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Abstract 
 
 
We describe scheduling in the metals processing 
industry and present some of the challenges that 
we have faced in applying genetic algorithms to 
provide real world scheduling systems for use in 
our factories.  After examining the technical 
difficulties in implementing real world genetic 
engines, we conclude that the use of genetic 
algorithms in industry is still an art, not a 
science. 

1 SCHEDULING FOR METALS 
PROCESSING INDUSTRY 

Our group first used a genetic algorithm (GA) as part of a 
scheduling system put into a fabrication plant in North 
America, seven years ago.  Since then we have built on 
this experience and now have GA driven scheduling 
systems in a continuous casting plant in Canada, on hot 
mills in North America and Korea, on many cold mills, 
and on a paint-line in Italy. 
Our experience has led to a pragmatic approach based on 
heuristics, with the aim of producing schedules that are 
“good enough”. 
We begin by giving a broad description of the processes 
we are scheduling, describe where GA’s fit in a real world 
scheduling system, and then examine the technicalities of 
implementation. 
We have included significant detail, restricted in some 
places by our need to respect the proprietary nature of the 
applications.  

1.1 THE SCHEDULING PROBLEM 
The manufacturing process in our factories is based on the 
working of a single piece of metal through multiple 
machines, each of which changes either some physical 
property of material, such as the thickness, or some 
metallurgical property, such as the hardness. 

The single-machine scheduling problem is thus based on 
sequencing a set of materials such that the sequence can 
be produced on the machine, and is optimised in some 
way.  The sequencing problem is often complicated by the 
need to group items together, as some machines process 
the metal pieces in batches.  The sequence will give rise 
to delays between the processing of successive pieces of 
material, in order to carry out some sequence dependent 
set-up operations. 
Usually, the sequence will also affect the quality of the 
product, particularly when the thermal state of the 
machine has a time constant of the order of the processing 
time of several pieces of material. 
Material is made to order, and one-off orders are 
common.  An order specifies a particular quantity of a 
given specification.  For a given machine, there may be 
between 100 and 500 pieces of material processed each 
day, with anything from one piece per specification to 10 
pieces of a given specification.  This is a relatively small 
number of pieces, and necessitates a scheduling horizon 
of several days to obtain scope for optimisation. 
The scheduling system often has an additional role to 
fulfil, assigning material to specific orders 
(specifications).  In general, a single specification of input 
material can be used to make several different types of 
output material and the type to be produced must be 
chosen.  Several orders may be made from one material, 
or many pieces of material may be required for a single 
order.  Thus each job has an earliest availability 
determined by the material assigned to it, and a latest start 
determined by the required delivery date, and this 
additionally constrains the problem. 
This structure is present in the aluminium fabrication 
business across most of the machines in the production 
route, e.g. hot mill, caster, slitter, or paint line.  

1.2 CHARACTERISTICS 
The problem has a multi-level structure, involving the 
sequencing, grouping and assignment of pieces of 
material.  These problems are not separable, and must be 
solved together.  Within a specific scheduling problem, 
the group size may vary considerably (e.g. from one to 20 
pieces), depending on the product and the order volumes. 



The sequence dependent set-ups are frequent (e.g. every 
ten pieces in an optimised schedule) and are caused by 
many different process rules.  The duration of the set-up 
is relatively independent of the reason for the set-up, and 
it is difficult to alter the schedule to remove a delay for 
one reason, without introducing a similar delay for 
another reason.  This gives rise to a fitness landscape that 
consists of narrow peaks and wide valleys (at least that is 
our intuition, see later). 
It is relatively easy to optimise one portion of a schedule, 
so we would expect the fitness landscape to also 
demonstrate many local optima. 

2 REAL WORLD SCHEDULING 
SYSTEM 

A real world scheduling system is one component of an 
overall system designed to achieve the business objectives 
of maximising on time delivery, maximising throughput, 
and minimising work in process.  A scheduling system 
plays a key role in this, but can only succeed in 
coordination with planning and manufacturing execution 
systems. 
We estimate that the implementation of an optimised 
schedule builder using a GA represents less than 20% of 
the effort required to build a real world scheduling 
system.  For our projects we have written an 
implementation of a GA that can be used in all of our 
scheduling systems and reduces the effort for new 
systems below even this level.  The remaining time is 
spread over the items below, which are included here to 
show the level of effort required in implementing a real 
world scheduling system, relative to the effort involved in 
the GA optimiser. 

2.1 SCHEDULING RULE FORMALISATION 
One of the longest processes in building a scheduling 
engine is the elicitation of the scheduling rules, and their 
formalisation in a suitable form in code.  These rules 
determine the permissibility and the quality of a schedule 
and are often highly specific and numerous. 
The compilation and encoding of the rules is a major part 
of the implementation effort. Combined with the fact that 
these rules often reflect proprietary practices, this may 
explain why industry has not produced many benchmark 
problems for use in GA scheduling research. 

2.2 SCHEDULE EDITING 
The person responsible for scheduling requires the ability 
to manually construct a schedule and to edit schedules 
that have been generated by the optimising engine.  This 
enables the human scheduler to maintain responsibility 
for the schedules, reacting to minor events on the factory 
floor, and correcting any constraints that have not been 
implemented in the system.  

2.3 INTERACTION WITH OTHER SYSTEMS 
The GA scheduler uses the order book, material inventory 
and machine schedules and links to the manufacturing 
systems that provide these must be established for the GA 
scheduler to operate.  This often involves synchronising 
data from several disparate systems. 

2.4 SOLUTION TIME 
For a scheduling system to respond to unexpected events 
on the factory floor, it needs to be able to produce 
schedules within 1/2 hr on a current PC. 

3 GA IMPLEMENTATION ISSUES  
In creating a GA for use as the optimisation engine in our 
scheduling systems, we are faced with a number of design 
decisions. 

3.1 BLACK BOX OR CUSTOM GA 
While there has been extensive recent work on developing 
black box GA’s (Pelikan et al. 2001, Bosman and 
Thierens, 2001), we feel that this work has yet to become 
advanced enough to handle the type of problem described 
above.  The major issue facing these systems is learning 
the problem specific structure and we have decided to 
work with a custom GA, allowing us to add the problem 
domain knowledge directly into the GA, reducing the 
requirement for a learning algorithm. 
We note that most of the learning schemes are based on 
building probabilistic models, and have yet to use an 
adaptive solution representation that would enable direct 
coding and propagation of identified linkage. 

3.2 SCHEDULE REPRESENTATION 
Having decided on a custom GA, we have also always 
decided on a problem specific representation for our 
genetic optimisers. 
Some theoretical considerations have been proposed on 
why composite data structures might be preferable 
(Radcliffe 1992).  Genetic programming (GP) in practice 
(Koza 1999) has shown the usefulness of a graph 
representation for specific problems.  The vast body of 
work on GP shows the advantages of using this 
representation and associated operators when suited to the 
problem at hand.  Work on grouping algorithms 
(Faulkener 1998) has shown the advantages of problem 
specific representation in that domain. 
From a practical viewpoint, designing a representation 
allows close control over the characteristics of the 
projection from search space to schedule space.  In 
particular we strive for a bijective projection, with one 
possible coding of every possible schedule, with every 
possible representation mapping to a valid schedule.  
Achieving this aim greatly simplifies the writing of 
operators that change an individual. 



The custom representation allows direct inclusion of the 
problem linkage in the coding.  This not only obviates the 
need to learn the linkage, but also allows the building 
blocks to be directly propagated by the representation. 
The disadvantage of using a custom representation is that 
we give up all recourse to formal results on operator 
design, selection pressure, convergence, etc – we 
effectively give up all current results.  While we expect 
that the general tendencies expressed by the formal results 
on simple GA’s will continue to apply, this interpretation 
is in the realms of design as an art, and requires 
considerable experimentation. 

3.3  GENETIC OPERATORS 
Writing the operators and selecting their parameters is 
30% of the work of implementing the GA.  The design of 
the operators spans all representation, schedule and 
objective spaces and has a determining impact on the 
performance of the schedule optimiser. 
It is well known from schema theory that the operators 
bias the search space, and that biasing the search space is 
what makes hard problems tractable. 
While crossover tends to be implemented as a 
modification of the traditional crossover operators, our 
mutation operators are much more varied, and play a role 
in both the exploration of the landscape and in the 
refinement (i.e. local search) of promising solutions. 
The mutation operators are often designed based on 
heuristics used in manual schedule construction, and 
ensure that the schedule optimiser is capable of generating 
key features of “good schedules”. 
At present the design of the mutation operators is based 
on trial and error.  As far as we are aware, there are no 
tools available to help analyse operator performance, 
either theoretically or empirically.  We would like to be 
able to answer questions on the effect of the operators on 
the landscape (are they local search operators or 
exploration operators), the bias they introduce, how 
orthogonal they are to each other, and whether the 
operators allow the exploration of all (or at least the good 
parts) of the landscape. 
We have no way of answering these questions at the 
moment, which increases considerably the skill required 
in build a real world application.  The development of 
schema theory (Poli, Langdon, Vose) promises to deliver 
some theoretical answers for standard encoding and 
operators, but for the real world we need empirical tools 
to be able to apply schema analysis to the design of our 
genetic optimisers. 

3.4 SELECTION PRESSURE 
Linked to the choice of operators is the wider issue of 
selection pressure, determined by selection algorithms 
and operator probabilities (Goldberg and Sastry 2001). 

We take qualitative notice of the conclusions in the theory 
and then resort to trial and error.  We utilise many 
mutation operators, and a design methodology to address 
the questions of absolute level of mutation and the 
relative weights of the operators would be of considerable 
benefit. 

3.5 EVALUATION 
Writing an evaluation function for decoding the 
representation is 70% of the work of implementing the 
GA.  The evaluation function applies many of the process 
rules, and allows the objective functions to work with real 
world quantities, such as delay times, machine 
throughput, delivery delays, etc. 

3.5.1 Constraints 
One approach used in the literature is to use a separate 
objective for constraints.  Due to the limitation above we 
use the approach of having hard constraints only (i.e. we 
ensure that all schedules considered are valid). 
Soft constraints represent a heuristic on what an optimised 
schedule is, and are included through penalising one of 
the main objective functions.  This has however leads to 
large flat valleys in the landscape, due to the number of 
constraints that can have the same penalty. 

3.6 OBJECTIVE FUNCTIONS 
Scheduling problems are by definition multi-objective in 
nature and we have drawn heavily on work in this area 
(Fonseca & Fleming 1995, Coello 1999), in particular on 
the MOGA. 
The objective functions are chosen to represent quantities 
that are managed by the schedulers, such as on-time 
delivery, machine productivity and material inventory. 
For a manageable optimisation time, we have found that a 
maximum of three objectives is a practical limit.  This 
constraint arises due to the increased population size 
required to get dense enough coverage of the Pareto front.  
For N orthogonal objectives, the Pareto front is generally 
a N-1 dimensional surface, and we conjecture that O(xN) 
population size is required given a single objective 
population x calculated from other sizing requirements. 
Since the objective functions are real world, we have little 
influence on the nature of the mapping between schedule 
and objective space.  There is no guarantee that the 
projection will be one-to-one, and there is no guarantee 
that the projection is continuous. 
This is problematic when designing and tuning operators, 
as we have no method for visualising the search space.  
Without such a visualisation it is impossible to develop 
separate knowledge of the landscape and the action of the 
operators, leaving us to use what we can infer from the 
convergence dynamics of the optimiser as a whole. 
A visualisation might rely on some concept of distance 
between solutions for a permutation problem.  While 



there are some ideas for calculating distance between 
sequences to be found in DNA sequencing, these ideas 
have not yet been applied to scheduling GA’s. 

4 CONCLUSIONS 
We show that that the generation of optimised schedules 
is one part of a scheduling system, which in turn is part of 
overall planning and manufacturing system designed to 
meet the business objectives of on-time delivery, 
productivity and material inventory. 
The design decisions taken to build a system to obtain our 
pragmatic goal of generating adequate schedules within a 
reasonable time have taken us away from a solution based 
on a standard GA.  Once we leave the standard GA the 
direct applicability of published work diminishes, and we 
revert to a heuristic solution of the issues involved. 
We would welcome design tools to support the empirical 
design of our GA’s.  The ability to visualise the search 
space for scheduling type problems would aid our 
understanding of the landscape, enabling us to design 
better operators.  Tools to characterise the performance of 
operators when applied individually and in interaction 
with other operators would speed the development 
process and lead to improved solution quality. 
The infrequent use of GA’s in industrial scheduling can 
probably be attributed to the relatively small role the 
optimisation engine plays in an scheduling system, and 
the complexity and art of implementation, despite the 
undeniable benefits that we have seen from these systems.  
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