
Using Genetic Algorithms in Industry – Art or Science?

Hugo Duncan

Alcan Inc.
1188 Sherbrooke St West

Montreal, Quebec, H3A 3G2
hugo.duncan@alcan.com

Gerard Leconte
Alcan Inc.

Peter Utiger
Alcan Inc.

Abstract

We describe scheduling in the metals processing
industry and present some of the challenges that
we have faced in applying genetic algorithms to
provide real world scheduling systems for use in
our factories. After examining the technical
difficulties in implementing real world genetic
engines, we conclude that the use of genetic
algorithms in industry is still an art, not a
science.

1 SCHEDULING FOR METALS
PROCESSING INDUSTRY

Our group first used a genetic algorithm (GA) as part of a
scheduling system put into a fabrication plant in North
America, seven years ago. Since then we have built on
this experience and now have GA driven scheduling
systems in a continuous casting plant in Canada, on hot
mills in North America and Korea, on many cold mills,
and on a paint-line in Italy.
Our experience has led to a pragmatic approach based on
heuristics, with the aim of producing schedules that are
“good enough”.
We begin by giving a broad description of the processes
we are scheduling, describe where GA’s fit in a real world
scheduling system, and then examine the technicalities of
implementation.
We have included significant detail, restricted in some
places by our need to respect the proprietary nature of the
applications.

1.1 THE SCHEDULING PROBLEM
The manufacturing process in our factories is based on the
working of a single piece of metal through multiple
machines, each of which changes either some physical
property of material, such as the thickness, or some
metallurgical property, such as the hardness.

The single-machine scheduling problem is thus based on
sequencing a set of materials such that the sequence can
be produced on the machine, and is optimised in some
way. The sequencing problem is often complicated by the
need to group items together, as some machines process
the metal pieces in batches. The sequence will give rise
to delays between the processing of successive pieces of
material, in order to carry out some sequence dependent
set-up operations.
Usually, the sequence will also affect the quality of the
product, particularly when the thermal state of the
machine has a time constant of the order of the processing
time of several pieces of material.
Material is made to order, and one-off orders are
common. An order specifies a particular quantity of a
given specification. For a given machine, there may be
between 100 and 500 pieces of material processed each
day, with anything from one piece per specification to 10
pieces of a given specification. This is a relatively small
number of pieces, and necessitates a scheduling horizon
of several days to obtain scope for optimisation.
The scheduling system often has an additional role to
fulfil, assigning material to specific orders
(specifications). In general, a single specification of input
material can be used to make several different types of
output material and the type to be produced must be
chosen. Several orders may be made from one material,
or many pieces of material may be required for a single
order. Thus each job has an earliest availability
determined by the material assigned to it, and a latest start
determined by the required delivery date, and this
additionally constrains the problem.
This structure is present in the aluminium fabrication
business across most of the machines in the production
route, e.g. hot mill, caster, slitter, or paint line.

1.2 CHARACTERISTICS
The problem has a multi-level structure, involving the
sequencing, grouping and assignment of pieces of
material. These problems are not separable, and must be
solved together. Within a specific scheduling problem,
the group size may vary considerably (e.g. from one to 20
pieces), depending on the product and the order volumes.

The sequence dependent set-ups are frequent (e.g. every
ten pieces in an optimised schedule) and are caused by
many different process rules. The duration of the set-up
is relatively independent of the reason for the set-up, and
it is difficult to alter the schedule to remove a delay for
one reason, without introducing a similar delay for
another reason. This gives rise to a fitness landscape that
consists of narrow peaks and wide valleys (at least that is
our intuition, see later).
It is relatively easy to optimise one portion of a schedule,
so we would expect the fitness landscape to also
demonstrate many local optima.

2 REAL WORLD SCHEDULING
SYSTEM

A real world scheduling system is one component of an
overall system designed to achieve the business objectives
of maximising on time delivery, maximising throughput,
and minimising work in process. A scheduling system
plays a key role in this, but can only succeed in
coordination with planning and manufacturing execution
systems.
We estimate that the implementation of an optimised
schedule builder using a GA represents less than 20% of
the effort required to build a real world scheduling
system. For our projects we have written an
implementation of a GA that can be used in all of our
scheduling systems and reduces the effort for new
systems below even this level. The remaining time is
spread over the items below, which are included here to
show the level of effort required in implementing a real
world scheduling system, relative to the effort involved in
the GA optimiser.

2.1 SCHEDULING RULE FORMALISATION
One of the longest processes in building a scheduling
engine is the elicitation of the scheduling rules, and their
formalisation in a suitable form in code. These rules
determine the permissibility and the quality of a schedule
and are often highly specific and numerous.
The compilation and encoding of the rules is a major part
of the implementation effort. Combined with the fact that
these rules often reflect proprietary practices, this may
explain why industry has not produced many benchmark
problems for use in GA scheduling research.

2.2 SCHEDULE EDITING
The person responsible for scheduling requires the ability
to manually construct a schedule and to edit schedules
that have been generated by the optimising engine. This
enables the human scheduler to maintain responsibility
for the schedules, reacting to minor events on the factory
floor, and correcting any constraints that have not been
implemented in the system.

2.3 INTERACTION WITH OTHER SYSTEMS
The GA scheduler uses the order book, material inventory
and machine schedules and links to the manufacturing
systems that provide these must be established for the GA
scheduler to operate. This often involves synchronising
data from several disparate systems.

2.4 SOLUTION TIME
For a scheduling system to respond to unexpected events
on the factory floor, it needs to be able to produce
schedules within 1/2 hr on a current PC.

3 GA IMPLEMENTATION ISSUES
In creating a GA for use as the optimisation engine in our
scheduling systems, we are faced with a number of design
decisions.

3.1 BLACK BOX OR CUSTOM GA
While there has been extensive recent work on developing
black box GA’s (Pelikan et al. 2001, Bosman and
Thierens, 2001), we feel that this work has yet to become
advanced enough to handle the type of problem described
above. The major issue facing these systems is learning
the problem specific structure and we have decided to
work with a custom GA, allowing us to add the problem
domain knowledge directly into the GA, reducing the
requirement for a learning algorithm.
We note that most of the learning schemes are based on
building probabilistic models, and have yet to use an
adaptive solution representation that would enable direct
coding and propagation of identified linkage.

3.2 SCHEDULE REPRESENTATION
Having decided on a custom GA, we have also always
decided on a problem specific representation for our
genetic optimisers.
Some theoretical considerations have been proposed on
why composite data structures might be preferable
(Radcliffe 1992). Genetic programming (GP) in practice
(Koza 1999) has shown the usefulness of a graph
representation for specific problems. The vast body of
work on GP shows the advantages of using this
representation and associated operators when suited to the
problem at hand. Work on grouping algorithms
(Faulkener 1998) has shown the advantages of problem
specific representation in that domain.
From a practical viewpoint, designing a representation
allows close control over the characteristics of the
projection from search space to schedule space. In
particular we strive for a bijective projection, with one
possible coding of every possible schedule, with every
possible representation mapping to a valid schedule.
Achieving this aim greatly simplifies the writing of
operators that change an individual.

The custom representation allows direct inclusion of the
problem linkage in the coding. This not only obviates the
need to learn the linkage, but also allows the building
blocks to be directly propagated by the representation.
The disadvantage of using a custom representation is that
we give up all recourse to formal results on operator
design, selection pressure, convergence, etc – we
effectively give up all current results. While we expect
that the general tendencies expressed by the formal results
on simple GA’s will continue to apply, this interpretation
is in the realms of design as an art, and requires
considerable experimentation.

3.3 GENETIC OPERATORS
Writing the operators and selecting their parameters is
30% of the work of implementing the GA. The design of
the operators spans all representation, schedule and
objective spaces and has a determining impact on the
performance of the schedule optimiser.
It is well known from schema theory that the operators
bias the search space, and that biasing the search space is
what makes hard problems tractable.
While crossover tends to be implemented as a
modification of the traditional crossover operators, our
mutation operators are much more varied, and play a role
in both the exploration of the landscape and in the
refinement (i.e. local search) of promising solutions.
The mutation operators are often designed based on
heuristics used in manual schedule construction, and
ensure that the schedule optimiser is capable of generating
key features of “good schedules”.
At present the design of the mutation operators is based
on trial and error. As far as we are aware, there are no
tools available to help analyse operator performance,
either theoretically or empirically. We would like to be
able to answer questions on the effect of the operators on
the landscape (are they local search operators or
exploration operators), the bias they introduce, how
orthogonal they are to each other, and whether the
operators allow the exploration of all (or at least the good
parts) of the landscape.
We have no way of answering these questions at the
moment, which increases considerably the skill required
in build a real world application. The development of
schema theory (Poli, Langdon, Vose) promises to deliver
some theoretical answers for standard encoding and
operators, but for the real world we need empirical tools
to be able to apply schema analysis to the design of our
genetic optimisers.

3.4 SELECTION PRESSURE
Linked to the choice of operators is the wider issue of
selection pressure, determined by selection algorithms
and operator probabilities (Goldberg and Sastry 2001).

We take qualitative notice of the conclusions in the theory
and then resort to trial and error. We utilise many
mutation operators, and a design methodology to address
the questions of absolute level of mutation and the
relative weights of the operators would be of considerable
benefit.

3.5 EVALUATION
Writing an evaluation function for decoding the
representation is 70% of the work of implementing the
GA. The evaluation function applies many of the process
rules, and allows the objective functions to work with real
world quantities, such as delay times, machine
throughput, delivery delays, etc.

3.5.1 Constraints
One approach used in the literature is to use a separate
objective for constraints. Due to the limitation above we
use the approach of having hard constraints only (i.e. we
ensure that all schedules considered are valid).
Soft constraints represent a heuristic on what an optimised
schedule is, and are included through penalising one of
the main objective functions. This has however leads to
large flat valleys in the landscape, due to the number of
constraints that can have the same penalty.

3.6 OBJECTIVE FUNCTIONS
Scheduling problems are by definition multi-objective in
nature and we have drawn heavily on work in this area
(Fonseca & Fleming 1995, Coello 1999), in particular on
the MOGA.
The objective functions are chosen to represent quantities
that are managed by the schedulers, such as on-time
delivery, machine productivity and material inventory.
For a manageable optimisation time, we have found that a
maximum of three objectives is a practical limit. This
constraint arises due to the increased population size
required to get dense enough coverage of the Pareto front.
For N orthogonal objectives, the Pareto front is generally
a N-1 dimensional surface, and we conjecture that O(xN)
population size is required given a single objective
population x calculated from other sizing requirements.
Since the objective functions are real world, we have little
influence on the nature of the mapping between schedule
and objective space. There is no guarantee that the
projection will be one-to-one, and there is no guarantee
that the projection is continuous.
This is problematic when designing and tuning operators,
as we have no method for visualising the search space.
Without such a visualisation it is impossible to develop
separate knowledge of the landscape and the action of the
operators, leaving us to use what we can infer from the
convergence dynamics of the optimiser as a whole.
A visualisation might rely on some concept of distance
between solutions for a permutation problem. While

there are some ideas for calculating distance between
sequences to be found in DNA sequencing, these ideas
have not yet been applied to scheduling GA’s.

4 CONCLUSIONS
We show that that the generation of optimised schedules
is one part of a scheduling system, which in turn is part of
overall planning and manufacturing system designed to
meet the business objectives of on-time delivery,
productivity and material inventory.
The design decisions taken to build a system to obtain our
pragmatic goal of generating adequate schedules within a
reasonable time have taken us away from a solution based
on a standard GA. Once we leave the standard GA the
direct applicability of published work diminishes, and we
revert to a heuristic solution of the issues involved.
We would welcome design tools to support the empirical
design of our GA’s. The ability to visualise the search
space for scheduling type problems would aid our
understanding of the landscape, enabling us to design
better operators. Tools to characterise the performance of
operators when applied individually and in interaction
with other operators would speed the development
process and lead to improved solution quality.
The infrequent use of GA’s in industrial scheduling can
probably be attributed to the relatively small role the
optimisation engine plays in an scheduling system, and
the complexity and art of implementation, despite the
undeniable benefits that we have seen from these systems.

Acknowledgments
We would like to thank Benoit Hap and Renaud Dumeur
at Computers Communications & Visions (C2V) for
introducing us to genetic algorithms and providing initial
implementations and impetus for our work.

References
P.A.N.Bosman and D Thierens (2001). Crossing the
Road to Efficient IDEAS. In proceedings, Genetic and
Evolutionary Computation Conference, 219-226.
C.A.C.Coello 1999. An Updated Survey of Evolutionary
Multiobjective Optimization Techniques: State of the Art
and Future Trends. 1999 Congress on Evolutionary
Computation.
E.Faulkener (1998), Genetic Algorithms and Grouping
Problems, John Wiley & Sons.
C.M.Fonseca & P.J.Fleming (1995) An Overview of
Evolutionary Algorithms in Multiobjective Optimisation.
Evolutionary Computation, 3(1), 1-16.
D.E.Goldberg and K Sastry (2001). A Practical Schema
Theorem for Genetic Algorithm Design and Tuning. In
proceedings, Genetic and Evolutionary Computation
Conference, 328-335

J.R.Koza (1999). Genetic Programming III; Darwinian
invention and problem solving. Morgan Kaufmann
Publishers.
Pelikan, M., Sastry, K., Goldberg, D.E. (2001)
Evolutionary Algorithms + Graphical Models = Scalable
Black-Box Optimization. IlliGAL report 2001029
N.J.Radcliffe (1992). Non-Linear Genetic
Representations. Parallel Problem Solving from Nature 2,
R. Manner and B. Manderick (Ed.), (Elsevier Science
Publishers, Amsterdam), 259-268.

