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Abstract. This paper provides a survey of the research in and an annotated bib-
liography of multiple objective combinatorial optimization, MOCO. We present
a general formulation of MOCO problems, describe the main characteristics of
MOCO problems, and review the main properties and theoretical results for these
problems. The main parts of the paper are a section on the review of the available
solution methodology, both exact and heuristic, and a section on the annotation of
the existing literature in the field organized problem by problem. We conclude the
paper by stating open questions and areas of future research.

Zusammenfassung.Der Artikel bietet einenÜberblick und eine kommentierte
Bibliographieüber die Forschung in multikriterieller kombinatorischer Optimie-
rung (MOCO, multiple objective combinatorial optimization). Wir stellen eine all-
gemeine Formulierung von MOCO Problemen vor, beschreiben die wichtigsten
Charakteristika und Eigenschaften solcher Probleme und fassen die wesentlichen
theoretischen Ergebnisse in diesem Forschungsgebiet zusammen. Die Hauptteile
des Artikels sind die Abschnitte 4̈uber exakte und heuristsiche Lösungsverfahren
und 6, der – problemweise untergliedert – die vorhandene Literatur kommentiert.
Am Ende des Artikels steht ein Abschnitt zu offenen Fragen und Richtungen für
zukünftige Forschung.
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1 Introduction

Combinatorial optimization is a field extensively studied by many researchers. Due
to its potential for application in real world problems it has prospered over the last
few decades. A good survey of the state of the art is provided by [42]. But as far
as real world decision making is concerned, it is also well known, that decision
makers have to deal with several – usually conflicting – objectives. The growth in
the interest of theory and methodology of multicriteria decision making (MCDM)
over the last thirty years is witness of this fact, see [195] for a survey of the activities
in the field, and [228] for a list of MCDM applications.

Thus it is somewhat surprising that a combination of both, i.e. multicriteria or
multiobjective combinatorial optimization (MOCO) has not been studied widely.
A few papers in the area have been published in the seventies, then the classical
problems have been investigated in the eighties. Only in recent years – approxi-
mately since 1990 – a profound interest in the topic is evident. Since then several
PhD theses have been written, specific methodologies have been developed, and
the number of research papers in the field has grown considerably.

In this paper we intend to give an overview over the literature in the field
of multiobjective combinatorial optimization. In the following sections, we first
present a brief introduction to the field, including a general problem formulation,
description of several types of MOCO problems, and the most important theoretical
properties of these problems (Sects. 2 and 3). Then we review existing methods to
solve MOCO problems in Section 4. In Section 5 we explain the classification of
literature that we used. This consists first of a classification of the problem treated
and secondly of the methodology applied to solve it. Section 6 paper is devoted
to the annotation of the literature. The paper is concluded by a brief discussion of
open questions and areas of future research (Sect. 7).

Let us now describe the focus of this paper. We compiled the literature on mul-
tiobjective combinatorial optimization accessible to us, especially concentrating on
new developments since 1994, when the last survey [215] was published, includ-
ing some older references missing there or fundamental in the field. Besides the
general survey on MOCO, [215], there are two specifically devoted to multiobjec-
tive network design, [32,33], which have additional references. In terms of new
research since 1994, our bibliography for instance includes the new direction of
using metaheuristics for MOCO problems, literature on the so-called two phases
method (see Sect. 4), and new theoretical results.

The aim of this survey is twofold. First we want to provide a starting point for
researchers and students interested in the field, giving a brief introduction and com-
menting on, thus guiding through, existing literature. For the experienced researcher
the list is intended as structured overview of the field.
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2 Multiple objective combinatorial optimization problems

The feasible set of a (multiobjective) combinatorial problem is defined as a subset
X ⊆ 2A of the power set of a finite setA = {a1, . . . , an}. Typically, in combi-
natorial optimization two types of objective functions are considered, namely the
sum and the bottleneck objective:

z(S) =
∑
a∈S

w(a), or

z(S) = max
a∈S

w(a),

whereS ∈ X andw : A→ Z is some weight function.
In a multicriteria combinatorial problem several weight functionswj : A→ Z

are given, yielding several objective functionszj , j = 1, . . . , Q (usually of the
sum or bottleneck type). The problem is then to solve

“ min
S∈X

”(z1(S), . . . , zQ(S)) (MOCO)

where the meaning of “min” has still to be defined.
Most often the minimization in (MOCO) is understood in the sense of efficiency

(or Pareto optimality). A subsetS ∈ X is called efficient if there does not exist
another feasible solutionS′ ∈ X such thatzj(S′) ≤ zj(S) for all j = 1, . . . , Q
with strict inequality for at least one of the objectives. The corresponding vector
z(S) = (z1(S), . . . , zQ(S)) is called nondominated. The set of Pareto optimal
(efficient) solutions of (MOCO) will be denoted byE, the set of nondominated
vectors byND throughout the paper. Sometimes we shall use the term nondom-
inated frontier for the set of all nondominated vectors, especially in the bicriteria
context.

However, besides efficiency, there are other definitions of the “min” term in the
formulation of (MOCO). For example, one could consider lexicographic minimiza-
tion, when objective vectors are compared lexicographically:z(S1) <lex z(S2) if
zj(S1) < zj(S2), wherej is the smallest index such thatzj(S1) /= zj(S2). This
could be done with respect to one, or all permutations of the objective functionszj .

Another possibility is to minimize the worst objective function, i.e.

min
S∈X

max
j=1,...,Q

zj(S).

We call this the max-ordering problem (following [56]) in order to distinguish it
from the single objective bottleneck problem (note that both are often called min-
max problems, which may create confusion).

A combination of the latter two is the lexicographic max-ordering problem,
where the vector of objective valuesz(S) is first resorted in a nonincreasing order
of its components, and the resulting vectors are compared lexicographically, see
[46,48] for details.

In a real world decision context, finally a compromise has to be made among
the many efficient solutions that (MOCO) may have. This is the reason why often
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the existence of a utility function is implicitly or explicitly assumed. A utility
function assigns each criterion vectorz(S) a scalar overall utility. Then methods
are developed to find a solution of maximum utility. This is a typical approach in
interactive methods described later.

Closely related to combinatorial problems are multiobjective integer program-
ming problems. These can be formulated as follows.

“ min ” Cx

subject to Ax = b

xi ≥ 0 i = 1, . . . , n
xi integer i = 1, . . . , n

(MOIP)

HereC is a Q × n objective matrix,A is anm × n constraint matrix, and
x ∈ R

n. There is a considerable amount of literature on these problems. We refer
to some surveys that exist but will not include the literature in the bibliography. In
this respect, [23,199,234] provide surveys of techniques to find efficient solutions
for (MOIP), [198] gives an overview of interactive methods for (MOIP), and [166]
surveys (MOIP) with binary variables.

In general, combinatorial optimization problems can be considered as special
cases of integer (in particular binary) programming. A MOCO problem is distin-
guished by a specific set of constraints, that provides a structure to the problem.
We focussed on these problems for this bibliography.

We have to comment on scheduling here. Scheduling problems can be con-
sidered as combinatorial optimization problems. However, they are problems with
their own specific theory and methodology, which is quite different from other
problems of combinatorial optimization, so that we decided not to include schedul-
ing problems in this survey. The interested reader is referred to recent surveys on
multiobjective scheduling problems, [203,204].

To conclude this section, let us mention one particular case, namely, when the
set of feasible solutions is an explicitly given finite set, e.g.X = A. In this case, all
problems discussed above are efficiently solvable. Algorithms can be found in [49,
50] and [123]. For this reason, these problems are mathematically not particularly
interesting and we omit them from further discussion.

To summarize, (MOCO) is a discrete optimization problem, withn variables
xi, i = 1, . . . , n, Q objectiveszj , j = 1, . . . , Q and a specific constraint structure
defining the feasible setX. This definition includes multiobjective versions of the
shortest path, minimum spanning tree, assignment, knapsack, travelling salesper-
son, or set covering problems, to mention only a few.

3 Properties of multiobjective combinatorial optimization problems

In this section we discuss some of the properties of MOCO problems. It is in order
to mention here that there is a considerable number of erroneous statements, even
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in papers published in international standard refereed journals. We will point out
the most important of these throughout the paper, in the appropriate places.

By its nature, multiobjective combinatorial optimization deals with discrete,
non continuous problems, although the objectives are usually linear functions. An
essential consequence of this fact when trying to determine the set of all efficient
solutions (or nondominated vectors in objective space) is, that it is not sufficient to
aggregate the objectives through weighted sums.

It is long known that for multiobjective linear programming problems

min{Cx : Ax = b, x ≥ 0}
the set of efficient solutions is exactly the set of solutions that can be obtained by
solving LP’s

min

 ∑
j=1,...,Q

λjc
jx : Ax = b, x ≥ 0

 ,

where
∑Q

j=1 λj = 1, λj > 0, j = 1, . . . , n, see e.g. [107]. But the discrete structure
of the MOCO problem makes this result invalid. Thus there usually exist efficient
solutions, which are not optimal for any weighted sum of the objectives. This is
true even in cases where the constraint matrix is totally unimodular, contrary to a
proposition in [121] (see [216] for an example). These solutions are called nonsup-
ported efficient solutionsNE, whereas the remaining are called supported efficient
solutions,SE. In early papers referring to MOCO,NE was usually not considered.
Most authors focussed on scalarizing the objectives by means of weighting factors
λj .

Nevertheless, the setNE is important. Usually there are many more nonsup-
ported than supported efficient solutions, see e.g. [222] for numerical results. More-
over, the nonsupported solutions contribute essentially to the difficulty of MOCO
problems. Below, we shall briefly discuss the concepts of computational complex-
ity of (MOCO). For introductions to the theory ofINP -completeness and#IP -
completeness we refer to [74] and [221] and references therein, respectively. These
notions deal with the difficulty of finding a, respectively counting the number of
solutions of a (MOCO). The corresponding appropriate definitions of decision and
counting problems for MOCO problems can be found in [52] and [186].

It turns out that the respective versions of (MOCO) in the sense of finding or
counting efficient solutions are in generalINP - and#IP -complete, respectively.
This is true even for problems which have efficient algorithms in the single ob-
jective case. We refer to [52,58] and [186] for results in this respect. Therefore
the development of heuristics with guaranteed worst case performance (bounded
error) is interesting. However, not much is known in this regard: [52] gives some
general results on approximating the efficient set by a single solution, [157] uses a
Tchebycheff metric to measure the error, and [174,175] consider the existence of
such algorithms. Some specific results about flow problems, shortest path problems
and the TSP are discussed in Section 6.

Another aspect related to the difficulty of MOCO is the number of efficient
solutions. It turns out that it may be exponential in the problem size, thus pro-
hibiting any efficient method to determine all efficient solutions. Such results are
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known for the spanning tree, matroid base, shortest path, assignment, and travel-
ling salesperson problem (see [49,59,85,93,188] for details). Consequently such
problems are called intractable. Even the size of the setSE may be exponential, see
[172]. However, numerical results available on the knapsack problem [222] show
the number of supported solutions grows linearly with the problem size, but the
number of nonsupported solutions grows following an exponential function.

As far as the other definitions of optimality in (MOCO) are concerned, we note
that the max-ordering problem with sum objectives isINP -hard in general (see [22]),
but can be reduced to a single objective problem in the case of bottleneck objectives
[49]. Bounds and heuristic methods for the former problem have been investigated
in [160]. At least one solution of the max-ordering problem is always efficient, but
possibly nonsupported. Similarly, a lexicographic max-ordering solution, although
always efficient and optimal for the max-ordering problem may be nonsupported
[49].

For lexicographic optimization it is known that a lexicographically optimal so-
lution is always efficient, and even a supported efficient solution, see [85]. Lexico-
graphic optimization can also be viewed as a special case of algebraic optimization,
see [233].

In view of the new trend to apply metaheuristics and local search in MOCO prob-
lems (see Sect. 4 below), it is interesting to consider the issue of neighbourhoods of
feasible solutions, and their relations to efficient solutions. Using a neighbourhood
corresponding to Simplex basis pivots for the shortest path problem and exchanges
of one edge for the spanning tree problem it was shown in [54,55] that the set of
efficient solutions can be an unconnected subset ofX with respect to the neigh-
bourhood. So depending on the definition of neighbourhood it is possible that local
search methods are not able to find all efficient solutions.

4 Solution methods for MOCO problems

In the context of multiobjective programming (MOP), it is usual to distinguish
the methods following the role of the decision maker in the resolution process.
Information provided by the decision maker often concerns his preferences. In “a
priori mode”, all the preferences are known at the beginning of the decision making
process. The techniques used seek for a solution on the basis of these parameters.
The best example is given by goal-programming methods. In “a posteriori mode” the
set of all efficient solutions is generated for the considered problem. At the end, this
set is analyzed according to the decision maker’s preferences. Many approximation
(heuristic) methods are conceived following this resolution mode. In the “interactive
mode”, the preferences are introduced by the decision maker during the resolution
process. The methods involve a series of computing steps alternated with dialogue
steps and can be viewed as the interactive determination of a satisfying compromise
for the decision maker. Thus they require a high participation level on the part of
the decision maker. Practical problems are often solved according to the interactive
mode.
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The appropriate resolution mode is chosen considering the situation of the deci-
sion process. The method involved in the process could be exact or approximation
methods.

4.1 Exact methods

Here we discuss some of the methods used to solve MOCO problems. Many of
these essentially combine the multiple objectives into one single objective. The
most popular, and the one used first, is weighted sum scalarization. The problem
solved is

min


Q∑

j=1

λjz
j(x) : x ∈ X

 , (Pλ)

where0 ≤ λj ≤ 1 and
∑Q

j=1 λj = 1. Varying the weights, it is known that
all supported efficient solutions can be found, using results from [77] and linear
programming [107]. The advantage of the method (especially for problems where
the single objective version is solvable in polynomial time) is that for eachλ ∈
R

Q the problem (with sum objectives) is only as difficult as the single objective
counterpart of (MOCO). Parametric programming can be used to solve the problem
for all λ.

The approach has been applied to many MOCO problems: see e.g. [98,227] for
shortest path, [5,43,108,194] for the transportation problem [39] for assignment,
[127,137] for network flow, [85,183] for spanning tree, [45,171] for knapsack and
[135] for location problems. In many of these papers, the existence of nonsup-
ported efficient solutions was either not known, or ignored. When a sum and a
bottleneck objective are present, the minimization of the sum of the objectives has
been discussed in [143] and [159] for general combinatorial optimization problems.

A second well known approach in multicriteria optimization is the compromise
solution method [230], where one tries to minimize the distance to an ideal point
zI or to a utopian pointzU = zI − εe, wheree = (1, . . . , 1) ∈ R

Q is the vector of
all ones, andε > 0. The ideal point is defined according to the individual minima
of each objective

zI
j := min

x∈X
zj(x).

Usually, the Tchebycheff norm is used as distance measure:

min
{

Q
max
j=1
{λj |zj(x)− zI

j |} : x ∈ X

}
.

Unfortunately, when we consider sum objectives, this type of problem is usually
INP -complete, see e.g. [147] for references on the shortest path problem. This
explains why it is rarely used, even though, theoretically the whole of the efficient set
can be found, see e.g. [178]. Using another norm, e.g. anlp norm,p /∈ {1,∞} leads
to nonlinear objectives, and we found no reference using this approach for MOCO.
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Note that forp = 1, the compromise solution method withl1 norm coincides with
the weighted sums approach.

A special approach to multiobjective optimization is goal programming, see
e.g. [106,129] for details. Here, for each of the objectives a target value (goal) is
specified by the decision maker. The overall aim is to minimize the deviation from
the specified goals. This approach is very popular and although it is sometimes con-
sidered a different field from multiobjective optimization we list some references
in the bibliography.

One approach that is successful for bicriteria problems is the use of ranking
methods. Define

zN
j := min

x∈X

{
zj(x) : zi(x) = zI

i

}
, j = 1, 2; i /= j. (1)

The ideal pointzI = (zI
1 , z

I
2) and Nadir pointzN = (zN

1 , zN
2 ) define lower and

upper bounds on the objective values of efficient solutions. Then starting from
a solution withz1(x) = zI

1 , and finding second best, third best,. . . , K-best
solutions with respect to the first objective untilzN

1 is reached, the efficient set can
be determined. The approach has been used for the shortest path problem [24] and
the transportation problem [43]. Note that computation of the Nadir pointzN in
the bicriteria case essentially means the solution of two lexicographic optimization
problems.

A generalization of this approach to more than three objectives (stated without
proof in [141]) is not possible without knowledge of the Nadir point, which is
difficult to obtain whenQ > 2, see [119]. Note that a generalization of (1) does
not necessarily provide an upper bound on objective values of efficient solutions.
Not even considering lexicographic optimization with respect to all permutations
of objectives is guaranteed to produce upper bounds on objective values of efficient
solutions, see [57].

Moreover, the ranking approach can be effectively used to solve max-ordering
problems with any number of criteria. First a weighting vector is chosen, thenK-
best solutionsxK are created according to the combined objective

∑
λjz

j . When
for the first time

min
k=1,...,K−1

max
j=1,...,Q

zj(xk) ≤
Q∑

j=1

λjz
j(xK)

an optimal solution is among{x1, . . . , xK}. We refer to [47] and [83] and [85]
for applications to the uniform matroid, network flow problem, and spanning tree
problem, respectively.

Let us now look at methods adapted from single objective combinatorial op-
timization. Among the very well established procedures is dynamic programming
[11]. The method applies to sequential decision problems, which admit a recursion
formula such as
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min

(
gN (xn) +

N−1∑
k=0

gk(xk, uk)

)
,

whereg is a cost function depending on the state variablexk and control variableuk

at stagek. Theoretically, this recursion can easily be adapted to the multiobjective
case. Therefore dynamic programming algorithms appear most often for problems,
where they have been established for the single objective versions earlier. These
are the shortest path problem [19,97,98,120,165], the knapsack problem [21,45,
115,114,116], the TSP [63,205] and the transportation problem [68,169].

An implicit enumeration algorithm, which is widely used to solve hard combi-
natorial optimization problems is branch and bound. Its philosophy is to partition
the problem into mutually disjoint and jointly exhaustive subproblems. Bounds are
computed for subproblems and the process continues until an optimal solution is
found. Much to our surprise, we could only find a few papers applying branch and
bound for MOCO – to the knapsack problem [214,217,222] and the max-ordering
shortest path problem [165]. The adaptation of branch and bound poses one diffi-
cult problem. Since we deal with nondominated vectors, bounds play the role of
Nadir points for subproblems. Thus they may be difficult to compute, or bad, i.e.
not discarding enough feasible, nonefficient solutions.

Many authors used available single objective methods for a particular problem
and adapted them to the multiobjective case. The more natural such a generaliza-
tion is, the bigger the number of papers pursuing such an approach. We note the
following, representing (recent) examples.

– Shortest Path: [93,139] for label setting and [14,31,145,192,206,207] for label
correcting methods

– Spanning Tree: [29,85] for adaptations of Prim’s algorithm and [183,186] for
the greedy algorithm

– Assignment: [162,213,216] for the Hungarian method
– Network Flow: [51,126–128] for the out-of-kilter algorithm and [17,158] for

the network simplex method
– TSP: [52] for Christofides’ algorithm

Finally, we explain a general framework for the exact solution of the problem
of determining the efficient set for bicriteria (MOCO), the two phases method.
The name goes back to [211] and [216] and is telling: In the first phaseSE is
found using the scalarization technique, and solving single objective problems.
The necessary weights are easy to compute using information generated in the
process. The second phase consists of finding the nonsupported efficient solutions
by problem specific methods, using bounds, reduced costs, etc. In fact, most of the
algorithms known to the authors (with exception of the shortest path problem) that
are capable of determining the whole ofE are some modification of the two phases
method, e.g. [51,128] (Network Flow), [214,222], (Knapsack), [216] (Assignment)
and [164](Spanning Tree).
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4.2 Approximation methods

The last two decades have been highlighted by the development and the improve-
ment of approximative solution methods, usually called “heuristics and metaheuris-
tics”. A heuristic is defined by [167] as a technique which seeks good (i.e. near-
optimal) solutions at a reasonable computational cost without being able to guar-
antee either feasibility or optimality. Often heuristics are problem-specific, so that
a method which works for one problem cannot be used to solve a different one.

In contrast, metaheuristics are powerful techniques generally applicable to a
large number of problems. A metaheuristic refers to an iterative master strategy
that guides and modifies the operations of subordinate heuristics by combining
intelligently different concepts for exploring and exploiting the search space [78,
155]. A metaheuristic may manipulate a single solution or a collection of solutions
at each iteration. Metaheuristics include, but are not limited to, constraint logic
programming, genetic algorithms, evolutionary methods, neural networks, simu-
lated annealing, tabu search, non-monotonic search strategies, greedy randomized
adaptive search, ant colony systems, variable neighbourhood search, scatter search,
and their hybrids. A comprehensive list of 1380 references on the theory and appli-
cation of metaheuristics is presented in [155]. The success of these methods is due
to the capacity of such techniques “to solve in practice” some hard combinatorial
problems.

As in the single objective case, a reasonable alternative to exact methods for
solving large-scale instances of MOCO problems is to derive an approximation
method. Such methods yield a good tradeoff between the quality of an approxi-
mation of the efficient solutions set, denoted byÊ, and the time and memory re-
quirements. The adaptation of metaheuristic techniques for the resolution of MOP
problems, denoted by multiobjective metaheuristics, MOMH, has mushroomed.
Generally, the first adaptations use the components known in the single-objective
methods to deal with the efficient solution concept, too. Chronologically, adapta-
tions have concerned genetic algorithms (GA, 1985), neural networks (NN, 1990),
simulated annealing (SA, 1992), tabu search (TS, 1994), and more recently, the
greedy randomized adaptive search procedure (GRASP, 1998).

Two main approaches appear in these methods. The first is based on the principle
of search directions. The second approach takes advantage of information carried
by the population of solutions, using the notion of domination.

– Methods of local search in objective space.Starting from an initial solution,
the procedure approximates a part of the nondominated frontier corresponding
to a given search directionλ. A local aggregation mechanism of the objectives,
often based on a weighted sum, produces the effect to focus the search on a
part of the nondominated frontier. The principle is repeated for several search
directions to approximate completely the nondominated frontier. Following the
methods, the directions can be defined a priori [69,211], guided [70,89] or
aleatory [35,146]. At any time the search mechanism uses only one solution
and an iteration tries to attract the solution generated towardsE along direction
λ. The efficiency of theses adaptations is strongly depending on the definition
of λ.
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– Population based methods.Contrary to the first approach, where only one in-
dividual is attracted toward the nondominated frontier, here all the population
contributes to the evolution process toward the nondominated frontier. By main-
taining a population of solutions, such a method can search for many efficient so-
lutions in parallel via self adaptation and cooperation. This characteristic makes
population-based methods very attractive for solving multiobjective problems.
Most operational procedures are based on genetic algorithms, ([25] counts more
than 320 papers). However, only a few concern MOCO problems. Evolutionary
algorithms (EA) would also fall in this category.

We now suggest some guidelines according to which existing methods can be
differentiated.

– A first distinction concerns the case of a general method versus a dedicated
method. With some minor adaptation (definition of a solution, neighbourhood
structure, etc.) in their implementation, general methods can be applied to a
wide variety of problems (for example [35,70,89,146,211]). Specific methods
are designed for particular MOCO problems as e.g. [118] or result from a strong
customization of a general method as e.g. [69].

– A second distinction is the interaction mode. We distinguish the a priori mode,
the interactive mode [3,94,181,210], and the a posteriori mode [35,70,89,146,
211].

– The kind of method is a third distinctive feature. We can separate the local
search based procedures (SA, TS, GRASP), population based procedures (GA,
EA), specific procedures (e.g. stochastic methods) and hybridization.

– The last distinction refers to technical components integrated in the procedure,
such as, e.g., the identification of the kind of initial solutions used by the method.

4.2.1 Simulated annealingThe use of simulated annealing as a technique for
MOP problems was discussed first in [187]. When solutionx1 is compared with
solutionx2 accordingQ objectiveszj(x), j = 1 . . . Q, and where∆zj is the dif-
ference between solutionx1 andx2 in the objectivej, three situations are possibles:

Case 1:∀j ∆zj ≤ 0
Case 2:∃j, j′ ∆zj < 0 and∆zj′

> 0
Case 3:∀j ∆zj ≥ 0

The main idea of using SA for solving MOP problems consists in using a
weighted norm component in the acceptance of a solution of lower quality (cases
2 and 3).

In [218,211], an independent SA process is defined using a directionλ. A
scalarizing functions(x, λ) =

∑
j=1...Q λjz

j(x) is used to compute the difference
∆s = s(x2, λ) − s(x1, λ) between two solutions. Then let us consider a current
solutionxt andy ∈ N (xt), a solution randomly selected in the neighbourhood
N (xt) of xt. In computing∆s for y andxt, a strategy consists in the following
decisions:

a) If ∆s < 0 thenxt+1 ← y.
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b) If ∆s ≥ 0 thenxt+1 ← y with probabilityp andxt+1 ← xt with probability
1− p.

Other alternative rules for the probability of accepting a new solution have been
suggested and discussed in [187]. The set of potential efficient solutions in direction
λ is updated except if∆zj ≥ 0 ∀j. A feasible initial solutionx0 is built at random
[211] or using a greedy algorithm according the search direction [208]. Several
lists of potentially efficient solutionŝE1, Ê2, Ê3, . . . are generated according to
different weighting vectorsλ1, λ2, λ3, . . . and merged to providêE.

In the method of [35], the main differences with the previous SA adaptation
concern the management of weights and the consideration of a set of current solu-
tions. Here, each solution in this set is “optimized” iteratively following the same
mechanisms explained above (neighbouring solutions that may be accepted ac-
cording a probabilistic strategy). But the weights are tuned dynamically in such a
way that a solution will tend to move away from the other efficient solution. This
will hopefully lead to an approximation uniformly spread along the nondominated
frontier. Details about general procedures and algorithmic aspects are discussed in:
[211,218], an SA adaptation called MOSA; [210], an interactive version of MOSA;
[35,95], an SA adaptation called PSA; [94], PSA in an interactive way.

4.2.2 Tabu search The first papers describing the use of TS as technique for
solving MOP problems dealt with a single objective strategy. In [36] a family of
(Pλ) problems are solved to generate a set̂SE approximatingSE. In [100] the
method consists in solving a sequence of single objective problems considering
in turn each objectivezj associated with a penalty term. More recently, other tabu
search approaches capable of generating both supported and nonsupported efficient
solutions have been discussed.

In [70], principles of the TS method have been extended to determine a good
approximation ofE. This TS adaptation uses the utopian pointzU as point of ref-
erence with a scalarizing functions(x, λ) to browse the nondominated frontier.
Considering an iterationt andxt, a current solution and its (sub)neighbourhood
N (xt) obtained according to a move defined in relation to the feasible set of the
considered problem. At each iteration,zU is updated according to the valuesz(x)
for all x ∈ N (xt). The new current solutionxt+1 is the best non tabu solution
according to the current search direction followings(x, λ). A tabu memory con-
nected with the objectives and based on an improvement measure of each objective
is suggested. This structure memorizes the improvement measured for each objec-
tive (indifference, weak improvement, strong improvement). It is used to update
the search direction in order to browse, in an equilibrium way, all the efficient fron-
tier. Intensification, diversification and tabu daemon (usually aspiration criteria)
are discussed in the MOP context. A new direction is then defined by giving more
importance of the improvement obtained for each objectives (indifference, weak
improvement, strong improvement).

In [2], two weight vectorsλa, λb belonging to the canonical basis ofR
Q are

selected at each iteration. They correspond to the two worst objectivesa and b
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according to decreasing values of the ratioszj(xt)/zI
j ; j = 1, . . . , Q, wherext is

a given current solution. Then new weights are randomly generated for(λa, λb).
In [89] a set of “generation solutions”, each with its own tabu list is considered.

These solutions are dispersed along the objective space in order to allow a search in
areas of the nondominated frontier. Weights are defined for each solution to force
the search into a certain direction of the nondominated frontier and away from other
current solutions that are efficient with respect to it. Diversification is ensured by
the set of generation solutions and a drift criterion. Details about general procedures
and algorithmic aspects are discussed in: [70,71], a TS adaptation called MOTS;
[89,90] another TS adaptation also called MOTS; [2], a hybrid resolution process
based on TS and GA; [3], a hybrid and interactive resolution process based on SA
and TS.

4.2.3 Genetic algorithms (population-based methods)Since VEGA (vector eval-
uated genetic algorithm) in 1985 [181], many procedures based on genetic algorithm
principles have been developed to deal with multiple objectives (multiple objective
genetic algorithm [64], nondominated sorting GA [193], niched Pareto GA [104],
MOGA [146], GA based on a min-max strategy [26,28]). Significant progress in
the literature concerns corrections of shortcomings observed in previous algorithms
and propositions of new algorithmic primitives to generate a better approximation
ofE. For example, [80] suggests the use of non-domination ranking and selection to
move a population toward the nondominated frontier. This concept is used to avoid
the phenomenon of producing solutions only on the extremity of the nondominated
frontier, where one performance is optimal. The author also suggested a kind of
niche method to keep the GA from converging to a single point on the frontier. This
concept is used to avoid a premature convergence of the algorithm and maintain in-
dividuals all along the nondominated frontier. These ideas have been implemented
later in [64], and [104]. [146] presented a procedure not based on the Pareto rank-
ing principle but on a weighted sum of objective functions to combine them into a
scalar fitness function. The weight values are generated randomly for each iteration
ensuring a good distribution of solutions along the nondominated frontier. Other
papers concerning GA and EA (evolutionary algorithms) based procedures are [10,
25,27,86,87,112,110].

4.2.4 Other approaches and new developmentsOther adaptations of heuristic
procedures are found like dedicated heuristics [118], a stochastic search method
[197], neural network based methods [134,196] or the GRASP method [73]. We
mention also a paper concerning a comparison of neighbourhood search techniques
for MOP [138].

After a large interest in the extension of usual metaheuristics (SA, TS, GA,
etc.) to the multiobjective context, actual research takes various orientations. Some
hybrid methods, marrying for example TS and GA [2], or SA and TS [3] are
designed. The idea here is to take advantage of the power of hybrid concepts in order
to obtain a more efficient whole. Other research adds new components to MOMH in
order to grasp the specifics of MOCO problems, for example in using a “generation
set” in tabu search [89]. Also a greedy procedure is now often used, for example
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for the generation of initial solutions [69,72,110,208]. As a greedy initial solution
is closer to the nondominated frontier than a randomly chosen feasible solution,
the solution procedure saves time during the approximation process. Using the first
phase of the GRASP method, greedy randomized initial solutions are also used
[73].

Recently some research exploits available information about the problem to be
solved in order to reduce the search domain. Such knowledge is exploited to focus
the search process on promising areas in terms of efficient solutions. For example
domination situations are used to prune part of the domain proved to be void of
efficient solutions [69].

5 Classification of the literature

In this section, we describe the classification scheme we used below to annotate the
references. We classify a paper according to four categories, namely combinatorial
structure, objective function type, problem type, and method applied. The first three
pertain to the description of the problem discussed in a given paper.

As indicated in Section 2, to classify a certain paper, we first have to identify
the problem discussed. This consists of the combinatorial structure (i.e. shortest
path, knapsack, etc.), the number and type of objectives (i.e. sum, bottleneck, or
eventually something else), and the type of problem (e.g. finding the efficient set,
max-ordering, lexicographic).

In addition to the identification of the problem, we give the methodology used
in the paper. We can distinguish between exact and approximation (or heuristic)
methods, where exact means that the optimal solutions mentioned in the prob-
lem description are found, whereas approximation means that only some solutions
representing this set, not necessarily optimal, are found.

So, we introduce a classification using positions

Pos1/Pos2/Pos3/Pos4.

Below, we provide tables where the different entries for each position are listed.
Table 1 refers to the combinatorial structure of the problem.

Entries forPos2 do not need a table, they simply define the number and type
of objective functions considered. We could restrict ourselves to the sum and bot-
tleneck objectives, with occasional exceptions explained where appropriate. Most
of the papers that deal with other types of objectives, are listed separately, because
almost each of them would have required its own entry here as well as forPos1.
Note thatQ stands for an arbitrary number of objectives. As an example for a typi-
cal entry, 1-

∑
Q-max denotes a problem with 1 sum andQ (i.e. any finite number

of) bottleneck objectives.
Table 2 lists the various types of problem, which we introduced in Section 3.
Pos4 is used to describe the solution method applied and refers to the discussion

in Section 4. We use the entries given in Table 3.
We note that sometimes two entries appear in one position. This means that

one paper falls under two categories or that the approach applied in the paper is a
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Table 1.Entries forPos1 – Combinatorial structure

Entry Explanation

SPP Shortest Path Problem
AP Assignment Problem
TP/TS Transportation/Transshipment Problem
NF Network Flow Problem
ST Spanning Tree Problem
MB/MI Matroid Base/Matroid Intersection Problem
TSP Travelling Salesperson Problem
KP Knapsack Problem
DL/NL Discrete/Network Location Problem
SCP Set Covering Problem

Table 2.Entries forPos3 – Type of problem

Entry Explanation

E Finding the efficient set
e Finding a subset of the efficient set
SE Finding supported efficient solutions
•̂ Finding an approximation of•
lex Solving the lexicographic problem
MO Solving the max-ordering problem
lexMO Solving the lexicographic max-ordering problem
U Optimizing a utility function
C/S Finding a compromise/satisfying solution

combination of two methods. It may also happen that a single paper appears under
several classifications if more than one problem was considered, or several methods
proposed.

6 Annotation of the literature problem by problem

In this section we will give an annotated overview over the literature. We found it
most convenient to organize the section according to the combinatorial structure
of MOCO problems. Thus, we introduce ten subsections, dealing with the most
important combinatorial problems, in terms of the number of papers available. In
a last subsection we briefly mention other MOCO problems that have appeared in
papers, but to a definitely smaller extent.

As an exception to this order, we briefly mention PhD theses in the subject,
since they are also witness of the growing research efforts in the field. An increas-
ing number of dissertations have been written on MOCO in recent years. Those
that we found were not all dedicated to MOCO specifically, but use some MOCO
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Table 3.Entries forPos4 – Solution method applied

Entry Explanation

SP Exact algorithm specifically designed for the problem
LS/LC Label setting/label correcting method
DP Algorithm based on dynamic programming
BB Algorithm based on branch and bound
IA Interactive method
H Heuristic specifically designed for the problem
SA Simulated annealing algorithm
TS Tabu search algorithm
GA Genetic or evolutionary algorithm
GRASP Greedy randomized adaptative search procedure
GP Goal programming
2P Two phases method
A Approximation algorithm with worst case performance bound
LP Method based on linear programming

problems in another context: [31] deals with the multiobjective shortest path prob-
lem for routing of hazardous material, [131] contains information about bicriteria
spanning trees, [26] is about evolutionary techniques in multiobjective optimiza-
tion, and [49] presents some results for certain general MOCO problems. Among
those which are specifically dedicated to MOCO problems we mention [60] and
[126] on the flow problem and [103] and [202] in scheduling. [90] explores the
use of metaheuristics for MOCO, and [211] introduces the two-phases method and
develops it for the assignment and knapsack problem. Finally fast approximation
algorithms for MOCO problems are discussed in [174].

6.1 Shortest path problems

The multiobjective shortest path problem consists in finding in a network with
vector weights on the edges “optimal” paths. The papers we found usually consider
the problem with specified starting and ending node, or from a given starting node
to all other nodes. The shortest path problem belongs to the most widely studied
MOCO problems. There exists a survey on the topic [212] and a bibliography on
the Internet, containing an abstract collection [140].

Most problems in this category areINP -complete: See [186] for the efficient
paths problem with two sum objectives, [93] for intractability of the same problem.
In [93] ten bicriteria shortest path problems are introduced and analyzed. In [54]
an example shows that a result from [139] about the connectedness of efficient
solutions is wrong.INP -completeness of the max-ordering problem is mentioned
in [147]. However, the multicriteria shortest path problem is an exceptional kind
of problem, because a fully polynomial time approximation scheme is known, as
presented in [224].
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SPP/2-
∑

/E/LC: [14], [192], [206] SPP/2-
∑

/E/LS: [93]
SPP/2-

∑
/E/2P,LC: [145] SPP/2-

∑
/E/SP: [141],[24],[105]

SPP/2-
∑

/E/DP: [98] SPP/2-
∑

/Ê/A: [93]
SPP/1-

∑
1-max/E/SP: [93], [156] SPP/2-

∑
/C/IA: [61]

SPP/2-
∑

/U/SP: [98] SPP/2-
∑

/U/IA: [148]
SPP/2-

∑
/ne/IA: [30] SPP/3-

∑
/E/LC: [67]

SPP/Q-
∑

/SE/SP: [98], [227] SPP/3-
∑

/C/IA: [67]
SPP/Q-

∑
/E/LC: [31], [207] SPP/Q-

∑
/E/LS: [139]

SPP/Q-
∑

/E/DP: [97], [120] SPP/Q-
∑

/Ê, M̂O/A: [224]
SPP/Q-

∑
/C/IA: [99] SPP/Q-

∑
/U/DP: [19]

SPP/Q-
∑

/U/SP: [144] SPP/Q-
∑

/MO/DP,BB: [165]
SPP/Q-

∑
/MO/LC: [147] Other: [142]

A variety of algorithms based on dynamic programming (e.g. [98,120]), label
setting [93,139] and label correcting methods (e.g. [14,145,192]) are available,
with computational experiments [14,105,192] comparing different methods. In
the biobjective case an algorithm based on ranking paths has also been proposed,
[141,24]. The general idea is also applicable to other MOCO problems with two
objectives, as explained in Section 4.

Besides, several papers present formulations of specific problems in terms of
multicriteria shortest paths, or consider other variations of the classical problem,
see also [32,33].

6.2 The assignment problem

Total unimodularity of the constraint matrix of the assignment problem guarantees
that an optimal integer solution is found by linear programming methods. This does
no longer hold in the multiobjective case.

The literature on the multiobjective assignment problem is again focussed on
the determination of (supported) efficient solutions. In fact, it belongs to the first
MOCO problems studied. However, the first papers only deal withSE, using convex
combinations of objectives [39], or goal programming [20]. However, nonsupported
efficient solutions exist [216], and the problem isINP -complete [186] and#IP -
complete [152] and an exponential number of efficient solutions may exist.

Exact algorithms to determine the whole setE [162,216] have been developed.
They make use of single objective methods and duality properties of the assignment
problem. Recently we can also observe the application of metaheuristic techniques
for the problem [208]. Some papers deal with a special version of the problem:
[9,226]. Other papers deal with variations of the problem or applications. These
cannot really be classified according to the problem and methodology applied or
discussed in detail. We list them separately.
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AP/2-
∑

/SE/SP: [39] AP/2-
∑

/E/2P,SP: [162], [213], [216]
AP/2-

∑
/Ê/SA: [208] AP/Q-

∑
/E/SP: [184]

AP/Q-
∑

/Ê/SA: [200] AP/Q-
∑

/S/GP: [20]
Other: [6],[7], [9], [226]

TP/2-
∑

/SE/LP: [5] TP/1-
∑

1-max/SE/LP: [5], [163], [194]
TP/Q-

∑
/se, S/IA: [169] TP/Q-

∑
/SE/LP: [43], [108], [190]

TP/Q-
∑

/SE/DP: [68] TP/Q-
∑

/S/SP: [37]
TP/Q-

∑
/Ê/GA: [76], [75] TP/Q-

∑
/C/SP: [130]

Other: [209]

6.3 Transportation and transshipment problems

Both are generalizations of the assignment problem, where the right hand side of
the constraint may take positive integer values, and the variables any nonnegative
integer. The transshipment problem has transshipment nodes in addition to demand
and supply nodes.

Again, in the single objective case total unimodularity and integer right hand
sides imply that an optimal solution of the linear relaxation is also an optimal
solution of the problem itself. Making use of this fact, most of the papers use a
scalarization by means of weighted sums or goal programming approaches. Thus,
NE continues to be neglected in this area.

6.4 Network flow problems

The network flow problem is a problem that actually is on the borderline between
combinatorial and linear optimization. It is well known that with a single objective
there always exist integer optimal solutions of the LP, due to the unimodularity of
A, which is the reason for considering it a combinatorial problem.

In the multiobjective flow problem we have to distinguish between the linear and
the integer case. In the linear case, we know thatSE = E. We deal with the papers in
their relevance for the integer case. [172] demonstrated that an exponential number
(in the number of node of the network) of extreme points amongSE may occur.
Most of the algorithms in the literature generalize methods for the single objective
flow problem, e.g. the out-of-kilter method [127,137] or elements from network
simplex [17,158]. The algorithms for MO and lexMO problems [51,83] are based
on ranking approaches. For linear bicriteria network flow problems algorithms
approximating the efficient set to any given precisionε are presented in [66,15,
173] and generalized to bicriteria quadratic network flow problems in [229].
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NF/2-
∑

/SE/SP: [127], [158], [137] NF/Q-
∑

/E/SP: [51]
NF/2(3)-

∑
/E/SP: [126], [128], [150], [151], [185] NF/Q-

∑
/SE/SP: [117]

NF/2-
∑

/ŜE/A: [15], [176], [173], [66] NF/Q-
∑

/lex/SP: [16], [17]
NF/Q-

∑
/MO/SP: [83] NF/Q-

∑
/lexMO/SP: [51]

NF/Q-
∑

/C/IA: [60], [62] Other: [149], [229]

6.5 The spanning tree problem

The spanning tree problem is to find among all spanning trees of a given graph one
that is “minimal” with respect to the edge weights. This problem appears in network
design. It is known that the problem to find efficient solutions isINP -complete [18]
and intractable [85].INP -completeness also holds for the max-ordering problem
[85]. The complexity status of a variety of multiobjective spanning tree problems,
involving other than the typical sum and bottleneck objectives is studied in [18,
40,41]. The algorithms that have been proposed to find efficient trees range from
minimizing weighted sums [161,182,183] over generalizations of Prim’s [29] and
Kruskal’s [183] method to approximation [85] and genetic algorithms [231]. A
counterexample to a sufficient condition for a spanning tree to be efficient proposed
in [29] has been given in [85]. As far as local search methods are concerned, it is
important to note that, defining trees to be adjacent, if they haven − 2 edges in
common can imply that the set of efficient spanning trees is not connected [54].

ST/2-
∑

/SE/SP: [85] ST/1-
∑

1-max/SE/SP: [161]
ST/2-

∑
/E/2P,SP: [164] ST/2-

∑
/Ê/H: [4], [85], [111]

ST/Q-
∑

/SE/SP: [182], [183] ST/Q-
∑

/E/SP: [29]
ST/Q-

∑
/Ê/GA: [231] ST/Q-

∑
/MO/SP: [85]

Other: [40], [41]

6.6 Matroids and matroid intersections

The matroid base problem is a generalization of the spanning tree problem. With
a single objective it can be solved by the greedy algorithm. A generalization of
this result for finding efficient bases is given in [186]: For each efficient basisB,
there exists a topological sorting of the elements (e.g. edges of a graph), such that
the greedy algorithm findsB. A topological sorting is a total or linear order that
respects the partial order given by the vector weights. The problem isINP -complete,
as was shown e.g. in [47,186]. A matroid intersection problem is to find a set of
minimal weight which is independent with respect to two matroids.

Few papers deal with these problems in the multiobjective case. We identified
the following, mostly presenting exact algorithms, theoretical properties [81,223],
and complexity issues [47,186]
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MB/2-
∑

/SE, E/SP: [47], [186] MI/Q-
∑

,1-max 1-
∑

/Lex/SP: [232]
MB/Q-

∑
/MO/SP: [47], [81] MB/Q-

∑
/M̂O/H: [223]

6.7 The travelling salesperson problem

In combinatorial optimization, the TSP is widely studied. To find a shortest tour
amongn cities is INP -complete even with one objective, for both the sum and
bottleneck case. Moreover, the number of efficient solutions is expected to be ex-
ponential, see [59]. For approximation results, we refer to [52], where limits on the
possibility of approximating efficient solution by one heuristic solution are derived
and generalizations of the tree and Christofides heuristic are analyzed.

These might be reasons why investigation of the multiobjective version is not
so common, and why research concentrates on exact algorithms based on dynamic
programming as well as heuristics. Some papers discuss special versions or gener-
alizations of the TSP, such as various formulations of vehicle routing problems.

TSP/1-
∑

1-Π1 /E/DP: [63] TSP/2,3-
∑

/Ê/GA: [110]
TSP/3-

∑
/E/SP: [13] TSP/Q-

∑
/E/DP: [205]

TSP/Q-
∑

/Ê/A: [52] TSP/Q-
∑

/Ê/TS: [91]
Other: [79], [102]

1 Π denotes an objective defined by the products of weights

6.8 Knapsack problems

The knapsack problem is one of the fundamentalINP -complete combinatorial op-
timization problems. All papers that we found deal with the problem to identify or
approximateSE or E. FindingE or SE are obviouslyINP -complete, too. Thus
it is not surprising that the algorithms proposed are either based on implicit enu-
meration methods such as dynamic programming [45,114–116], branch and bound
[214,217] or apply heuristic procedures, especially metaheuristics to approximate
E [69,88,176,177]. Some papers also deal with an extension to time-dependent
knapsack problems [115,116]. An interactive decision support system for the cap-
ital budgeting problem is proposed in [201].

6.9 Location problems

Location planning is a very active area of research. The objective in a location prob-
lem is to find one (or more) locations, such that some objective, usually related to
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KP/2-
∑

/SE/SP: [171] KP/2-
∑

/SE/DP: [45]

KP/2-
∑

/ŜE/H: [171] KP/2-
∑

/E/2P,BB: [214], [217], [222]
KP/2-

∑
/Ê/TS: [69] KP/2-

∑
/Ê/H: [177]

KP/2-
∑

/Ê/H: [176] KP/2-
∑

/Ê/GA+TS: [2]
KP/2-

∑
/ê/SA+TS: [3] KP/2,3-

∑
/Ê/GA: [72]

KP/Q-
∑

/E/DP: [114], [115], [116] KP/Q-
∑

/Ê/TS: [88], [89]
KP/Q-

∑
/Ê/SA: [35], [200],[219], [218] KP/Q-

∑
/U/DP: [21]

KP/Q-
∑

/S/GP: [113]

the distance to a set of existing facilities is minimized or maximized. These objec-
tives usually are the weighted sum or maximum of individual distances. Moreover,
location problems can be divided into three categories, namely planar, network and
discrete problems. In planar location, the feasible set is (a subset of) the Euclidean
plane. Network location problems deal with a network of nodes and arcs, new fa-
cilities can be built either on the nodes only, or also on arcs. Finally, for discrete
location problems a set of potential sites is specified. Problems of the latter category
are usually formulated as mixed integer programs. From the point of few of MOCO,
we will consider only network and discrete location problems. For details about
planar problems and single objective location problems, we refer to the specialized
literature, e.g. [124,125] for surveys. We refer also to two reviews on the topic in
MOCO context, [34] and [168]. Most of the applications use a goal programming
approach.

NL/Q-
∑

/lex,E/SP: [84] NL/Q-
∑

/MO,lexMO/SP: [56]
DL/Q-

∑
, Q-max/E/SP: [153] DL/Q-

∑
/SE/SP: [135]

DL/Q-
∑

/lexMO/SP: [154] DL/Q-
∑

/U,S/IA,GP: [136]
DL/Q-

∑
/S/GP: [8] Other: [101]

6.10 The set covering problem

The set covering problem is anINP -complete problem with applications in the
location of emergency facilities. Suppose there arem sites of potential emergency
andn potential locations for emergency facilities, incurring costci to build this
site. Then the aim is to select – at minimal cost – enough sites to cover all risks.

The multiobjective set covering problem has not gained much attention in the
literature, and the main results in one of the references [179] are wrong. [96] deals
with a particular problem. Note also that some of the problems discussed in the
shortest path Section 6.1 above and in the other MOCO problems Section 6.11
below deal with aspects of “covering”.
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SCP/Q-
∑

/E/SP: [179] SCP/Q-
∑

/SE/SP: [38]
SCP/2-

∑
/Ê/GRASP: [73]

6.11 Other MOCO problems

In the previous sections we have discussed the most important multiobjective com-
binatorial optimization problems. Besides these there is some literature on other
problems: Some classical problems have been discussed only in a few papers, others
deal with problems that are so specific that they would require their own category.
All of these are discussed summarily here.

In [82] a lexicographic flow problem is used to determine minimal cuts with a
minimal number of arcs in a network. [191] deals with the one dimensional cutting
stock problem with two objectives in a lexicographic context (priorities on the
objectives). Both an exact and a heuristic algorithm are given. In [1] an interactive
approach is proposed to solve the multiobjective cutting stock problem.

We also found few references [109,133] on the quadratic assignment problem
in a multicriteria context. This is closely related to the facility layout problem
which is discussed in a number of papers. They actually use approaches based on
the quadratic assignment problem: [44,65,170,132,220]. Other references on the
facility layout problem are [109,122,189,225]

Many of the papers listed in the surveys [33] and [32] about multiobjective
transportation network design are also among these specific problems. A variety of
multiobjective routing problems is discussed in [12].

7 Open questions and conclusions

Our survey of the state of the art in multiobjective combinatorial optimization
clearly identifies potential areas of research and weak points in the existing litera-
ture. We briefly outline these below.

7.1 General remarks

Very few theoretical results are available about the properties of MOCO problems,
like characterization of efficient solutions, the number of efficient solutions (sup-
ported and nonsupported) both in the worst case or on average, the topology of
the nondominated frontier, the elicitation of lower and upper bounds, etc. Taking
into account the fact that MOCO problems are almost always very hard in terms
of computational complexity the need for a thorough theoretical understanding of
MOCO problems is all the more evident. It is also clear that a better theoretical
comprehension of these problems will contribute to the development of efficient
solution methods.

Many of the current extensions of methods useful for single objective optimiza-
tion to the multiobjective situation have exhibited some difficulties for findingE.
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One such example is the the VEGA method. MOCO problems have specific prop-
erties and need specific techniques to cope in an efficient way with these. Some
adaptations such as MOSA, PSA, etc. could produce good results on a particular
problem like the knapsack problem. The question is, whether such method show
good performances when applied to other problems. From the evolution of these
methods over the last years, one can have some doubts. No comparative studies on
the performance of solution strategies like branch and bound or dynamic program-
ming on a variety of problems are available.

Few papers refer to practical application of MOCO problems. Moreover, when
the MOCO problem is extracted from a practical context, the resolution is often
reduced to a single objective problem. For example, this is the case to the channel
minimization problem of [36], but also for a lot of scheduling problems (see [202]).
Thus there is a need to attract the attention of decision makers to the area of MOCO
and solve the problems arising in practice in a real multicriteria context.

7.2 Remarks on exact methods

For exact methods, there is a huge gap between the bicriteria and the general case.
Many procedures have been developed especially for bicriteria problems and cannot
be modified to deal with the general case, a remark that is especially true for the two
phases method. This gap is probably caused by the lack of theoretical understanding
of MOCO problems with three or more objectives, as pointed out above.

The two phases approach proved to be a key development for bicriteria MOCO
problems. However, as far as we know, there are no general procedures to compute
supported efficient solutions in the multiobjective case. This would be of course
the first step to an application of the two phases method in three or more criteria
MOCO.

For the effective adaptation of some bicriteria methods to the general case,
knowledge of good lower and upper bounds on the efficient set is needed. The
computation of the Nadir point (which is pretty easy in bicriteria problems) is
an unsolved problem in general. Another research area would be to consider the
computation of sets of solutions that constitute a set of lower and upper bounds
onE. The lack of such results makes it impossible to adapt certain procedures to
general MOCO at this time.

There is a wide variety of combinatorial problems that have never been inves-
tigated in a multicriteria context, as is evident from the problems list in Section 6.

An important concept in multiobjective programming (MOP) is that of level
sets. It can be seen as a general framework for MOP, which allows a characterization
of efficient solutions [53], as well as interactive procedures. Applications to MOCO
could be promising but are not existing now.

7.3 Remarks on heuristic methods

Closely related to the remark about adaptation of single objective methods is the
question of multiobjective metaheuristics to solve MOCO problems. We are not
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convinced of the efficiency of a real metaheuristic in the sense of a meta-method able
to solve efficiently any MOCO. Each problem has its own specifics and a general
MOMH cannot cope with all of these. One research direction is the identification
of techniques for which the computational results obtained are promising. For
example, greedy algorithms are more and more used in procedures for the generation
of initial solutions.

If a heuristic method defined according to the “a posteriori mode” is available,
it is easy and alway possible to transform it to the “interactive mode”. The main
challenge for heuristic methods is then how to obtain very quickly a good ap-
proximation of the whole nondominated frontier. With such an approximation, the
procedure could then be to continue either in increasing the approximation quality
for the nondominated frontier or in focusing the approximation on a part of the
nondominated frontier following the preference of a decision maker in the context
of an interactive procedure.

An important question in the context of approximation methods is: How to
measure and compare approximations, and how to evaluate the quality of an ap-
proximation for problems with multiple objectives? Ideas have been put forward in
[208,92,180]. Some attributes like coverage, uniformity and cardinality to judge the
approximation to be satisfactory or not by a decision maker have been defined. Such
attributes are also useful when defining stopping rules in approximation methods,
and again when the tuning of heuristic algorithms is examined.

Bounds and domination conditions should be used to reduce the search space.
All available information to bracket and reduce the decision space is welcome.
Such information could be used for scanning the “core” of the problem, identifying
and discarding irrelevant aspects of the problem investigated. Information could be
derived from the decision space as well as from the objective space.

For some MOCO problems, the resolution could be decomposed in several
steps. For example, in a first step the procedure could try to identify the supported
efficient solution using an exact method. Information could be extracted from the
first results to reduce the search space and in a second step try to identify the non-
supported solutions by a heuristic method. Such a “semiexact” method is especially
attractive for problems that can be efficiently solved as single objective combina-
torial problems. Note that usually the cardinality of the setsSE is much smaller
than the number of nonsupported efficient solutions.
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Belgium

201. Thizy JM, Pissarides S, Rawat S, Lane DE (1996) Interactive multiple criteria opti-
mization for capital budgeting in a canadian telecommunications company. In: Tamiz
M (ed) Multi-objective programming and goal programming – theories and applica-
tions, vol 432. Lecture Notes in Economics and Mathematical Systems, pp 128–147.
Springer, Berlin Heidelberg New York
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