;t +
WX
j=1

wj(x) � wj;l;t (1)

for l = 1; : : : ; B and t = 1; : : : ; T;

where the sum of the individual project bene�ts must be adjusted by

the e�ects of V +W project interactions. The V interactions of the �rst

type refer to subsets Vj = fi 2 N : vi;j = 1g (with vi;j = 1 if project

i is e�ected by an interaction j and vi;j = 0 otherwise) and generate

bene�ts vj;l;t only if at least mj of these projects are included in the

portfolio:

vj(x) =

8<
:
1 if

PN
i=1 xi � vi;j � mj

0 otherwise

(2)

The W additional interactions provide bene�ts of wj;l;t for portfolios

containing no more than a given maximum number of projects out of

subsets Wj .

The model similarly determines necessary resources rq;t(x) for re-

source category q (with q = 1; : : : ; R) and planning periods t. Further-

more, it traces both bene�t and resource values separately for each

period instead of aggregating them to a (discounted) overall value

and, thus, provides additional information for the decision maker (see

Ringuest and Graves, 1990, for a discussion). As a consequence, a

comparatively high number of K = B � T objectives

uk(x) = bl;t(x) for k = l + (t� 1) �B (3)

have to be handled just for the bene�t categories. Moreover, remaining

resources also may be considered as additional R � T objectives

uk(x) = Rq;t � rq;t(x) for k = B � T + q + (t� 1) �R (4)

where Rq;t stands for the corresponding resource limitations.

The above objectives are subject to two groups of constraints. The

�rst group ensures that no more than a given maximum (not less than

a given minimum) number of projects may appear in a portfolio in

relation to a given subset of projects. This set of constraints guarantees

the selection of a minimum number of projects that, for example, deal

with emerging technologies, restrict the number of projects based on

conventional concepts (even if they seem attractive in a short-time

perspective) or deal with balancing aspects (e. g., with respect to new
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and current projects). These constraints may be expressed as

NX
i=1

~vi;j � xi � ~mj (5)

where ~mj represents a minimum number of certain projects that must

be included in a portfolio and ~vi;j indicates whether project i is in the

corresponding subset j of e�ected projects. Inequalities for a constraint

variation demanding a maximum number of projects take a similar

form.

The second set of constraints concerns resource limitations Rq;t and

minimum bene�t requirements Bl;t. They can be written as

rq;t(x) � Rq;t for q = 1; : : : ; R and t = 1; : : : ; T; and (6)

bl;t(x) � Bl;t for l = 1; : : : ; B and t = 1; : : : ; T: (7)

3. Solution Procedures

The above problem is characterized by numerous constraints as well as

a large number of objectives. The �rst-mentioned entail a considerable

high percentage of infeasible portfolio candidates. Due to the latter

substantial computational e�ort has to be expended in order to take

into account the various project interactions and to accordingly deter-

mine all the objective values (i. e., the evaluation of a portfolio is quite

\expensive"). Moreover, the investigation whether a current portfolio

may be considered as eÆcient or not becomes time-consuming, too.

We therefore use a quad tree data structure for identifying, storing and

retrieving non-dominated portfolios.

Such quad trees generalize classic binary trees to K-dimensional

space. First introduced by Finkel and Bentley (1974) for data storage

and retrieval, they have been applied to discrete vector optimization

problems by Habenicht (1983). The project portfolios are stored in the

nodes of the tree. Given K objectives, a node is followed by up to

2K � 2 subtrees, where all portfolios in such a subtree have the same

dominance relation (i. e., for each objective they are all better or all

worse, respectively, than the root). With this hierarchical structure,

only a small percentage of all possible pairwise comparisons is required

for eÆciency veri�cation (for a recent discussion cf. Sun and Steuer,

2000).
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The remainder of this section decribes in detail the Pareto Ant

Colony Optimization (P-ACO) and two solution procedures for bench-

marking: Pareto Simulated Annealing (PSA) and the Non-Dominated

Sorting Genetic Algorithm (NSGA).

3.1. Pareto Ant Colony Optimization

In the initialization phase, � ants are generated, each ant starting with

an empty portfolio x = (0; : : : ; 0). The lifespan � and the objective

weights (i. e., the ant's individual preferences) p = (p1; : : : ; pK) are

determined randomly for each ant. Note, that whenever we do not

explicitly mention the domain random numbers are chosen equally

distributed from the domain [0; 1).

In the construction phase of the algorithm, each ant tries to con-

struct a feasible portfolio x by applying a pseudo-random-proportional

rule using heuristic information �i and pheromone information �i. After

a portfolio has been constructed, its feasibility and eÆciency is deter-

mined. If the portfolio under consideration is feasible and eÆcient it is

stored. Global pheromone update is performed by using the best and

the second-best portfolio x of the current iteration for each objective

k.

The proposed P-ACO algorithm for the problem at hand is the

following:

procedure P-ACO () f

Initialization of P-ACO; /* create � ants,

initialize pheromone vectors with �0 */

repeat until termination criterion is truef

for Ant = 1 to � f

determine the lifespan � of the ant randomly on

the interval [1..N];

set x = (0; :::; 0); /* create empty portfolio */

determine the objective weight pk for each objective k

randomly;

� = �; /* indicates the number of projects to be selected */

while � > 0 and 9 i with �i(x) > 0 f

select a project i using formula (8) below and add it to x;

update local pheromone information;

decrement �;

g

check feasibility of portfolio x;

if portfolio x is feasible f

check eÆciency of portfolio x;
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if portfolio x is eÆcient f

store portfolio x and remove dominated ones;

g g g

for each objective k f

determine best and second-best

solution uk for each objective k;

update global pheromone information using best and

second-best solution using formula (11)

g g g

In this pseudo code and in what follows the term \randomly gener-

ated" means generated according to a uniform distribution.

3.1.1. Heuristic Information

The heuristic information is based on a quantitative value that mea-

sures how well some project candidate �ts into a partially constructed

portfolio. For each project candidate i an aggregated value of attrac-

tiveness �i(x) is computed. This value depends on the (partial) portfolio

x. Furthermore, it is based on constraints and targets that can be

categorized into four categories: maximum or minimum restrictions

(e. g., upper/lower limit for the number of projects of a certain project

type in the portfolio), resource restrictions (e. g., maximum available

workforce) and bene�t restrictions (e. g., minimum pro�t expectations).

If a maximum restriction or a resource restriction is violated, then

the attractiveness value is set to zero. If the maximum restriction

and the resource restriction is ful�lled, then the attractiveness value

corresponds to the degree of ful�llment in the two remaining categories

(i. e., minimum restrictions and/or bene�t restrictions). A special case

occurs when all restrictions are satis�ed by including the considered

project in the portfolio; in this case, the attractiveness value is set to

one.

3.1.2. Pheromone Information

For each objective k the pheromone information is stored in a vec-

tor � , with the number of elements corresponding to the number of

projects. The value �ki represents the current pheromone information,

i. e., the pheromone information with respect to objective k of including

project i in a \good" portfolio. Roli et al. (2001) proposed three di�er-

ent pheromone decoding schemes for maximal constraint satisfaction

problems; two decoding schemes were based on matrices and one was

vector-based. Based on previous work by Doerner et al. (2001a, 2002b)

further extensive testing on our multiobjective portfolio selection prob-

lem showed that the vector-based ACS-comp outperformed the two
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other variants with regard to solution quality for given computation

times. In light of this �nding, we will refer solely to the ACS-comp

implementation in the remainder of this paper.

3.1.3. Decision Rule

Given the attractiveness, the pheromone information, and the set of

all feasible projects 
(x) = fi 2 N : �i(x) > 0 , xi = 0g, a feasible

project i is selected to be added to the current portfolio x according to

a pseudo-random-proportional rule that can be stated as follows:

i =

8><
>:

argmaxi2
(x)

nhPK
k=1

�
pk � �

k
i

�i�
� [�i(x)]

�
o

if q � q0

î otherwise;

(8)

where q is a random number uniformly distributed in [0::1), q0 is a

parameter (0 � q0 < 1) to be set by the user representing the probabil-

ity that the portfolio is chosen which gives the highest aggregate value

of pheromone and attractiveness. The random variable î is selected

according to the probability distribution given:

Pi(x) =

8>>><
>>>:

�PK

k=1
(pk��ki )

��
�[�i(x)]

�

P
h2
(x)

��PK

k=1
(pk��kh)

��
�[�h(x)]

�

� if i 2 


0 otherwise;

(9)

This probability distribution is biased by the parameters � and �,

which determine the relative in
uence of the trails and the visibility,

respectively.

3.1.4. Pheromone Update

A local pheromone update is performed once an arti�cial ant has added

a project to a portfolio. When an ant selects a project i, the amount of

pheromone on the elements �ki of the pheromone vector is decreased for

each objective k. The local pheromone update rule for these elements

can be stated as follows:

�ki = (1� �) � �ki + � � �0 ; (10)

where �0 is the initial value of trails and � is the evaporation rate.

On account of local updating, ants prefer those combinations of orders

that have not yet been chosen. As a result, the diversity of the solutions

provided is enhanced.

Global pheromone information is updated once each ant of the pop-

ulation has constructed a solution, and the feasibility and eÆciency

paco_020927.tex; 27/09/2002; 12:44; p.10



Pareto Ant Colony Optimization 10

have been determined. Preliminary tests have shown that a pheromone

update procedure suÆces in which only the best and the second-best

solution provided by an iteration is used for global updating (cf. Dorigo

and Gambardella, 1997; Bullnheimer et al., 1999a). The update rule for

each objective k is as follows:

�ki = (1� �) � �ki + � ���ki ; (11)

where � is the evaporation rate (with 0 � � � 1). Pheromone informa-

tion is increased by a quantity ��ki if a project i is in a portfolio of a

population's best (second-best, respectively) ant according to objective

k. This update quantity for the best ant can be represented as

��ki =

8><
>:

10 if xkbest;i = 1

0 otherwise.

(12)

After the update with respect to the best ant is performed according to

(11) and (12) a similar update (11) is made with respect to the second

best ant where the update quantity can be written as

��ki =

8><
>:

5 if xksecond�best;i = 1

0 otherwise.

(13)

Tests with various pheromone update strategies have shown that using

the two best ants with pheromone quantity 10 for the best ant and 5

for the second-best ant leads to good results.

3.2. Pareto Simulated Annealing

For our simulated annealing implementation, we use a technique by

Czyzak and Jaszkiewicz (1998) called \Pareto Simulated Annealing"

(PSA). This is an extension of the multiobjective simulated annealing

algorithms proposed by Sera�ni (1994) and by Ulungu et al. (1995). The

latter approaches already use a population M of potentially eÆcient

solutions rather than a single current solution, as is the case in classical,

single-objective simulated annealing. The new features of Czyzak and

Jaszkiewicz's extension are to allow a kind of interaction among the

current solutions in the population M (i. e., they are updated in such

a way that they evolve as distant from each other as possible), and to

iteratively modify weights assigned to the objective criteria.

Our basic implementation of the PSA algorithm for the problem

under consideration in this paper is described below in pseudo code.
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Let us use the following notation (K and N are the number of criteria

and the number of projects, respectively, as before):

S sample set of current (feasible) solutions,

s number of elements in S (�xed positive integer parameter),

p probability of choosing a 1-bit when generating an initial

solution x in S (�xed parameter between 0 and 1),

M solution set (i.e., set of all proposed eÆcient solutions

in current iteration),

wik weight of criterion k for the i-th element of sample set S,

uk(x) objective value (to be maximized) of criterion k for

solution x,

a weight modi�cation factor (�xed parameter greater than 1),

T temperature parameter for simulated annealing,

L number of iterations on each temperature level of the

simulated annealing algorithm (�xed positive integer parameter),

b temperature reduction (annealing) factor (�xed parameter

smaller than 1, near 1).

Now, the algorithm is the following:

procedure PSA () f

S = ;;

repeat until S contains s solutions f

generate a random binary vector of length N by setting a

bit to 1 with probability p and to 0 otherwise;

if (x is a feasible solution) add x to sample set S;

g

M = ;;

for i = 1 to s

if (i-th solution x in S is eÆcient w.r.t. M)

add x to solution set M and remove dominated ones;

initialize temperature parameter T ;

repeat until termination criterion is truef

for l = 1 to L

for i = 1 to s f

x = i-th solution in S;

construct a random feasible neighbor solution y to x by

(repeated) 
ipping of one or more bits in x and checking

feasibility;
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if (y is eÆcient w.r.t. M) add y to solution set M

and remove dominated ones;

x0 = element in S non-dominated by x that has minimum

Hamming distance to x;

if (�rst run or no x0 found) f

for k = 1 to K

draw random weight wik;

normalize weights wik to
P

k wik = 1;

g

else f

for k = 1 to K f

if (x better than x0 according to criterion k)

wik = awik;

else

wik = wik=a;

g

normalize weights wik to
P

k wik = 1;

g

accept y (i. e., replace x as the i-th solution in S by y) with

probability min (1; exp (
P

k wik (uk(x)� uk(y)) =T )) ;

g T = bT ; gg

In order to decrease the run time, we modify this basic algorithm as

follows: Instead of computing the non-dominated element x0 with min-

imum Hamming distance to the current x (which takes much computa-

tion time in the innermost loop of the algorithm), at each step we select

a small random subset J of bit positions and minimize the Hamming

distance only on those binary substrings de�ned by J . This modi�cation

results in a considerable improvement of the solution quality obtained

after a pre-speci�ed computation time.

3.3. Non-Dominated Sorting Genetic Algorithm

For our genetic algorithm implementation, we have chosen to use a

technique by Deb (2001) called \Fast Elitist Non Dominated Sorting

Genetic Algorithm" (NSGA). At each generation, a combined popula-

tion consisting of the parent and the children population is constructed

�rst. All non-dominated solutions in the combined population are as-

signed a �tness based on the number of solutions they dominate, while

dominated solutions are assigned a �tness worse than the worst �tness

of any non-dominated solution. The assignment of �tness ensures that

the search is directed towards the non-dominated front.

Our basic implementation of the NSGA for the problem under con-

sideration in this paper is described below in pseudo code. Let us use

paco_020927.tex; 27/09/2002; 12:44; p.13



Pareto Ant Colony Optimization 13

the following notation (K and N are the number of criteria and the

number of projects, respectively, as before):

E sample set of solutions - parent population,

Q sample set of solutions - children population,

e number of elements in E (�xed positive integer

parameter),

q number of elements in Q (�xed positive integer

parameter),

p probability of choosing a 1-bit when generating

an initial solution x in E (�xed parameter

between 0 and 1),

M solution set,

F = (F1; F2; :::) set of all non-dominated fronts,

uk(x) objective value (to be maximized) of criterion k

for solution x,

t iteration counter.

The algorithm is now as follows:

procedure NSGA () f

E = ;; Q = ;;

repeat until E contains e solutions f

generate a random binary vector of length N by setting a bit

to 1 with probability p and to 0 otherwise;

if (x is a feasible solution) add x to sample set E;

g

M = ;; t = 0;

for i = 1 to e

if (i-th solution x in E is eÆcient w.r.t. M)

add x to solution set M and remove all dominated ones;

repeat until termination criterion is truef

Rt = Et [Qt;

F = fast-nondominated-sort (Rt);

/* compute all non-dominated fronts F = (F1; F2; :::) of Rt

using objective values uk(x) for each objective k*/

Et+1 = ;;

include the non-dominated fronts in the parent

population Et+1 until the parent population

contains e portfolios;
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Qt+1 = make-new-population (Et+1);

/* apply one-point crossover and mutation to create

a new population Qt+1 using �tness values according to F*/

for i = 1 to q

if (i-th solution x in Q is eÆcient w.r.t. M)

add x to solution set M and remove all dominated ones;

t = t+ 1;

gg

The �rst front F1 consists of all non-dominated portfolios that are

not yet dominated by any other portfolios; the second front F2 consists

of portfolios that are only dominated by those of the �rst front, and

so on. After preliminary test and in order to decrease the run time, we

modify this basic algorithm as follows: Instead of computing all non-

dominated fronts of Rt, we compute only the �rst �ve fronts. It is not

necessary to sort more than �ve fronts because due to the number of

(non-linear) constraints a portfolio is either included in "upper" fronts

or it is infeasible.

4. Numerical Analysis

In the following section we describe computational tests which we per-

formed in order to compare the solution quality and performance of the

three approaches described in this paper. We tested the approaches

on random problem instances that we generated systematically us-

ing a problem instance generator. In addition, we also compared the

approaches by applying them to real-world data.

4.1. Random Problems

In order to provide a fair comparison of the solution quality and perfor-

mance of the described approaches we generated heterogeneous random

problem instances. The determining factors for portfolio selection prob-

lems are the numbers of objectives, the numbers of constraints and the

numbers of projects.

4.1.1. Problem Instance Generator

We generated 18 random problem instances on basis of the following

procedure:

A. Determine the number of projects which are the basis for possible

portfolios. We generate problem instances of two di�ering sizes:

twelve instances consisting of portfolios based on twenty projects

and six instances containing portfolios based on thirty projects.
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B. Determine the number of objectives. We generate instances of two

objective types: for each of the two sizes, we generate instances

with �ve objectives and instances with ten objectives.

C. Determine the number of constraints. For each size and each ob-

jective type, we generate two restriction types: problem instances

with few restrictions and problem instances with many restrictions.

Problem instances with few (many) restrictions contain three (nine)

to six (twelve) interactions to model minimum restrictions, and

another three (nine) to six (twelve) interactions to model maximum

restrictions. Furthermore, these problem instances have up to three

(three to �ve) interactions to model synergism e�ects.

D. Determine the resource consumption and the bene�ts for each ob-

jective associated with each project. The amount of resource con-

sumption and the increase in bene�t values for each of the objec-

tives are determined randomly. However, they correlate in a way

that projects with high resource consumption regularly provide a

high level of bene�ts and vice versa.

E. Determine the quantity of the overall resources available. The quan-

tity of the overall resources available is determined randomly and

correlates to the resource consumption of one-third of the projects

generated (the one-third used is chosen randomly). Furthermore,

that quantity is weighted by a random number between 0:8 and

1:2.

F. Determine the synergies. Pairs of project candidates for synergy

e�ects are selected randomly; the number of synergies depends on

the constraint type (cf. step C of this procedure). The additional

contribution to the objective values by combining the two selected

projects into the same portfolio equals 3% of the overall bene�ts of

all twenty (thirty, respectively) projects generated for the problem

instance.

4.1.2. Parameters for the Three Approaches

The following section provides results for the computational tests, which

were performed in order to provide an insight into how the solution

quality of Pareto Ant Colony Optimization, Pareto Simulated Anneal-

ing and the Non-Dominated Sorting Genetic Algorithm develops when

applying them to problem instances generated with the above proce-

dure. In preliminary tests a comparison with a Monte Carlo Simulation

and a randomized greedy approach by using the same heuristic infor-

mation which was integrated into ACO was performed (cf. Doerner
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et al., 2001a, 2002b). Tests showed a high superiority of ACO over

the random search and provide evidence that the learning feature of

ACO contributes essentially (up to 23%) to the solution quality. To

provide a yardstick for a comparison of various results, we have chosen

the total number PE of proposed eÆcient portfolios and the number

E of proposed portfolios appearing in the eÆcient set (proven actually

eÆcient through complete enumeration).

The parameter settings of P-ACO chosen for the computational

experiments (� = 1, � = 1, � = 0:1, � = 10) were taken from other

applications and were pre-tested for the problem under consideration.

As a result of these pre-tests the parameter q0 is reduced from q0 = 0:9

to q0 = 0:4 because a higher level of diversi�cation is desirable for our

application. For the same reason �0 = 1 appeared to be superior to the

much smaller values suggested by Dorigo and Gambardella for their

setting.

Some parameter settings of PSA were directly applied to our prob-

lem instances (e. g., weight modi�cation and annealing factor) whereas

others had to be adapted to the problem size (e. g., population size)

according to parameter setting rules outlined in Czyzak and Jaszkiewicz

(1998). For our problem instances with twenty projects we choose a

population size s of 350 feasible portfolios and a size of 2000 for the

problems with thirty projects. Further, the probability p of choosing a

1-bit when generating an initial solution x is set to 0.29 (because this

setting turned out to be better than the value 0.19 originally suggested

by Czyzak and Jaszkiewicz, 1998). The weight modi�cation factor a

is set to 1:01, and the initial temperature parameter is T = 1. The

number of iterations on one temperature level equals 2 for the problems

with twenty projects and equals 20 for the larger instances. Finally, the

temperature is reduced by a factor b = 0:9.

As the parameters of the NSGA must also be adjusted to the prob-

lem size, the parameter settings are based on the �ndings by Deb

(2001). A population size s of 200 feasible portfolios is used for the

\twenty-project-problems", whereas the population size is set to 400

for the larger instances with thirty project proposals. The probability

p of choosing a 1-bit when generating an initial solution x is set to

0:29, like in the PSA approach. The population is categorized into �ve

eÆcient frontiers by the non-dominated sorting procedure. There, the

�tness value of non-dominated solutions of the �rst front equals 1.0 and

is decreased by 0.2 for the following fronts (e. g., the �tness of a solution

of the second front is 0.8 while it is 0.2 for a solution of the �fth front

which contains all remaining portfolios). The �tness of an infeasible

solution generated by using the crossover or mutation operator is set

to 0.05.
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Figure 1. Numerical Results of Instances with 20 Projects

4.1.3. Numerical Results for Random Problems

We performed all runs on a personal computer with a Pentium III-933

microprocessor, 128 MB RAM, and the operating systemWindows ME;

all procedures were implemented in C++.

Figure 1 shows the results computed by each approach for the ran-

dom problem instances with twenty portfolios. To obtain heterogeneous

instances, we combine each objective type with each constraint type

and generate three problem instances with few restrictions and another

three with many restrictions for each objective type (i. e., �ve or ten

objectives). The instances with �ve objectives and few constraints have

92, 58, and 232 eÆcient portfolios, those with many constraints have

17, 14, and 77 eÆcient portfolios. The instances with ten objectives

and few constraints have 724, 575, and 898 eÆcient portfolios, while

those with many constraints have 73, 169, and 973 eÆcient portfolios.

We present values averaged over these twelve problem instances and

over three computational runs. The dashed line indicates the number

of proposed eÆcient portfolios whereas the bold line shows the actually

eÆcient ones found. Run times varied between 1:5; 2:0; 2:5, and 3:0 CPU

minutes.

PSA performs better than the other two approaches when run times

are low: it suggests 12% more portfolios than P-ACO and 26% more

than NSGA. The reason for the good values of PSA after short run

times lies in the large initial population. In addition, the hit rate E/PE

(it can be interpreted as the probability that the approach proposes

a portfolio belonging to the eÆcient set and indicates the degree of

\dilution" of a solution) is better than the hit rate of the other two
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Figure 2. Numerical Results of Instances with 30 Projects

approaches: 9% better than P-ACO and 30% better than the NSGA.

Slightly increased run time makes P-ACO superior to PSA and NSGA.

The learning feature of the P-ACO approach quickly leads to roughly

10% better results than PSA and ca. 20% better results than NSGA.

Finally, the relatively small gap between the dashed and solid line refer-

ring to P-ACO shows an appealing hit rate (i. e., the ratio of potentially

eÆcient portfolios and actually eÆcient ones) and may be interpreted

as a low probability that P-ACO would suggest a dominated portfolio

as an eÆcient one.

Figure 2 shows the results computed by each approach for random

problem instances based on thirty portfolios. To obtain heterogeneous

instances, we combined each objective type with each constraint type,

and generated two instances with �ve objectives and few restrictions

(461 and 1061 eÆcient portfolios), two instances with �ve objectives

and many constraints (374 and 365 eÆcient portfolios), and another

two instances with ten objectives and few and many restrictions (621

and 2619 eÆcient portfolios). The run time alternatives were set to 10,

20, 30, 40, 50, and 60 minutes to give an insight into the development

of the solution quality of each approach.

P-ACO shows better results than the other approaches in terms

of number of proposed eÆcient portfolios and in terms of number of

eÆcient portfolios found. Compared to PSA, P-ACO identi�es both

more and \better" portfolios from the very beginning: after 10 minutes

of run time it proposes on average 81% (which are 4% more portfolios

than for PSA); the ratio of the actually eÆcient portfolios among the

proposed ones is 13% higher than the PSA's ratio after 10 minutes
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of run time. After 60 minutes of run time, P-ACO proposes 2% more

portfolios than PSA and the ratio of actually eÆcient ones is 3% higher

than for PSA. NSGA performs signi�cantly worse than the two other

appoaches. Again, P-ACO has the best hit rate.

4.2. Numerical Results using Real World Data

In the following section, we present a numerical study that applies the

three approaches described previously by using real world data from an

R&D environment. It outlines a rather complex decision-making situ-

ation that does not permit any \intuitive" favoring of certain project

combinations in advance. Our example considers thirty projects (N =

30), three planning periods, and two bene�t categories (i. e., K = 3�2 =

6). Thus, the alternative space includes 230 (i. e., more than 109) portfo-

lios. The projects vary substantially in both their potential bene�ts and

the resources they require. Moreover, some projects vary signi�cantly in

their bene�t values and/or resource consumption while other projects

provide average values. In addition to limited resources and minimum

bene�t requirements, ten supplementary constraints ensure that { to

provide examples for a maximum and a minimum restriction { any

feasible portfolio includes at most one out of three projects pursuing

the same goal, or at least two projects that help to diversify business.

Finally, four interactions are used to model synergism or cannibalism

between projects. After eight hours of run time complete enumeration

shows that this real world problem has 980 eÆcient portfolios.

Again, we measure the proposed eÆcient and the eÆcient portfolios

that each approach found after 10, 20, 30, 40, 50, and 60 minutes of run

time. Figure 3 gives an overview of several characteristics; the upper

left graph shows the absolute number of proposed eÆcient portfolios

generated by the three approaches under consideration. PSA proposes

slightly more portfolios after 40 minutes of run time than P-ACO;

NSGA proposes relatively few portfolios. The graph in the upper right

corner measures the results of the approaches on the relative number

of actually eÆcient portfolios. Although PSA has proposed more port-

folios than P-ACO, the hit rate of P-ACO is clearly superior to PSA

(see bottom graph). The reason why PSA proposes many erroneous

portfolios lies in the large initializing population, which generates many

random-driven, feasible solutions. The inferior results of the NSGA are

based on the fact that many generated solutions become infeasible due

to the large number of constraints.

As only less than 0:1% of the total search space had to be checked

(i. e., on average 0.85 million portfolios compared to 1.20 million for the

PSA and 0.96 million for the NSGA) to �nd already 92% of the eÆcient
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Figure 3. Numerical Results with Real World Data

portfolios (after 60 minutes) this can be interpreted as a promising

indicator that P-ACO will generate satisfying solutions in reasonable

computation time even for problems that are too large to be enumer-

ated completely. Apparently, SA can generate the largest number of

portfolios in the given time frame, while P-ACO has the largest over-

head and thus can only generate the smallest number. Nevertheless,

except for very short run times (where SA is best) P-ACO �nds most

PE solutions of all approaches.

5. Conclusions

Multiobjective combinatorial optimization plays a decisive role in the

decision-making process on the strategic management level. Recent

research activities focused on heuristic approaches for such NP-hard

problems. Our paper introduces Pareto Ant Colony Optimization as

a solid method to provide an eÆcient algorithm for this challenging

problem class. We extended and enriched Ant Colony Optimization

by de�ning multiple pheromone vectors (i. e., one pheromon vector for
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each objective), random objective weights for each objective, and the

lifespan concept in order to apply P-ACO to multiobjective problems.

The solution quality of P-ACO is shown by providing benchmarks

based on the Pareto Simulated Annealing and the Non-Dominated Sort-

ing Genetic Algorithm approaches. To compare the solution quality and

the performance, we applied the three approaches to 18 heterogeneous

random problem instances and one instance using real-world data. In

our experiments P-ACO turned out as the most eÆcient one.

Following our results, the application of P-ACO to the project port-

folio selection problem under consideration has three advantages: (1)

it can handle the (complex) project interactions and constraints better

than the other two meta-heuristics, (2) it is robust in that it shows

very good results on various problem characteristics (e. g., many or few

constraints and/or objectives), and (3) heuristic information can easily

be plugged into the algorithm.

Our current experience shows that for some problem instances cer-

tain eÆcient portfolios (found by complete enumeration) are sometimes

extremely diÆcult to �nd. It could be worthwhile to analyze these

\hard-to-�nd" portfolios in more detail to obtain ideas for further

enhancement of our P-ACO approach.

Future research will focus on an enhanced eÆciency of the algo-

rithm, e. g. with an analysis of the lifespan concept in order to estimate

promising lifespans for the ants. Furthermore, it will focus on real world

problems with more than hundred projects. In large problems it will be

important to guarantee solutions diversi�ed over the eÆcient frontier;

an initial attempt may consist of integrating the core idea of PSA into

P-ACO to keep solutions isolated from each other.
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run time (min.) 1.5 2.0 2.5 3.0 10 20 30 40 50 60
PE_P-ACO

few restrictions/ few objectives 0,49 0,97 0,99 1,00 0,77 0,87 0,91 0,93 0,95 0,97
many restrictions/ few objectives 0,76 1,00 1,00 1,00 0,89 0,97 0,98 0,99 0,99 1,00
few restrictions/ many objectives 0,77 0,95 0,99 1,00 0,85 0,97 0,99 0,99 0,99 0,99

many restrictions/ many objectives 0,76 0,89 0,92 0,95 0,73 0,89 0,96 0,98 0,99 0,99
0,69 0,95 0,97 0,99 0,81 0,93 0,96 0,97 0,98 0,99
E_P-ACO

few restrictions/ few objectives 0,33 0,97 0,99 1,00 0,63 0,79 0,87 0,91 0,94 0,95
many restrictions/ few objectives 0,73 1,00 1,00 1,00 0,87 0,96 0,98 0,99 0,99 1,00
few restrictions/ many objectives 0,75 0,95 0,99 1,00 0,85 0,97 0,98 0,99 0,99 0,99

many restrictions/ many objectives 0,75 0,88 0,91 0,95 0,70 0,89 0,95 0,98 0,99 0,99
0,64 0,95 0,97 0,98 0,76 0,90 0,95 0,97 0,98 0,98
PE_PSA

few restrictions/ few objectives 0,73 0,89 0,89 0,89 0,69 0,80 0,82 0,86 0,89 0,91
many restrictions/ few objectives 1,03 0,96 0,96 0,96 0,84 0,95 0,99 1,00 1,00 1,00
few restrictions/ many objectives 0,67 0,78 0,82 0,84 0,95 0,99 1,00 1,00 1,01 1,01

many restrictions/ many objectives 0,82 0,86 0,88 0,88 0,59 0,78 0,91 0,97 0,99 0,97
0,81 0,87 0,89 0,89 0,77 0,88 0,93 0,96 0,97 0,97
E_PSA

few restrictions/ few objectives 0,62 0,86 0,86 0,86 0,48 0,61 0,68 0,74 0,80 0,83
many restrictions/ few objectives 0,93 0,96 0,96 0,96 0,70 0,92 0,98 0,99 1,00 1,00
few restrictions/ many objectives 0,58 0,72 0,79 0,81 0,94 0,98 0,99 0,99 0,99 0,99

many restrictions/ many objectives 0,79 0,84 0,86 0,87 0,42 0,66 0,86 0,93 0,95 0,96
0,73 0,84 0,87 0,87 0,63 0,79 0,88 0,91 0,93 0,95
PE_NSGA

few restrictions/ few objectives 0,42 0,69 0,73 0,75 0,32 0,38 0,39 0,42 0,43 0,45
many restrictions/ few objectives 0,66 0,95 0,98 1,00 0,46 0,51 0,54 0,56 0,58 0,59
few restrictions/ many objectives 0,39 0,60 0,67 0,70 0,39 0,59 0,63 0,74 0,79 0,75

many restrictions/ many objectives 0,71 0,80 0,82 0,83 0,33 0,47 0,58 0,64 0,70 0,74
0,55 0,76 0,80 0,82 0,38 0,49 0,54 0,59 0,63 0,63
E_NSGA

few restrictions/ few objectives 0,18 0,60 0,65 0,68 0,14 0,18 0,20 0,21 0,22 0,24
many restrictions/ few objectives 0,54 0,86 0,89 0,90 0,32 0,38 0,40 0,42 0,43 0,45
few restrictions/ many objectives 0,32 0,51 0,60 0,64 0,16 0,32 0,44 0,56 0,63 0,69

many restrictions/ many objectives 0,67 0,76 0,78 0,79 0,16 0,30 0,42 0,51 0,58 0,64
0,43 0,68 0,73 0,75 0,19 0,29 0,37 0,43 0,47 0,50

Figure 4. Not-to-be-published Appendix: Detailed Numerical Results
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