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Abstract — Designing control systems using
multiobjective genetic algorithms- can lead to a
substantial computational load as a result of the
repeated evaluation of the multiple objectives and the
population-based nature of the search. Here, a neural
network approach, based on radial basis functions, is
introduced to. alleviate this problem by providing
computationally inexpensive estimates of objective
values during the search. A straightforward example
demonstrates the utility of the approach.

1 Introduction

Many problems arising in control and systems engineering
require the simultaneous optimisation of multiple, often
conflicting, design criteria, such as performance,
reliability, and cost (Fig. 1). Unlike in single-objective
optimisation, the global solution to such problems is
seldom a single point, but a family of compromise
solutions known as the Pareto-optimal set, such as
illustrated by the trade-off surface in Fig. 1. These
solutions are optimal in the sense that improvement in any
objective can only be achieved at the expense of
degradation in at least one of the remaining objectives.

Fonseca and Fleming (1993) proposed a multiobjective
genetic algorithm approach to solving this problem and
presented a detailed account of its development and
application in Fonseca and Fleming (1998a, 1998b). This
approach is outlined in this paper in Section 2. Inevitably,
owing to the existence of multiple objectives and the
population-based nature of the search, its application can
result in a considerable computational burden for complex
problems. In Section 3, a neural network-based approach is
proposed to alleviate this burden through efficient
estimation of objectives. This approach is demonstrated in
Section 4 on a simple control system example and shown
to be effective.
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Fig. 1  Trade-off surface depicting competing system

performance objectives

2 MultiObjective Genetic Algorithm
(MOGA)

2.1 Multiobjective optimisation.

Consider the following multiobjective optimisation (MQ)
design problem:

min F(p) ..(D
peQ

where p=[pi, pa, ..., pg], Q defines the set of q free
variables, p, subject to any constraints and F(p) = [f,(p),
f2(p), ..., fu(p)] are the design objectives to be minimised.

Clearly, for this set of functions, F(p), it can be seen that
there is no one ideal “optimal’ solution, rather a set of
Pareto-optimal solutions for which an improvement in one
of the design objectives will lead to a degradation in one or
more of the remaining objectives. In Fig.2 there are two
objectives, f; and f,, to be simultaneously minimised.
These objectives are competing with one another such that
there is no single solution. Candidate solution point A has
a lower value of f,, but a higher value of f;, than candidate



solution point B. Thus, it is not possible to state that one
point on the trade-off curve shown in Fig. 2 is better or
worse than another. Such solutions are known as Pareto-
optimal solutions (alternatively as non-inferior or non-
dominated solutions) to the multiobjective optimisation
problem.
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Fig.2 Pareto-optimal set of solutions for 2-objective
problem

Hitherto, members of the Pareto-optimal solution set
have been sought through solution of an appropriately
formulated non-linear programming (NP) problem. A
number of approaches are currently employed including
the e-constraint, weighted-sum and goal attainment
methods (Hwang and Masud, 1979). However, such
approaches require precise expression of a, usually not
well understood, set of weights and goals.

If the trade-off surface between the design objectives is
to be better understood, repeated application of such
methods is necessary. In addition, NP methods cannot
handle multimodality and discontinuities in function space
well and can thus only be expected to produce local
solutions.

The population-based nature of genetic algorithms
(GAs) enables the evolution of a Pareto-optimal set of
solutions. Also, because of the stochastic nature of the
search mechanism, GAs are capable of searching the entire
solution space with more likelihood of finding the global
optimum than conventional optimisation methods. Indeed,
conventional methods usually require the objective
function to be well behaved, whereas the generational
nature of GAs can tolerate noisy, discontinuous and time-
varying function evaluations, and, as is the case in this
paper — estimates of the objectives.

The MOGA approach proposed by Fonseca and Fleming
(1993) uses a rank-based fitness assignment, where the
rank of a certain individual x; at generation ¢ is related to
the number of individuals p,(?) in the current population by
which it is dominated. This is given by
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rank(x;,t) = p; (). - (2)
All non-dominated individuals are assigned rank 0 and
remaining individuals are penalised according to Eqn. (2).
Fitness is assigned by interpolating from the best
individual (rank=0) to the worst, and then the fitness
assigned to individuals with the same rank is averaged
where the global population fitness is kept constant.
However, such fitness assignment tends to produce
premature convergence due to the fact that all non-
dominated (best rank) points are considered equally fit
(Fig. 3). In order to overcome this deficiency, Fonseca and
Fleming have used a niche induction method to promote
the distribution of the population over the Pareto-optimal
front in order to maintain diversity. This is achieved by a

method of fitness sharing which encourages the
reproduction of isolated individuals and favours
diversification.
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Fig. 3. Pareto-ranking without preference information
2.2 Preference information

Preference information is also introduced in the form of a
goal vector, g, which provides a means of evolving only a
specific region of the search space. This allows the
decision-maker to focus on a region of the Pareto front by
providing external information to the selection algorithm.
A typical set of design trade-offs resulting from a MOGA
design exercise is shown in Fig. 4. This figure illustrates a
representation which deals with more than two objectives
(eight objectives, in fact, for this flight control example).
In this "parallel co-ordinates representation”, each line in
the graph connects the performance objectives achieved by
an individual member of the population and represents a
potential solution to the design problem. All solutions
illustrated in Fig.4 are both non-dominant and satisfy the
prescribed goals as represented by the "x" marks. The
decision-maker (DM) must select a suitable compromise
from this set of solutions. DM may interact with the



MOGA as it evolves, to "tighten" or "slacken" the goals, in
order to target a specific compromise solution.

3 Estimation of Objectives Using Neural
Networks

A typical control system design problem might be posed as
follows. Given a system X =f(X,u,?), where x and u
are the system state and control vectors and f is a vector
non-linear function, find a controller U such that the
design specifications,

fixsu,t)< g i=1,...,m,
are satisfied, where g; are the design goals. Zakian and Al-
Naib (1973) proposed a method for obtaining a control
vector, u, of prespecified structure, which satisfied the
design specifications/constraints eqn. (1).

For the application of MOGA we formulate this problem
as a MO problem where f; are the objectives to be
optimised and g; are components of the goal vector used
for preference information. This solution method is
superior to that of Zakian and Al-Naib for a number of
reasons which include the fact that:

a) MOGA will obtain a family of solutions,

b) these solutions will be optimal in some sense (Pareto-
optimal), and

¢) MOGA will not fail if g; are unattainable.

However, use of multiobjective optimisation for system
design can often result in a substantial computational load
arising from the repeated evaluation of the multiple
objectives, especially in cases where the objective function
evaluation is costly, for example, when the value is
obtained following a system simulation. While
evolutionary computing methods have proved effective in
obtaining  solutions to multiobjective  optimisation
problems, the population-based 4 ture of the search can
exacerbate this computational loagl Sifﬁculty.

To overcome this drawback, an approximation approach
is proposed whereby MOGA works with estimates of the
objectives, rather than the actual values. (GAs and
MOGAs are robust under these conditions). In the first few
MOGA generations, actual values of objective functions
will be calculated for a representative set of points in
decision variable space. Neural networks can then be
trained on these points to act as function approximators for
these objective functions. In the following Section, a
simple six-objective control system design problem

illustrates the approach.

Fig. 4 Parallel Co-ordinates Representation: Design Objective Trade-Offs
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4. Design Example

This simple problem is to design a cascade compensator r,
G.(s), for a unity-gain feedback control system with plant
transfer function, G,(s), where

14748
Gp(s) =

—1— and GC(S) =K————,
s(1+s/2) 1+ 17498
in an attempt to satisfy the specifications outlined in
Table 1. (Ess is the steady-state error due to a unit ramp
input, Ts is the 2% settling time, Tp is the time to
maximum overshoot (peak time), %Os is the percentage
overshoot to a unit step input and BW is the bandwidth.)
These specifications represent the objectives, f;, eqn. (1),
to be minimised in the MO problem with respect to
K,7), and 75, ie.

minimise f = [fl,...,f6,]Tw.r.t. K,7q, and 75.

With the exception of Eg, the objectives were obtained by
simulation and analysis in the time and frequency domain,
using Simulink (MathWorks, 1993). Since this was
computationally costly, neural networks were trained to
provide estimates of the objectives.

4.1 Neural network RBF-based function

approximators

Five radial basis function networks (RBFs) were used to
map the compensator parameters (K, 1, 12) to the design
objectives. One additional RBF was trained simply to
classify between acceptable and non-acceptable (unstable
or near unstable) systems. In the subsequent MOGA

design process, if an unacceptable solution is identified
then there is no evaluation of objectives and the associated
individual is simply assigned a low value of fitness in all
objectives. All these RBFs were trained prior to running
the MOGA, although the first few MOGA generations
could have provided the training data. RBFs were
preferred to Multilayer Perceptrons (MLPs) for this work.
While the approximation capabilities of the two neural
network schemes are similar, the hybrid training methods
for RBFs are faster than the supervised training methods
for MLPs (Haykin, 1994):

The Gaussian radial basis function with the general

form ¢(r)=e s was chosen as the activation

function of the hidden functions, where B is the parameter
specifying the width of the basis function. The neural
networks training process was in two stages - the first to
obtain the optimal parameters of the hidden functions (with
the use of the K-means clustering algorithm (Bishop,
1995)) - and the second to obtain the linear layer weights.
The compensator parameters used in the training belonged
to the following range of values: 1 <K <200 and 0 < 1), 1
< 1. All the networks were trained with 246 records and 40
hidden neurons were employed. A test set with 63 records
was employed to verify whether the networks generalise
well.

Table 2 illustrates the mean errors arising from
training non-training data test sets (I - VI). Comparing
these results, it can be seen that the networks were not
over-trained and that a good generalisation was achieved.

Ess Ts Tp %0s | BW@ BW @
-3dB gain -40dB gain
<0.02 [ <03s|<0.1s|<20%| =25rad/s <300 rad/s
< 60 rad/s
Table 1 Design specifications
% Error I 11 111 v \Y% VI
Training data 4.4029 42198 7.0152 8.7516 9.4866 2.8150
Non-training data 6.3566 4.9558 8.8053 10.2318 9.0713 3.4723

Table 2 Mean errors (%) obtained from training and non-training data
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4.2 Compensator design results

Two design exercises are compared:
Design I - uses MOGA with direct
evaluation of the design objectives,
via simulation and analysis, and

Design IT - uses MOGA combined
with RBF NNs which estimate the
design objectives.

In both Design cases, the MOGA process was run for 30
generations with a population of 75 individuals and
identical GA operators and parameters. Fig. 5 shows the
normalised design objective values (costs) achieved by
each individual member of the resulting set of non-
dominant solutions for Design I. Twenty non-dominated
solutions are shown in the Figure, where each line
represents a solution and the design specification goals are
indicated by “X”. Ideally, solutions should satisfy all of the
design specifications, i.e. pass below all the points (X). It
will be observed that this is not the case — demonstrating
that an infeasible set of design objectives was postulated.
Nonetheless, the resulting Pareto-optimal (non-dominated)
set contains the best set of solutions possible.

Fig. 6 shows the corresponding set of solutions arising
out of Design II (56 non-dominated solutions in this case)
— where the design objective values were estimated by the
RBF NNs. Comparing Figs. 5 and 6, it is apparent that
similar solutions have been obtained, albeit almost three
times more non-dominated solutions for Design IL
Remember, also, that the stochastic nature of the GA
process means that no two runs will produce identical
results. One candidate solution from the set of solutions
arising from Design II is selected for Table 2 and the
estimated design values are compared with the actual
design values for this solution. Reassuringly, there is a
very close match between the estimated and actual values.

4.3 Computational effort

There is a very great saving in computational effort using
the neuro-genetic approach (Design II) which requires 30
times fewer FLOPs (floating-point operations) than Design
I. This does not take into account the computational effort
required in training the NNs, but does promise considerable
potential for significant savings in design time for more
complex design problems. Since the MOGA approach is
intended as a high-level decision-making tool requiring
designer interaction, this has considerable importance for
the viability of the method for large-scale problems.

5. Concluding Remarks

MOGAs are a powerful decision-making aid for the
control system designer. It is possible to search for many
Pareto-optimal solutions concurrently, while concentrating
on relevant regions of the Pareto set. Also, a human
decision-maker may interactively supply preference
information to the algorithm as it runs. Applications have
included the design of controllers for flight dynamics, gas
turbine engines and active magnetic bearings. Design
problem characteristics have included non-linear system
descriptions, incorporation of H-infinity approaches and
on-line use of the MOGA tool. Examples of the use of the
method may be found in Fonseca & Fleming (1998a;
1998b), Dakev et al. (1997), Chipperfield & Fleming
(1996) and Schroder et al. (1998).

The main computational burden arises from the evaluation
of' the multiple objectives. Inevitably, in some cases, due to
the complexity of designs and the population-based search
approach, this burden can prove excessive. It has been
shown that using RBF NN function approximators to
estimate the values of the objectives can alleviate this load.
Currently, an alternative approach that uses Response
Surface Models is also under investigation as a means of
reducing the computational load.

. Design T BW BW
Design K T T values Ess T ' %0s -3dB | -40dB
parameters Estimated | 002 | 029 | 0.10 | 220 | 420 | 307

374 | 047 | 0.037 | =mate : : ' : :
Actual 002 029 |011 |221 |419 |309

Table 3. Candidate solution — Design II.
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OBJECTIVE NUMBER

Fig.5 Design I: Pareto-optimal solution set
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Fig. 6 Design II: Pareto-optimal solution set
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