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Abstract

In this paper we present a review of approximative solution methods, that is, heuris-
tics and metaheuristics designed for the solution of multiobjective combinatorial
optimization problems (MOCO). First, we discuss questions related to approxima-
tion in this context, such as performance ratios, bounds, and quality measures. We
give some examples of heuristics proposed for the solution of MOCO problems. The
main part of the paper covers metaheuristics and more precisely non-evolutionary
methods. The pioneering methods and their derivatives are described in a unified
way. We provide an algorithmic presentation of each of the methods together with
examples of applications, extensions, and a bibliographic note. Finally, we outline
trends in this area.

Key Words: Multiobjective optimization, combinatorial optimization, heuristics,
metaheuristics, approximation.

AMS subject classification: 90C29, 90C27, 90C59.

1 Introduction

The last two decades have seen the development and the improvement
of approximative solution methods – usually called “heuristics and meta-
heuristics” (Osman and Laporte (1996)). The success of metaheuristics,
e.g., simulated annealing, tabu search, genetic algorithms, on hard single
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land grant 3602178/9275 and grant Ka 477/27-1 of the Deutsche Forschungsgemeinschaft
(DFG).
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objective optimization problems is well recognized today. In an optimiza-
tion context the term heuristic is used in contrast to methods that guarantee
to find a global optimum such as, e.g., the “Hungarian Method” for solving
the assignment problem or implicit enumeration schemes such as branch
and bound and dynamic programming.

Although combinatorial optimization models have been successfully used
in a vast number of applications, these models often neglect the fact that
many real-life problems require taking into account several conflicting points
of view corresponding to multiple objectives. Here are some examples:

• In portfolio optimization risk and return are the criteria that have
generally been considered. Recently the classical Markowitz model
has been criticized and other criteria have been mentioned: ratings
by agencies, dividend, long-term performance, etc., see, e.g., Ehrgott
et al. (2004).

• In airline operations, scheduling technical and cabin crew has a major
effect on cost and small percentage improvements may translate to
multi-million dollar savings. However, cost is not the only concern
in airline operations. Robust solutions are desired, which avoid the
propagation of delays due to crew changing aircraft, see Ehrgott and
Ryan (2002).

• In railway transportation, the planning of railway network infrastruc-
ture capacity has the goals of maximizing the number of trains that
can use the infrastructure element (e.g. a station) and to maximize
robustness of the solution to disruptions in operation. This prob-
lem can be modelled as a large scale set packing problem with two
objectives, Delorme et al. (2003).

• In radiation therapy planning for cancer treatment conflicting goals
are to achieve a high dose level in the tumour whereas the dose ab-
sorbed by healthy tissue is to be limited. For anatomical and physical
reasons these objectives cannot be achieved simultaneously. A multi-
criteria model is described in Küfer et al. (2003).

• In computer networks, internet traffic routing may be enhanced if
based on a multi-objective routing procedure to prevent network con-
gestion. Multi-objective shortest paths between one router and all the
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other routers of the network must be computed in real-time, by si-
multaneously optimizing linear objectives (cost, delay) and bottleneck
ones (quality, bandwidth), see Randriamasy et al. (2002).

In combinatorial optimization the consideration of multiple objectives
has received attention for about the last two decades but multiobjective
combinatorial optimization (MOCO) has become a very active area of re-
search only since the 1990’s as shown in the bibliography by Ehrgott and
Gandibleux (2000). Multiple objective (combinatorial) optimization differs
from traditional single objective optimization in several ways:

• The usual meaning of the optimum makes no sense in the multiple
objective case because a solution optimizing all objectives simultane-
ously does in general not exist. Instead, a search is launched for a
feasible solution yielding the best compromise among objectives on a
set of so-called efficient (Pareto optimal, non-dominated) solutions.

• The identification of a best compromise solution requires the prefer-
ences expressed by the decision maker to be taken into account.

• The multiple objectives encountered in real-life problems can often
be expressed as mathematical functions of a variety of forms. I.e.,
not only do we deal with conflicting objectives, but with objectives
of different structures.

• The multiple objectives add to the difficulty of combinatorial opti-
mization problems so that MOCO problems are very hard to solve
exactly (Ehrgott (2000)), even if they are derived from easy single
objective optimization problems.

With increasing interest in multiobjective models and the difficulties
encountered when solving multiobjective optimization problems, interest
in approximative methods for solving multiobjective optimization problems
arose. However, this interest is relatively recent. It began with the work
of Schaffer (1984) on multiple objective genetic algorithms. The work of
Serafini (1992) started a stream of research on multiple objective extensions
of local search based metaheuristics. Since then research on these methods
has mushroomed, giving birth to many ideas.
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In the broad area of optimization, multiobjective approximation meth-
ods attract a growing community of researchers, witnessed by a growing
number of publications. Several PhD and habilitation theses dealing specifi-
cally with these methods have been written, Coello (1996), Mira de Fonseca
(1995), El-Sherbeny (2001), Godart (2001), Hansen (1998), Jaszkiewicz
(2001c), Schaffer (1984), Ulungu (1993), and Zitzler (1999). Recently, in-
ternational publications have dedicated special issues to these methods
(Journal of Heuristics 6(3), 2000; Foundations of Computing and Deci-
sion Sciences 25(4), 2000 and 26(1), 2001; Lecture Notes in Economics and
Mathematical Systems 535, 2004).

Numerous methods are inspired by Evolutionary Multiobjective Opti-
mization (EMO). To give an idea about the strong activity in this field we
remark that a repository dedicated to EMO, Coello (2004), counts more
than 1600 entries. Lately four books dedicated to EMO have been pub-
lished, Bagchi (1999), Coello et al. (2001), Deb (2001), Osyczka (2001),
as well as the proceedings of the EMO international conferences, Fonseca
et al. (2003), Zitzler et al. (2001). In addition, several surveys have been
published regularly over the last 10 years, e.g. Coello (1999), Coello (2000),
Fonseca and Fleming (1995), and Jones et al. (2002).

In this paper we present a review of approximation methods for solving
multiobjective combinatorial optimization problems (MOCO), considering
especially non-evolutionary methods. The paper is organised as follows.
In Section 2 we provide the basic definitions of multiobjective (combina-
torial) optimization and approximation methods. In Section 3 we briefly
discuss issues related to the quality of approximations, such as bounds,
performance ratios and other quality measures. In Section 4 we present the
multiobjective versions of the greedy and local search heuristics and give
some examples of their application. The main metaheuristic paradigms of
evolutionary and neighbourhood search based are explained in Section 5.
In Section 6 we briefly review multiobjective evolutionary methods. Sec-
tions 7 and 8 cover Simulated Annealing and Tabu Search Metaheuristics
for MOCO. Section 9 is about a metaheuristic based on the ant colonies
paradigm, that is becoming more and more popular for MOCO. In Section
10 we mention other techniques and the current trends in the field. Let
us remark that we believe that our review covers all significant methods,
although we may have missed some of the pertinent literature.
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2 Basic Prerequisites

2.1 Multiobjective Optimization

A multiobjective optimization problem is defined as

min
x∈X

(f1(x), . . . , fp(x)), (MOP)

where X ⊂ Rn is a feasible set and f : Rn → Rp is a vector valued objective
function. By Y = f(X) ⊂ Rp we denote the image of the feasible set in
the criterion space. We consider optimal solutions of (MOP) in the sense
of efficiency (or Pareto optimality), that is, a feasible solution x ∈ X is
called efficient if there does not exist x′ ∈ X such that fk(x

′) ≤ fk(x) for
all k = 1, . . . , p and fj(x

′) < fj(x) for some j. In other words, no solution
is at least as good as x for all criteria, and strictly better for at least one.

Efficiency refers to solutions x in decision space. In terms of the cri-
terion space, with objective vectors f(x) ∈ Rp we use the notion of non-
dominance: If x is efficient then f(x) = (f1(x), . . . , fp(x)) is called non-
dominated (or also efficient). The set of efficient solutions is XE , the set
of non-dominated vectors is YN . We may also refer to YN as the non-
dominated frontier or the trade-off surface. For y1, y2 ∈ Rp we shall use
the notation y1 ≦ y2 if y1

k ≤ y2
k for all k = 1, . . . , p; y1 ≤ y2 if y1 ≦ y2

and y1 6= y2; and y1 < y2 if y1
k < y2

k for all k = 1, . . . , p. Rp

≧
denotes the

nonegative orthant {y ∈ Rp : y ≧ 0}, Rp
> is defined analogously.

To solve a multiobjective optimization problem means to find the set
of efficient solutions or, in case of multiple x mapping to the same non-
dominated point, for each y ∈ YN find an x ∈ XE with f(x) = y. This
concept of a set of efficient solutions is the major challenge of multicri-
teria optimization. Most methods require the repeated solution of single
objective problems which are in some sense related to the multiobjective
problem, see e.g. Miettinen (1999) or Ehrgott and Wiecek (2004).

In the following text we shall adopt the notation x ≻ x′ if x dominates
x′, i.e. if f(x) ≤ f(x′).
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2.2 Multiobjective Combinatorial Optimization Problems

Multiobjective combinatorial optimization problems can be formulated as
follows:

min {Cx : Ax ≥ b, x ∈ Zn} . (MOCO)

Here C is a p×n objective function matrix, where ck denotes the k-th row of
C. A is an m×n matrix of constraint coefficients and b ∈ Rm. Usually the
entries of C, A and b are integers. The feasible set X = {Ax ≥ b, x ∈ Zn}
may describe a combinatorial structure such as, e.g., spanning trees of a
graph, paths, matchings etc. We shall assume that X is a finite set. By
Y = CX we denote the image of X under C in Rp.

The biggest additional challenge in solving MOCOs as compared to
multiobjective linear programmes (MOLPs) min{Cx : Ax ≥ b, x ≧ 0}
results from the existence of efficient solutions which are not optimal for
any scalarization using weighted sums

min
x∈X

p∑

k=1

λkfk(x), (2.1)

called unsupported efficient solutions XNE . Those that are optimal for
some weighted sum problem (2.1) are called supported efficient solutions
XSE . A method called the 2-phase method has been applied to various
problems to compute supported (in Phase 1) and unsupported (in Phase 2,
using information obtained in Phase 1) efficient solutions, Ehrgott (1999),
Lee and Pulat (1993), Ramos et al. (1998), Ulungu and Teghem (1994),
Visée et al. (1998). Many methods generalizing single objective algorithms
for the use with multiple objectives have been developed, see the survey on
exact methods for MOCO in Ehrgott and Gandibleux (2000) and references
in that bibliography.

An interesting observation in the context of heuristics is, that an exact
algorithm which finds all supported solutions, i.e., solves (2.1) for all λ ∈
Λ = {λ ∈ Rp

> :
∑p

k=1 λj = 1}, becomes a heuristic for determination of XE .
Also, a heuristic applied to solve (2.1) for some hard problem may actually
yield a truly unsupported efficient solution.

From a methodological point of view unsupported efficient solutions are
the main reason why the computation of XE is hard, from a more theoretical
point of view the computational complexity is another. Most (MOCO)
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problems are INP -hard as well as #IP -hard as demonstrated by Ehrgott
(2000). The best illustration of this fact is perhaps the unconstrained
problem

min
x∈{0,1}n

(
n∑

i=1

c1
i xi,

n∑

i=1

c2
i xi

)
,

with c1
i , c

2
i ≥ 0; i = 1, . . . , n which is trivial with only one objective.

2.3 Approximation Methods

As in the single objective case, a reasonable alternative to exact methods
for solving difficult MOPs is to derive an approximation method. An ap-
proximation method in a multiobjective optimization context is a method
which finds either sets of locally potentially efficient solutions, that are
later merged to form a set of potentially efficient solutions – the approxi-
mation – or globally potentially efficient solutions according to the current
approximation. Multiple objective heuristics (MOH) and multiple objective
metaheuristic (MOMH) are methods that aim to provide a good tradeoff
between an approximation of the efficient solution set, denoted by PE, and
the time and memory requirements to obtain them.

In Section 3 we discuss some theoretical issues related to approximation,
such as bounds, performance ratios, and quality measures. In Section 4 we
describe some genuine multiobjective heuristics. In this section we will not
mention any methods to find the set XSE . These are plentiful, but are all
based on the principle of repeated application of single objective procedures
(exact or heuristic) to (2.1) combined with a recursive dichotomic search
procedure to generate the relevant values of λ. They are also very often
restricted to two objectives.

Let us now define what we understand by heuristics and metaheuristics.

Heuristics. A heuristic is defined by Reeves (1995) as a technique which
seeks good (i.e. near-optimal) solutions at a reasonable computational
cost without being able to guarantee optimality, to state how close
to optimality a particular feasible solution is or, in some cases, even
to guarantee feasibility. Often heuristics are problem-specific, so that
a method which works for one problem cannot be used to solve a
different one.
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Metaheuristics. In contrast, metaheuristics are powerful techniques ap-
plicable generally to a large number of problems. A metaheuristic
refers to an iterative master strategy that guides and modifies the
operations of subordinate heuristics by combining intelligently differ-
ent concepts for exploring and exploiting the search space (Glover
and Laguna (1997), and Osman and Laporte (1996)). A metaheuris-
tic is a solution concept. The adaptation to a specific problem uses
heuristics as solution methods.

A metaheuristic may manipulate a complete or incomplete single solu-
tion or a collection of solutions at each iteration. The family of metaheuris-
tics includes, but is not limited to, constraint logic programming, genetic
algorithms, evolutionary methods, neural networks, simulated annealing,
tabu search, non-monotonic search strategies, greedy randomized adaptive
search, ant colony systems, variable neighbourhood search, scatter search
and their hybrids (Osman and Laporte (1996)). The success of these meth-
ods is due to their capacity “to solve in practice” some hard combinatorial
problems.

3 Quality of Approximation

3.1 Bounds and Bound Sets

The quality of a solution of a combinatorial optimization problem can be
estimated by comparing lower and upper bounds on the optimal objective
function value. The success of optimization methods, in particular branch
and bound, relies on the quality of available bounds.

In multiobjective optimization the concept of bounds is not well de-
veloped. The best possible lower and upper bounds on values of all non-
dominated points are given by the ideal and nadir point yI and yN defined
by

yI
k = min

x∈X
fk(x) = min

y∈YN

yk, k = 1, . . . , p

and
yN

k = max
x∈XE

yk(x) = max
y∈YN

yk, k = 1, . . . , p,

respectively. We sometimes refer to a utopian point yU ← yI − ε1, where
1 is a vector of all ones and ε is a small positive number. However, the
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ideal and nadir points are usually far away from non-dominated points and
do not provide a good estimate of the non-dominated set. In addition, the
nadir point is hard to compute for problems with more than two objectives,
see Ehrgott and Tenfelde-Podehl (2003).

To better capture the multiobjective nature of the problems and the fact
that we are looking for a set of efficient solutions it is natural to generalize
the notion of bounds to bound sets. The following definition is adapted
from Ehrgott and Gandibleux (2001). For definitions of Rp

≧
-closedness and

-boundedness see e.g. Sawaragi et al. (1985).

Definition 3.1. Let Ȳ ⊂ YN .

1. A lower bound set L for Ȳ is an Rp

≧
-closed and Rp

≧
-bounded set

L ⊂ Rp such that Ȳ ⊂ L + Rp

≧
and L ⊂ (L + Rp

≧
)N .

2. An upper bound set U for Ȳ is an Rp

≧
-closed and Rp

≧
-bounded set

U ⊂ Rp such that Ȳ ∈ cl
[
(U + Rp

≧
)c
]

and U ⊂ (U + Rp

≧
)N .

Given a lower bound set and an upper bound set the quality of an
approximation can then be estimated by the “distance” between the two
sets. If we observe that a lower bound set is often a convex piecewise
linear curve (obtained, e.g., by solving LP relaxations of (MOCO) and
connecting the obtained points) and the upper bound set is given by a set of
heuristically determined feasible solutions, the distance can be measured by
the length of the orthogonal projection of the y values of the upper bound
set on the linear pieces of the lower bound set. Alternatively, Tenfelde-
Podehl (2002) proposes various measures of the area between a lower and
an upper bound set for bicriteria problems.

Ehrgott and Gandibleux report first results on lower and upper bound
sets in for the bicriteria knapsack problem (Ehrgott and Gandibleux (2001))
and for the bicriteria TSP, set covering and set packing problems, and the
bicriteria assignment problem (Ehrgott and Gandibleux (2004)). Fernández
and Puerto (2000) use bound sets in their exact and heuristic methods to
solve the multiobjective uncapacitated facility location problem.
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3.2 Performance Ratio

A lot of research has been carried out in the area of approximability of
INP -hard combinatorial optimization problems, Ausiello et al. (1999). Sur-
prisingly little is known about approximability of multicriteria problems.
In single objective optimization, an approximation algorithm A is a (poly-
nomial time) algorithm that finds a feasible solution xA that is guaranteed
to be within a certain ratio of the optimal solution x∗, i.e. f(xA) ≤ rf(x∗).
The constant r ≥ 1 is often called the performance or approximation ratio.

In the multicriteria context, a new definition of performance ratio is
needed. If we want to approximate the set XE by one single heuristic
solution, norms can be used. Ehrgott (2000) proposes ratios r1 and r2 if
the solution xA guarantees

|||f(xA)|| − ||f(x∗)|||
||f(x∗)|| ≤ r1,

respectively
||f(xA)− f(x∗)||
||f(x∗)|| ≤ r2

for all efficient solutions x∗ ∈ XE . An algorithm with performance ratio
r1 = 1 is obtained by solving

min
x∈X
||f(x)||,

which, however, can in itself be a hard problem. It is easy to see that in
general algorithms with r1 < 1 or r2 < 1 are not possible.

A more interesting question of course is the approximation of XE by
sets PE with bounds on the difference of the set from the true efficient
set. To achieve this, it is necessary to define a componentwise notion of
approximation. A set of feasible solutions X ′ ⊂ X is called ε-efficient (or
ε-optimal) if for all x ∈ X there is some x′ ∈ X ′ such that

fk(x
′) ≤ (1 + ε)fk(x), k = 1, . . . , p,

or (fk(x
′)−fk(x)) ≤ εfk(x), see Erlebach et al. (2002), Ruhe and Fruhwirth

(1990), and Warburton (1987). This is the natural multiobjective version
of the approximation ratio with the same ratio r = (1+ε) for all objectives.

An r-approximation algorithm A is an algorithm that runs in polyno-
mial time and produces an (r−1)-efficient solution set for a MOCO problem.
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A polynomial time approximation scheme (PTAS) is a family of algorithms
that contains for each ε > 0 a (1 + ε)-approximation algorithm Aε. If in
addition Aε is polynomial in ε−1 the family is called a fully polynomial
time approximation scheme (FPTAS).

The existence of FPTAS for MOCO problems has been discussed by
Safer and Orlin (Safer (1992), Safer and Orlin (1995a), Safer and Orlin
(1995b)). They obtain results on the existence of FPTAS for some multi-
criteria network flow, knapsack, and scheduling problems. A general result
has been given by Papadimitriou and Yannakakis (2000).

Ruhe and Fruhwirth (1990) (see also Burkard et al. (1989), and Fruh-
wirth et al. (1989)) present an algorithm which for given r > 1 finds an
r-approximation of the efficient set of the (continuous) bicriteria network
flow problem. Their method is based on an algorithm to approximate a
convex curve (note that the efficient set of a bicriteria LP is a piecewise
linear convex curve). The algorithm is therefore a pseudopolynomial ap-
proximation algorithm for the set XSE of the integer bicriteria network flow
problem.

Warburton (1997) and Hansen (1979) give FPTASs for the multicriteria
shortest path problem. Erlebach et al. (2001) and Erlebach et al. (2002) de-
velop a fast FPTAS for the multiobjective 1-dimensional knapsack problem
and a PTAS for the multiobjective multi-dimensional knapsack problem (an
FPTAS for the latter cannot exist unless IP = INP ). In both papers, a par-
tition of the objective space into intervals of increasing length is used. The
fact that the knapsack algorithms are based on dynamic programming is
another link between the two methods.

White (1986) proposes a number of definitions of ε-efficiency. Among
them an additive version of the definition above, i.e. x̂ ∈ X is called ε-
efficient (or ε-optimal) if there is no x′ ∈ X such that f(x′) ≤ f(x̂) − ε1,
where 1 ∈ Rp is a vector of all ones. These definitions, however, have not
found attention in MOCO literature.

3.3 Other Quality Measures

In the previous sections we have mentioned the distance between lower
and upper bound sets and the performance or approximation ratios as
quality measures for approximative solutions. For problems for which test



12 M. Ehrgott and X. Gandibleux

instances with known Pareto optimal solutions are available the quality
of an approximation method can be estimated by the percentage of truly
efficient points that it can detect.

There are a few other ideas in the literature. Kim et al. (2001) propose
a new measure, the integrated convex preference (ICP), to compare the
quality of algorithms for MOCO problems with two objectives.

Sayin (2000) proposes the criteria of coverage, uniformity, and cardi-
nality as quality measures. Although developed for continuous problems
the ideas may be interesting for MOCO problems. However, the methods
proposed in Sayin (2000) can be efficiently implemented for linear problems
only.

Other authors propose distance based measures, Viana and Sousa (2000)
and visual comparisons of the generated approximations. The latter are re-
stricted to bi-objective problems. Jaszkiewicz (2001c) also distinguishes
between cardinal and geometric quality measures. He gives further refer-
ences and suggests preference-based evaluation of approximations of the
non-dominated set using outperformance relations.

None of these measures have been universally adopted in the multiob-
jective optimization literature, and further research is clearly needed.

4 Heuristics for Multiobjective Combinatorial Optimization

Heuristics for MOCO problems can often be derived from heuristics for
the single objective version of a combinatorial optimization problem. Two
main strategies have been used. The first is to apply the single objective
heuristic directly to solve (2.1) and combine it with a procedure to select
appropriate values of λ.

We are interested in heuristics that deal with the multiple objectives
directly. This can often be achieved by modifying the operators in the
heuristic to deal with vectors rather than scalars. Thus, vector addition is
used and the min or max operators are understood in the sense of the partial
order ≤ and the preference relation ≻: min{f(x) : x ∈ X} = {f(x) : x ∈
X such that there is no x′ ∈ X with f(x′) ≤ f(x)}. Accordingly we write
argmin {f(x) : x ∈ X} = {x ∈ X : there is no x′ ∈ X such that x′ ≻ x}.



Approximative Solution Methods for MOCO 13

4.1 General Multiobjective Heuristics

In this section we describe two main heuristic principles in the multiobjec-
tive framework: the greedy and the local search principle. Let us consider
X ⊂ 2A for some finite set A and assume, for ease of exposition that if
x ∈ X and x′ ⊂ x then x′ ∈ X. Due to the partial order and the resulting
incomparability of objective vectors, solutions are constructed in parallel
(Algorithm 1).

Algorithm 1 Multiobjective Greedy Algorithm

MOGreedy: procedure (A, PE)

input : A, finite set
output : PE, the set of potentially efficient solutions

PE ← nondom(A)
while (∃x ∈ PE, a ∈ A \ x such that x ∪ a ∈ X) do

for all x ∈ PE, a ∈ nondom(A \ x) loop
if (x ∪ a ∈ X) PE ← PE ∪ (x ∪ a)

end loop
PE ← nondom(PE)

end while

nondom(S): procedure (S)
nondom(S) ← {x ∈ S : 6 ∃x′ ∈ S : f(x′) ≤ f(x)}

Such a constructive algorithm (without the filter for non-dominated vec-
tors after the end of the for loop) has been used for the minimum spanning
tree problem by Corley (1985). It performs reasonably well on problems
whose single objective version can be solved optimally by the greedy algo-
rithm. However, it does not necessarily generate all efficient solutions even
for such problems. Serafini (1986) showed that for each efficient solution
there is a topological order, such that if the greedy algorithm uses that
topological order all efficient solutions of matroid problems are found. A
greedy heuristic is also used by Rosenblatt and Sinuany-Stern (1989).

To describe the multiobjective local search heuristic we shall assume
that a neighbourhood definition is given and that for any x ∈ X, N (x)
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defines the neighbourhood of x (Algorithm 2).

Algorithm 2 Multiobjective Local Search

MOLocalSearch: procedure (x,N , PE)

input : x, feasible solution
output : PE, the set of locally potentially efficient solutions

PE ← x, S ← x
repeat

for all x̂ ∈ S loop
for all x ∈ N (x̂) loop

if (x 6≻ x̂ and x̂ 6≻ x) S ← S ∪ x
if (x ≻ x̂)S ← S ∪ x \ x̂

end loop
S ← nondom(S)

end loop
until S = PE

Andersen et al. (1996) give a local search heuristic based on the ex-
change of edges for the bicriteria spanning tree problem. Hamacher and
Ruhe (1994) use a local search procedure in a two-phase algorithm for the
bicriteria spanning tree problem after first calculating supported efficient
solutions exactly.

The greedy and local search heuristics can be combined. The idea is to
first construct solutions using the greedy approach and use local search to
improve the solutions or generate more potentially efficient solutions. Such
a combination is used by Sigal (1994) for the TSP. Both the multiobjective
greedy algorithm and the multiobjective local search algorithm are of course
general templates that can be applied to a wide variety of problems.

We shall now discuss heuristic methods for the multicriteria TSP as an
example of how single objective heuristics can be adapted to the multicri-
teria case. Two of the best known heuristics for the TSP are the tree and
Christofides’ heuristic, Lawler et al. (1985). Both procedures begin by first
constructing a minimal spanning tree. The tree heuristic then duplicates
each edge of the spanning tree, thus obtaining a graph where all nodes have
even degree. This graph is therefore Eulerian and has a tour that traverses
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each edge exactly once. A Hamiltonian cycle can then be determined by
elimination of nodes that are repeatedly visited.

Christofides’ heuristic improves upon that by finding a minimal weight
perfect matching of those nodes which have odd degree. The union of the
spanning tree and the minimal weight matching is again Eulerian. From
there the heuristic proceeds as the tree heuristic.

How can this be modified for the multiobjective TSP? Ehrgott (2000)
replaces the steps of finding a minimal spanning tree and matching by find-
ing a spanning tree and matching with minimal norm of the vector valued
weights. He gives a number of results on the approximation properties
of these algorithms according to the definitions of r1- and r2-performance
ratios mentioned in Section 3.2.

5 Multiobjective Metaheuristics

The adaptation of metaheuristic techniques for the solution of multiob-
jective optimization problems has mushroomed over the last ten years,
giving birth to multiobjective metaheuristic (MOMH). From a historical
perspective, the pioneer approximation methods for multiobjective prob-
lems have appeared since 1984, in the following order: Genetic Algorithms
(GA, Schaffer (1984)), Artificial Neural Networks (ANN, Malakooti et al.
(1990)), Simulated Annealing (SA, Serafini (1992)), and Tabu Search (TS,
Gandibleux et al. (1997)). The pioneer methods have two characteristics.
First, they are inspired either by Evolutionary Algorithms (EA), or by
Neighbourhood Search Algorithms (NSA). Second, the early methods are
direct derivations of single objective optimization metaheuristics, incorpo-
rating small adaptations to integrate the concept of efficient solution for
optimizing multiple objectives.

5.1 Evolutionary Algorithms versus Neighbourhood Search Al-
gorithms

Evolutionary Algorithms manage a solution population P rather than a
single feasible solution. In general, they start with an initial population
and combine principles of self adaptation, i.e. independent evolution (as
in the mutation strategy in genetic algorithms), and cooperation, i.e. the
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exchange of information between individuals (as in the pheromones han-
dled in ant colonies), to improve approximation quality. Because the whole
population contributes to the evolutionary process, the generation mecha-
nism is parallel along the frontier, and thus these methods are also called
global convergence-based methods. This characteristic makes population-
based methods very attractive for solving multiobjective problems.

In Neighbourhood Search Algorithms, generation relies upon one indi-
vidual, a current solution xn, and its neighbours {x} ⊆ N (xn). Using a
local aggregation mechanism for the objectives (often based on a weighted
sum), a weight vector λ ∈ Λ, and an initial solution x0, the procedure
iteratively projects the neighbours into the objective space in a search
direction λ, by optimizing the corresponding parametric single objective
problem. A local approximation of the non-dominated frontier is obtained
using archives of the successive potentially efficient solutions detected. This
generation mechanism is sequential along the frontier, producing a local
convergence to the non-dominated frontier, and so such methods are called
local convergence-based methods. The principle is repeated for diversified
search directions to completely approximate the non-dominated frontier.
NSAs present an aggressive convergence because the search is less dis-
persed, but they require more effort in diversification in order to cover
the efficient frontier completely. All NSA methods use a current solution
xn and a neighbourhood N (xn) to generate a new solution x ∈ N (xn).
The comparison of x and xn according to p objectives fk(x), k = 1 . . . p
raises three possible situations (Figure 1 for a biobjective maximization
problem) if ∆fk = fk(x)− fk(xn) is the difference between solutions x and
xn with respect to objective k.

(Case Ca) ∀k ∆fk ≥ 0
All the objectives are improved for solution x. x (weakly)
dominates the current solution xn and is always accepted. If
∀k ∆fk = 0, the two solutions are equivalent. x is always ac-
cepted, except if only a minimal complete set XEm of efficient
solutions (i.e. a subset of XE that contains no equivalent so-
lutions, and for any x ∈ XE there exists x′ ∈ XEm such that
x and x′ are equivalent) is computed.
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Figure 1: Three situations can occur when comparing solutions x and xn accord-

ing to multiple objectives (here, in the case of two maximized objectives).

(Case Cb) ∃k, k′ : ∆fk < 0 and ∆fk′ > 0
An improvement and a deterioration occur simultaneously for
different criteria. Both solutions x and xn are potentially effi-
cient.

(Case Cc) ∀k ∆fk ≤ 0
All objectives are deteriorated with at least one strict inequal-
ity. Solution x is dominated by xn.

For the two last cases a scalarizing function s(f(x), λ) is often used to
project the multidimensional objective space into a monodimensional one
using a weight vector λ ∈ Rp

≥. Such functions are well-known in the context
of interactive procedures for multiobjective optimization. The scalarizing
function allows to produce a “local aggregation” of the objectives in order
to compute the “weighted distance” ∆s = s(f(x), λ)− s(f(xn), λ) between
f(x) and f(xn).

Today, the multiobjective metaheuristics are often hybridized. For ex-
ample, some NSA-based methods also handle a population of solutions, see
Czyzak and Jaszkiewicz (1996) and Hansen (1998). This coupling aims
to break the independence aspect of the search process, inherent in the
sequential generation principle, by exploiting information available in the
population. One idea is to use the population as generator for a diversifi-
cation strategy.
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5.2 False Multiobjective Methods

Metaheuristics dealing with multiple objective optimization problems are
sometimes wrongly presented as MOMH. This occurs when multiobjective
problems are solved with a single objective strategy, looking for a unique
compromise solution. In this case the original multiobjective problem is
transformed or managed as the optimization of one or several single objec-
tive problems. The two following examples are representative of this class
of methods. They are presented in Osman and Laporte (1996) as the first
papers describing the use of TS as a technique for solving multiobjective
problems.

A sequence of single objective problems. In Hertz et al. (1994) the
method consists in solving a sequence of single objective problems
considering in turn each objective fj associated with a penalty term:

min fk(x)
s.t. fj(x) ≤ f̄j j = 1 . . . k − 1

x ∈ X.

A parameterized value function. In Dahl et al. (1995) a family of scalar-
ized problems (2.1) are solved to generate an approximation of a sub-
set of XE .

min λ1f1(x) + λ2f2(x) + λ3f3(x)
s.t. x ∈ X.

We designate such approaches as “false multiobjective methods” and
do not consider them in the framework of this synthesis.

6 The Multiobjective Evolutionary Algorithms Wave

The first to introduce a multiobjective metaheuristic was Schaffer (Schaffer
(1984) and Schaffer (1985)). He developed a multiobjective evolutionary
algorithm (MOEA), called Vector Evaluated Genetic Algorithm (VEGA),
which was an extension of Grefenstette’s GENESIS programme (Grefen-
stette (1984)) to include multiple objective functions. The vector extension
concerns only the selection procedure.
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6.1 Vector Evaluated Genetic Algorithm by Schaffer (1984)

For each generation in VEGA, three stages are performed (Algorithm 3).
The selection procedure is performed independently for each objective. In
the first stage, the population is divided into p subpopulations Sk accord-
ing to their performance in objective k (routine pickIndividuals). Each
subpopulation is entrusted with the optimization of a single objective. In
the next stage, subpopulations are shuffled to create a mixed population
(routine shuffle). In the final stage, genetic operators, such as mutation
and crossover, are applied to produce new potentially efficient individuals
(routine evolution). This process is repeated for Ngen iterations.

Algorithm 3 VEGA, Vector Evaluated Genetic Algorithm

input : pop, the population size
Ngen, the limits of generations
parameters, the crossover probability and mutation rate

output : PE, the set of potentially efficient solutions

begin VEGA

- -| Generate an initial population of pop individuals
P0 ← initialization(pop)

- -| Generation process
for n in 1, . . . , Ngen loop

- -| 1. Elaborate p sub-population of size pop/p using each objective k
- -| in turn

Sk ← pickIndividuals( pop/p , k , Pn−1), ∀k = 1, . . . , p

- -| 2. Set a population of size pop in shuffling together the p
- -| sub-populations Sk

S ← shuffle(∪k=1,...,pS
k)

- -| 3. Apply genetic operators
Pn ← evolution(S, parameters)

endLoop
PE ← PNgen

end VEGA
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Because VEGA selects individuals who excel in one performance di-
mension without looking at the other dimensions, the speciation problem
can arise with that method. This implies that individuals with a balanced
performance on all objectives will not survive under this selection mecha-
nism. Speciation is undesirable because it is opposed to the generation of
compromise solutions. Due to this characteristic VEGA is labeled as a non-
Pareto approach, Coello (1999). Additional heuristics were developed (like
crossbreeding among the species) and studied to overcome this tendency.

6.2 Modern MOEAs

Although, it has some serious drawbacks, VEGA has had a strong influ-
ence up to now, and was at the origin of the Multiobjective Evolutionary
Algorithm (MOEA) wave. Since VEGA many Multiobjective Evolutionary
Algorithms have been developed. Significant progress concerns corrections
of shortcomings observed in the first algorithms introduced and proposi-
tions of new algorithmic primitives to generate a better approximation of
XE . These MOEAs are characterized according to population structure,
archiving, selection/elitism mechanism, and fitness function. Laumanns
et al. (2001) give an overview of the techniques that are applied in most
MOEAs (Figure 2).

Two central questions motivate the research about MOEA:

(1) how to accomplish both fitness assignment and selection in order to
guide the search toward the efficient frontier?

(2) how to maintain a diversified population in order to avoid premature
convergence and find a uniform distribution of solutions along the effi-
cient frontier?

For the first question MOEAs are distinguished by the way the perfor-
mance of individuals is evaluated in the selection. Firstly, when the ob-
jectives are considered separately, the selection of individuals is performed
by considering each objective independently (Schaffer (1995)); or the se-
lection is based on a comparison procedure according to a predefined (or
random) order on the objectives (Fourman (1985)); or the selection takes
into account probabilities assigned to each objective in order to determine a
predominant objective (Kursawe (1992)). Secondly, when the objectives are
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Figure 2: A taxonomy of techniques in MOEAs (Laumanns et al. (2001)). The

arrows indicate existing combinations.

aggregated into a single parameterized objective function, the parameters of
the function are systematically updated during the same runs (at random
or using a particular weight combination) taking advantage of information
collected on the population of individuals (Hajela and Lin (1992) and Mu-
rata and Ishibuchi (1995)). Each aggregation defines a search direction
in the objective space and the idea is to optimize in multiple directions
simultaneously. Thirdly, when the concept of efficiency is directly used
(non-domination ranking) the fitness of an individual (i.e. a solution) is
calculated on the basis of the dominance definition. The idea is to take
advantage of information carried by the population of solutions using the
notion of domination for selection. This is the most common approach and
has led to several Pareto-based fitness assignment schemes, see Fonseca and
Fleming (1993), Horn et al. (1994), Srinivas and Deb (1994), Zitzler and
Thiele (1998), etc.

Goldberg (1989) has suggested the use of non-domination ranking ac-
cording to the following principle (Figure 3). All non-dominated individuals
are assigned rank 1. They are then temporarily withdrawn from the popu-
lation. Then the remaining non-dominated individuals take rank 2 and so
forth. The rank of an individual determines its fitness value. It is a concept
of fitness related to the whole population. This evaluation scheme is im-
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plemented in NSGA by Srinivas and Deb (1994). Other evaluations of the
rank have been proposed. For Fonseca (Fonseca and Fleming (1993)) the
rank of an individual is equal to the number of solutions which dominate
this individual (implemented in MOGA93). For Zitzler and Thiele (1998) a
strength value s ∈ [0, 1) is calculated for each potentially efficient solution.
For all other individuals in the population, the strengths of all potentially
efficient solutions by which it is covered (dominated) are summed up.

The majority of the other components of a MOEA deal with the sec-
ond question. A fitness sharing based on a principle of niches is the most
frequently used technique. Most MOEAs are implementing fitness shar-
ing, e.g., Fonseca and Fleming (1993), Horn et al. (1994), Srinivas and
Deb (1994), Zitzler and Thiele (1998). Niches are solution neighbourhoods
in objective space centered on candidate solutions and with a radius σsh.
Based on the number N of solutions in these niches, the selection of individ-
uals can be influenced to generate more in areas where niches are sparsely
populated, with the goal of greater distribution uniformity along the non-
dominated frontier (see Figure 4). A sharing function, which measures the
distance d(i, j) between a candidate solution i and a neighbour j, is defined
by

φ(d(i, j)) = 1−
(

d(i, j)

σsh

)α

if d(i, j) < σsh and 0 otherwise. The parameter α amplifies (α > 1) or
attenuates (α < 1) the sharing value computed. Thus the shared fitness of
candidate i is

fsi
=

fi∑N
j=1 φ(d(i, j))

such that the fitness of candidates increases if φ values are small, i.e. the
distance of neighbours from i is close to σsh.

Among the elements playing a significant role in a MOEA, the impor-
tance of the elite solutions to improve MOEAs is underlined by Laumanns
et al. (2001). The results of numerical experiments show that the use of
elitism must be accompanied by a strong rate of mutation in order to pre-
vent the population from specializing too fast. The contribution of elite
solutions in the generation of the non-dominated frontier in MOCO prob-
lems has been investigated by Gandibleux et al. (2001) and Morita et al.
(2001). For the knapsack problem, using greedy solutions, or supported ef-
ficient solutions, in the population make the algorithm more apt to generate
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Figure 3: Computation of rank in NSGA (Srinivas and Deb (1994)), MOGA93

(Fonseca and Fleming (1993)) and SPEA (Zitzler and Thiele (1998)).

efficient solutions (Figure 5). Also, using elite solutions in combination with
a generic path-relinking operator has shown impressive results in knapsack
and assignment problems, Gandibleux et al. (2004).

6.3 Bibliographic Notes

A number of important implementations of MOEA have been published
in recent years. There are even a number of surveys on the topic (see
Coello (1999), Coello (2000), Fonseca and Fleming (1995), and Jones et al.
(2002)). The most outstanding among the pioneer MOEAs are mentioned
briefly below:

Vector Evaluated Genetic Algorithm (VEGA) by Schaffer (1984).

Multiple Objective Genetic Algorithm (MOGA93) by Fonseca and
Fleming (1993). MOGA93 uses a ranking procedure in which the rank
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of an individual is equal to the number of solutions which dominate
this individual.

Non-dominated Sorting Genetic Algorithm (NSGA) by Srinivas
and Deb (1994). NSGA implements Goldberg’s ranking idea in which
the rank of an individual is equal to its domination layer, computed
by ranking the population on the basis of domination.

Niched Pareto Genetic Algorithm (NPGA) by Horn, Nafpliotis and
Goldberg, 1994 (Horn et al. (1994)). NPGA combines the Pareto
dominance principle and a Pareto tournament selection where two
competing individuals and a set of individuals are compared to de-
termine the winner of the tournament.

For a long time, the problems investigated with these methods were of-
ten unconstrained bi-objective problems with continuous variables and non-
linear functions. EA are appreciated by the engineering community which
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could explain the large number of MOEA applications for solving real world
problems (in mechanical design or electronics, for example). Surprisingly,
few MOEA have been applied to solve MOCO problems. A survey of the
literature shows Gen and Li (1998a), Gen and Li (1998b) (Transportation
Problems), Zhou and Gen (1999) (Spanning Tree Problems), Jaszkiewicz
(1998) (Travelling Salesperson Problems), Ben Abdelaziz et al. (1999),
Gandibleux et al. (2001) (Knapsack Problems), Zitzler and Thiele (1999)
(Multi-constraint Knapsack Problems), Liepins et al. (1990) (Set Covering
Problems), Todd and Sen (1997) (Containership Loading Design), Morita
et al. (2001), Pamuk and Köksalan (2001), Tamaki et al. (1994) (Scheduling
Problems). The methods which have been used for MOCO are described
below:
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Multiple Objective Genetic Algorithm (MOGA) by Murata and
Ishibuchi (1995). This method is not based on the Pareto ranking
principle but on a weighted sum of objective functions, combining
them into a scalar fitness function that uses randomly generated
weight values in each iteration. Later, the authors coupled a local
search with a genetic algorithm, introducing the memetic algorithm
principle for multiobjective problems.

Method of Morita et al. (MGK) by Morita, Gandibleux and Katoh,
1998 (Gandibleux et al. (1998)). Seeding solutions, either greedy or
supported efficient, are put in the initial population in order to ini-
tialise the algorithm with good genetic information. The biobjective
knapsack problem is used to validate the principle. This method be-
comes a memetic algorithm when a local search has been performed
on each new potentially efficient solution, Gandibleux et al. (2001).

Strength Pareto Evolutionary Algorithm (SPEA) by Zitzler and
Thiele (1998). SPEA takes the best features of previous MOEAs
and combines them to create a single algorithm. The multiobjective
multi-constraint knapsack problem has been used as a benchmark to
evaluate the method (Zitzler and Thiele (1999)).

Pareto Archived Evolution Strategy (PAES) by Knowles and Corne
(1999). PAES is an evolutionary strategy that employs local search to
generate new candidate solutions and a reference archive to compute
solution quality.

Multiple Objective Genetic Local Search (MO-GLS) by Jaszkie-
wicz (2001b). This method hybridizes recombination operators with
local improvement heuristics. A scalarizing function is drawn at ran-
dom for selecting solutions, which are then recombined, and the off-
spring of the recombination are improved using heuristics.

Multiple Objective Genetic Tabu Search (MOGTS) by Barichard
and Hao (2002). This is another hybrid method in which a genetic
algorithm is coupled with a tabu search. MOGTS has been evaluated
on the multi-constraint knapsack problem.
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7 The Simulated Annealing Wave

Serafini (1992) was the first to use simulated annealing as a technique
for multiobjective optimization problems. All multiobjective simulated
annealing-based methods developed since then are still closely related to
the original single objective method. They extend the single objective al-
gorithm to cope with the notion of efficiency.

Often the authors tested various forms and definitions of acceptance
rules. A lot of them have been suggested and discussed by Serafini (1992).
Among those, four rules are frequently employed. If Tn is the current
temperature value at iteration n the acceptance probability is:

• Rule C (Chebyshev rule):

pn ← min

{
1 ; exp

(
max

k=1...p

{
−λj (fk(x)− fk(xn))

Tn

})}
(7.1)

• Rule SL (scalar linear rule):

pn ← min

{
1 ; exp

(
p∑

k=1

{
−λj (fk(x)− fk(xn))

Tn

})}
(7.2)

• Rule W (weak rule):

pn ← min

{
1 ; exp

(
min

k=1...p

{
−λj (fk(x)− fk(xn))

Tn

})}
(7.3)

• Rule P (product rule):

pn ←
∏

k=1...p

min

{
1 ; exp

(
−λj (fk(x)− fk(xn))

Tn

)}
. (7.4)

Three methods are reported chronologically in this section, Czyzak
and Jaszkiewicz (1996), Parks and Suppapitnarm (1999), and Ulungu and
Teghem (1992). It is important to emphasize that these methods have been
elaborated independently from each other. The first method by Ulungu and
Teghem (1992) uses a predefined set of weights λ ∈ Rp

+. An independent
SA process is then executed for each weight value. The second method by
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Czyzak and Jaszkieweicz (1996) introduces the use of a sample of solutions
which are simultaneously optimized toward the efficient frontier while they
are dispersed over the whole frontier. The last method by Parks and Sup-
papitnarm (1999) is not based on a principle of search directions, and it
does not need an aggregation mechanism for the objectives. Each objec-
tive is considered separately. Advanced strategies using the population of
potentially efficient solutions drive the approximation mechanism ensuring
the detection of the whole efficient frontier.

7.1 Multiobjective Simulated Annealing by Ulungu (1992)

In 1992 (EURO XII conference, Helsinki), Ulungu introduced MOSA, one
of the most popular simulated annealing methods for multiobjective op-
timization, see also Ulungu (1993). MOSA is a direct derivation of the
simulated annealing principle for handling multiple objectives. Starting
from an initial, randomly generated solution xn=0 and a neighbourhood
structure N (xn), MOSA computes a neighbour x ∈ N (xn) using a set of
weights Λ that define search directions λ ∈ Λ. The comparison of x with
xn according to p objectives fk(x), k = 1, . . . , p gives rise to three possible
cases. If ∆fk = fk(x)− fk(xn) is the difference between solution x and xn

in the objective k (Figures 6 and 7 and Algorithm 4):

(Ca) ∀k ∆fk ≤ 0: All the objectives are improved for solution x. xn

(weakly) dominates x.

(Cb) ∃k, k′ ∆fk < 0 and ∆fk′ > 0: Improvement and deterioration occur
simultaneously for different criteria. Both solutions x and xn are
potentially efficient.

(Cc) ∀k ∆fk ≥ 0: All objectives are deteriorated with at least one strict
inequality. Solution x is dominated by xn.

A neighbour x is always accepted if it dominates xn (Ca). When x is
dominated (Cc), it can be accepted according to a decreasing probability,
depending on the current “temperature” of the cooling schedule (Routine
isAccepted). In the initial version of MOSA, a neighbour belonging to the
intermediate situation (Cb) was also always accepted (Routine isBetter

and Figure 6). This acceptance principle has been revised in a recent version
of the method to include the search direction in the decision (Figure 7).



Approximative Solution Methods for MOCO 29

(Cc)

p < 1

isBetter ← false

(Ca)

p = 1

isBetter ← true(Cb)

(Cb)

∆f2

∆f1

Figure 6: Acceptance principle in MOSA.

∆f

∆f

(Ca)

(Cb)

λ
2

1

(Cb)

(Cc)

p < 1

isBetter ← false

p = 1

isBetter ← true

Figure 7: Revised acceptance principle in MOSA.



30 M. Ehrgott and X. Gandibleux

To measure the degradation in the routine isAccepted, the values are
aggregated in a scalar using a scalarizing function S(f(x), λ). Such a func-
tion makes a “local aggregation” of the objectives which allows the compu-
tation of the “weighted distance” ∆s = S(f(x), λ) − S(f(xn), λ) between
f(x) and f(xn).

When a neighbour is accepted, the set of potentially efficient solutions
PEλ in direction λ is updated. The search stops after a certain number
of iterations, or when a predetermined temperature is reached (Routine
isFinished). At the end, MOSA combines the sequential processes in
the objective space Y in a unique set PE by merging the sets PEλ (Rou-
tine merge). The outline of MOSA for maximizing objectives is given in
Algorithm 4.

The methods that follow are different primarily on four points: (1) the
rule for acceptance of a new solution with some probability depending on
the temperature; (2) the scheme for decreasing the temperature; (3) the
mechanism that guides the browsing of the non-dominated frontier; (4) the
use of information drawn from a population of individuals. Various forms
and definitions of the acceptance rules have been tested by the method’s
designers; many of these have been suggested and discussed in Serafini
(1992). The most recent SA based methods include dynamic diversification
mechanisms that exploit the set of potentially efficient solutions to drive
the approximation process, Czyzak and Jaszkiewicz (1999).

7.2 Bibliographic Notes

The following methods based on simulated annealing have been published
in the literature:

Multiobjective Simulated Annealing (MOSA) by Ulungu (1993).
The principle of MOSA is described in Ulungu’s PhD thesis, 1993.
Numerical experiments are reported for three bi-objective combina-
torial problems (assignment, transportation and knapsack problems).
The method is presented later, Ulungu et al. (1995), in a system-
atic framework. Complete numerical experiments for the bi-objective
knapsack problem are reported and compared with solutions obtained
with an exact method. An interactive version of MOSA is derived in
Teghem et al. (2000) and Ulungu et al. (1998). In Teghem et al.
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Algorithm 4 MOSA, MultiObjective Simulated Annealing

input : Λ, set of weights
T, α, Nstep, Tstop, Nstop, SA parameters

output : PE, set of potentially efficient solutions

begin MOSA

PE ← ∅
for all λ ∈ Λ loop

T0 ← T ; Ncount ← 0 ; n← 0
randomly draw xn ∈ X ; PEλ ← {xn}
repeat randomly draw x ∈ N (xn)

if isBetter(x, xn) or else isAccepted(x, xn, n, Tn, λ) then
PEλ ← archive(PEλ, x); xn+1 ← x ; Ncount ← 0

else
xn+1 ← xn; Ncount + +

endIf
n + + ; updateParameters(α, n, Tn)

until isFinished(Ncount, Tn)
endLoop
PE ← merge(PEλ)

end MOSA

With :

• isBetter, a predicate that computes ∆fk ← fk(x)−fk(xn) and then
returns ¬(∀k : ∆fk ≤ 0).

• isAccepted, a predicate that computes the acceptance probability pn

for current iteration as exp
(
−∑p

k=1 λk (fk(x)− fk(xn))/Tn

)
, draws

p randomly and uniformly distributed in [0, 1] and returns (p < pn).

• isFinished, a predicate that checks whether either a predefined num-
ber of iterations Nstop or a limit temperature Tstop in the cooling
schedule has been reached.

• merge, a function that builds the union PE∪PEλ, λ ∈ Λ eliminating
dominated solutions: argmin(PE ∪ PEλ)
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(2000), a simulation with a fictitious decision maker is reported for
the knapsack problem with four objectives and the assignment prob-
lem with three objectives. In Ulungu et al. (1998) the interactive
version is used for solving a real situation: the problem of homo-
geneous grouping of nuclear fuel. In Ulungu et al. (1999), different
options in the implementation of MOSA are illustrated by the use of
extensive experiments. The bi-objective knapsack problem is used as
support and discussions are given in comparison with exact solutions.
Tuyttens et al. (2000) is devoted to the use of MOSA for solving the
bi-objective assignment problem. The improvement over the initial
solution is discussed. Numerical results are reported and compared
with solutions obtained with an exact method. The solution of a va-
riety of scheduling problems with MOSA has been experimented in
Loukil Moalla et al. (2000b). Numerical results for bi-criteria single
machine, parallel machine, and permutation flowshop problems are
reported. Some remarks on the number of potentially efficient solu-
tions are mentioned. Recently a multiple objective Vehicle Routing
Problem with time windows has been solved with MOSA, El-Sherbeny
(2001). Three categories of objectives are discussed: concerning the
vehicles used (number of vehicles, number of covered/uncovered vehi-
cles), concerning time (total duration of the routes, the homogeneity
of the duration of the routes, working time not used, total waiting
times due to time-window constraints), and concerning the flexible
duration of the routes (longer duration of the routes is preferred).

Pareto Simulated Annealing (PSA) by Czyzak and Jaszkiewicz (1996),
Czyzak and Jaszkiewicz (1997), and Czyzak and Jaszkiewicz (1998).
PSA combines simulated annealing principles with ideas coming from
genetic algorithms. The main differences to MOSA concern the man-
agement of weights and the consideration of a set of current solu-
tions. A sample S ⊂ X of #S solutions is determined and used as
initial solutions. Each solution in this set is “optimized” iteratively
following the same mechanisms explained above, i.e. by generating
neighbouring solutions that may be accepted according to a proba-
bilistic strategy. The authors suggest one of the C (7.1), SL (7.2),
or W (7.3) rules for the acceptance probability P (x, xn, Tn, λ). For a
given solution x̄ ∈ S the weights are changed in order to increase the
probability of moving it away from its closest neighbour in S denoted
by x̄′. Solutions in S play the role of agents working almost inde-
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pendently but exchanging information about their positions in the
objective space. Thus, the interaction between solutions guides the
generation process through the values of λ. This exploration princi-
ple will hopefully lead to an approximation spread uniformly along
the non-dominated frontier. On the basis of the results of numerical
experiments the way of recomputing the weights has been redefined
in later papers by Jaszkiewicz (2001a) and Jaszkiewicz (2001c). An
additive formulation has shown best performances and replaces the
initial multiplicative form.

The PSA method is published for the first time in 1996 (Czyzak
and Jaszkiewicz (1996)), but it has been described in technical re-
ports (from the Institute of Computing Science, Poznan University of
Technology) in 1994 and also mentioned in Jaszkiewicz’s PhD thesis
1995. Czyzak and Jaszkiewicz (1996) and Czyzak and Jaszkiewicz
(1998) are methodological papers where the PSA method is com-
pletely described. Numerical experiments on the multiobjective knap-
sack problem are reported. The method is also extensively described
in Jaszkiewicz (2001c). Using the multiobjective knapsack problem,
Jaszkiewicz (2001a) presents a comparative experiment of various
metaheuristics including the PSA method. The instances have 2, 3,
and 4 objectives functions. Hapke et al. (1996), Hapke et al. (1998a)
and Jaszkiewicz (1997) describe the use of the PSA method for solving
practical problems: project scheduling problems, nurse scheduling,
optimization of complex manufacturing systems. In Jaszkiewicz and
Ferhat (1999), PSA is incorporated in a method for multiple criteria
choice problems. PSA has been coupled with an interactive proce-
dure (light beam search) in order to organize an interactive search in
Hapke et al. (1998b). The PSA method has been adapted for solv-
ing fuzzy multiobjective combinatorial optimization problems, Hapke
et al. (1997), Hapke et al. (2000a) and Hapke et al. (2000b). These
papers report applications on fuzzy project scheduling problems with
multiple objectives.

Engrand’s Method by Engrand (1997), Engrand and Mouney (1998).
The method is introduced during the ICONE conference and revised
by Parks and Suppapitnarm (1999), Suppapitnarm and Parks (1999),
Suppapitnarm et al. (2000). This method is a hybridization of sim-
ulated annealing principles with genetic algorithms. The method
has been originally applied to a nuclear fuel management problem.
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Engrand (1997) shows that the method does find the trade-off sur-
face and gives performances comparable with a multiobjective GA
method on some test cases. Parks and Suppapitnarm (1999) present
the revision of Engrand’s method (denoted here by MOSA99) and its
application to the pressurized water reactor reload core design opti-
mization problem. The main characteristic of this revised version is
its ability to work without search directions, using a population of
individuals to ensure the exploration of the complete trade-off sur-
face. Each objective is considered separately. The method uses only
the non-domination definition to select potentially efficient solutions,
thus avoiding the management of search directions and aggregation
mechanisms. Advanced strategies use the population of potentially
efficient solutions to drive the approximation mechanism, thus ensur-
ing the detection of the whole efficient frontier.

Recommendations are given about the tuning of the parameters in
Suppapitnarm et al. (2000). A comparative presentation of results ob-
tained with MOSA99 and the NSGA for an example problem given by
Schaffer is reported in Suppapitnarm and Parks (1999). The MOSA99
method is described in detail and refinements are discussed in Sup-
papitnarm et al. (2000). These concern the solution acceptance rule,
annealing schedule, constraints, and a variety of return to base strate-
gies. The method is experimentally verified on three case studies with
two and three objectives: a simple problem, a practical problem con-
cerning the deployment system for a rigid panel on a spacecraft, and
a problem of optimizing the performance of a ten-bar cantilever truss.

The Trip Planning Problem (Godart (2001)). In his PhD thesis Go-
dart introduces the “Trip Planning Problem”, as a preference-based
multiobjective travelling salesman problem with activity and lodg-
ing selection. The complete formulation contains five objectives: min
transportation cost, min activity cost, min lodging cost, max activ-
ity attractivity and max lodging attractivity. A simulated anneal-
ing based method, close to the MOSA method, is used to solve this
combinatorial problem. Two operational modes are reported: “uni-
directional” mode where only one compromise solution is computed
and the “omni-directional” mode where several compromise solutions
are computed.

Interactive Method for 0-1 Multiobjective Problems by Alves and
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Climaco (2000). This is a general interactive method for solving 0-1
multiobjective problems where simulated annealing and tabu search
work as two alternative and complementary computing procedures.
It is a progressive and selective search of potentially efficient solutions
by focusing the search on a sub-region delimited by information spec-
ified by the decision-maker for the objective function values. Compu-
tational results for multiple-constraint knapsack problems with two
objectives are reported.

Bicriteria Scheduling Problems on a Single Machine (Koktener
and Köksalan (2000)). An SA algorithm is developed and tested for
bicriteria scheduling problems on a single machine using total flow-
time with maximum earliness and number of tardy jobs as criteria.
Various problem sets (ranges of due date, problem sizes, processing
time) are used for the experiment phase. A comparison with previous
known results is given.

Other Simulated Annealing-based Methods. Nam and Park (2000)
method. This is another simulated annealing-based method. The
authors report good results in comparison with MOEA. Applications
include aircrew rostering problems, Lučić and Teodorović (1999), as-
sembly line balancing problems with parallel workstations, McMullen
and Frazier (1999), and analogue filter tuning, Thompson (2001).

8 The Tabu Search Wave

8.1 Multiobjective Tabu Search by Gandibleux et al. (1996)

In 1996 (MOPGP 96 conference, Torremolinos), Gandibleux et al. intro-
duced a method called MOTS for MultiObjective Tabu Search (Gandibleux
et al. (1997)). It is the first TS-based method designed to compute a set of
potentially efficient solutions. Using a scalarizing function and a reference
point, the method performs a series of tabu processes guided automatically
in the objective space by the current approximation of the non-dominated
frontier. Intensification, diversification and tabu daemon (usually called
aspiration criteria) are designed for the multiobjective case. Two tabu
memories are used, one on the decision space TmemX, the second on the
objective space TmemY . The former is an attribute-based tabu list pre-
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Figure 8: Illustration of the search strategy in MOTS for the bi-objective case.

Points ◦ are the potentially efficient solutions generated during an iteration.

venting a return to already visited solutions during a tabu process. The
latter is connected to the objectives and based on an improvement measure
of each objective. It is used for updating weights between two consecutive
tabu processes. The method is shown in Algorithm 5.

The before MOTS search strategy is encapsulated in a tabu process,
which is composed of a series of iterations. Let us consider, at the nth iter-
ation, the current solution xn and its (sub)neighbourhood N (xn) obtained
according to a suitable move xn → x defined according to the structure of
the feasible domain X (routine exploreNeighbourhood). The successor x̄
of xn for the next iteration is selected from the list of neighbour solutions
L = {x ∈ N (xn)} as the best according to a weighted scalarizing function
S(f(x), yU , λ) :

S(f(x), yU , λ) = max
1≤k≤p

{
λk

(
yU

k − fk(x)
)}

+ ρ

p∑

k=1

λk

(
yU

k − fk(x)
)
, ρ > 0

The number of candidates in list L is limited to K solutions. The
value of this parameter depends on the neighbourhood size (1 ≤ K ≤
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size of N (xn)). The reference point yU in the scalarizing function is the
locally determined utopian point yU = (yU

1 , . . . , yU
p ) over L, where yU

k >
sup{fk(x)|x ∈ L} (routine utopianPoint). This point dominates the ideal
point given by the highest objective function value on each objective among
the solutions in the neighbourhood of the current solution. The tabu list
TmemX is used to avoid cycling (routines isTabu and updateTabuMemoryX).
The selected solution x̄ ∈ L, which minimizes S(f(x), yU , λ) over L such
that the move xn → x̄ is not tabu, becomes the new current solution xn+1,
as depicted in Figure 8. The tabu daemon overides the tabu status of a
solution x′ ∈ N (xn), when s(f(x′), λ) ≤ s(f(x̄), λ) − ∆, with ∆ being a
static or dynamic threshold value (routine TabuDaemon). As L is generally
a finite enumerable subset of X, the successor solution xn+1 can be found
easily. However, the time complexity depends on the size of the neighbour-
hood N (xn). Each iteration ends with the identification of the potentially
efficient solutions pe in L, which represents a local approximation of the
non-dominated frontier (routine archive).

One tabu process is an intensification mechanism in which the effort
spent is dynamically adjusted according to pe, the approximation obtained,
in comparison with the global approximation PE. The first adjustment is
based on a strategy promoting a “promising candidate”. If x̄ ∈ pe seems to
be a promising solution, then the current search is increased. The promis-
ing characterisation of x̄ is evaluated by regarding the number of solutions
of PE that were dominated by x̄ (routine isPromising). The second ad-
justment is based on the dectection of a “sterile search”. When pe contains
no potentially efficient solution according to PE (routine isSterile), the
current neighbourhood is said to be sterile. This means that the neigh-
bourhood is not promising in terms of efficient solutions, and the interest
in the current search process is decreased.

The scalarazing function leads to the exploration of the non-dominated
frontier in the direction given by the weight vector λ. The diversification
strategy updates the weights periodically and automatically so that the
importance of objectives that have been significantly improved is decreased
(routine setSearchDirection). To perform this diversification strategy, a
pseudo-criterion preference model is suggested. Using threshold parameters
for each objective, which measure the level of improvement fk(x̄)−fk(x) ac-
cording to the objective k, one of the following four scenarios is determined:
1) the performance improvement for objective k is worse (D, dominated); 2)
improvement is too weak to be interesting (I, indifferent); 3) improvement
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is significant (S, weak improvement) or 4) improvement is strong (P, strong
improvement). When the objective k is significantly or strongly improved,
the weight λk is either slightly or strongly decreased, whereas the weights
related to the others cases are increased. To ensure that all the areas of the
non-dominated frontier are visited, a tabu list with respect to the objectives
is introduced (TmemY ). In the case S (respectively case P), the objective
k is declared tabu for a predetermined number of iterations. Thus, its
weight cannot be increased as long as its tabu status is true. Obviously,
the diversification scheme is simpler in the case of biobjective problems. A
deterministic and myopic design of weights λ ∈ Λ can be performed, which
provides a suitable description of the search direction.

MOTS is a generic method, rather than a ready-to-use technique. All
of its primitives need to be stated in a suitable manner, according to the
MOCO problem to be solved.

8.2 Bibliographic Notes

The extension of TS to multiobjective programming is recent in compar-
ison with the other metaheuristics. Hybrid TS-based methods have been
proposed, in an effort to improve solution diversification along the non-
dominated frontier. Some ideas come from MOEA, like the use of a pop-
ulation (Hansen (2000)), or a combination of tabu search with genetic al-
gorithms (Ben Abdelaziz et al. (1999)). Multiobjective tabu search pro-
cedures have been applied mainly to MOCO problems, particularly the
knapsack problem. The following MOMH, based on TS, can be found in
the literature.

Multiobjective Tabu Search (MOTS) by Gandibleux, Mezdaoui and
Fréville, 1996 (Gandibleux et al. (1997)). This method was first in-
stantiated on an unconstrained permutation problem, and then later
on the biobjective knapsack problem, Gandibleux and Fréville (2000),
in combination with bounds to reduce the search space.

Sun’s Method, Sun (1997). An interactive procedure using tabu search
for general multiple objective combinatorial optimization problems,
the procedure is similar to the Combined Tchebycheff/Aspiration Cri-
terion Vector Method, Steuer et al. (1993). The tabu search is used
to solve subproblems in order to find potentially efficient solutions.
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Algorithm 5 MOTS, MultiObjective Tabu Search

input : TTX, tabu tenure on decision space
TTY , PSI, tabu tenure and thresholds on

objective space
∆, K, daemon activation parameter and

size of candidate list
IterInit, initial intensity level for a tabu

process
stopConditions, conditions to stop the search

output : PE, the set of potentially efficient
solutions

begin MOTS

TmemX, TmemY ← ∅
n← 1; select xn ∈ X; PE ← {xn}
- -| Diversification in Z
repeat λ← setSearchDirection( TmemY, PE )

Iter ← IterInit

- -| Tabu process
repeat - -| Local exploration of the non-dominated frontier

L ← exploreNeighbourhood( xn )
z̃ ← utopianPoint( L )

- -| Selection of the successor solution
x̄← arg min{s(f(x), yU , λ) | x ∈ L,

¬isTabu ( move(xn → x), TmemX )}
x∗ ← TabuDaemon( x̄, L, TmemX )
if x∗ = ∅ then xn++ ← x̄ else xn++ ← x∗ endif
TmemX ←
updateTabuMemoryX( move(xn−1 → xn), TmemX )

- -| Dynamic adjustment of the intensification
- -| and update of the approximation
pe← {xn}; ∀x ∈ L : pe← archive( pe, x )
if isPromising( xn, PE ) then increase Iter endIf
if isSterile( pe, PE ) then decrease Iter endIf
PE ← merge( PE, pe ) ; Iter ← Iter − 1

until Iter = 0 - -| iterations are performed

until stopConditions are fulfilled

end MOTS
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The principles used for designing the TS search strategy are similar
to those defined for MOTS. This method has been used for facility
location planning, Agrell et al. (1999).

Multiobjective Tabu Search (MOTS97) by Hansen (2000). This me-
thod uses a set of “generation solutions”, each with its own tabu
list. These solutions are dispersed throughout the objective space
in order to allow searches in different areas of the non-dominated
frontier. Weights are defined for each solution with the aim of forcing
the search into a certain direction of the non-dominated frontier and
away from other current solutions that are efficient with respect to
it. Diversification is ensured by a set of generation solutions and a
drift criterion. Results for the knapsack problem are available, and
also for the resource constrained project scheduling problem in Viana
and Sousa (2000).

Ben Abdelaziz, Chaouachi and Krichen’s Hybrid Method, Ben
Abdelaziz et al. (1999). The authors present a multiobjective hy-
brid heuristic for the knapsack problem. The method is a mix of a
tabu search and a genetic algorithm.

Baykasoglu, Owen and Gindy’s Method, Baykasoglu et al. (1999). A
candidate list provides an opportunity to diversify the search. The
method is designed to handle any type of variable (integer, zero-one,
continuous and mixed), and has been used for goal programming
problems, Baykasoglu (2001a) and Baykasoglu (2001b).

Other tabu search-based methods have been developed for scheduling
problems (Loukil Moalla et al. (2000a)) and the trip planning prob-
lem, Godart (2001). A hybrid and interactive solution process based
on SA and TS is proposed in Alves and Climaco (2000).

9 The Ant Colony Optimization Wave

Recently the Ant Colony System (ACS) paradigm, a population based al-
gorithm, has been adapted to multiobjective optimization. Ant colony
optimization techniques are inspired by the behavior of real ants foraging
for food. The key to the effectiveness of a colony of ants in finding short
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paths to a food source is a chemical substance called pheromone. It pro-
vides the ants with the ability to communicate. Ants will initially move
along random directions depositing pheromone along their paths. When
an ant finds a food source it returns to the nest. An ant on a shortest
path will return to the nest first, thus more pheromone will be deposited
on the shortest paths. Because a moving ant will choose a path with a
probability that depends on the amount of pheromone detected, paths that
are more frequently travelled become more attractive, and over time the
shortest paths will be used most often. Also, the pheromone evaporates
over time, so that pheromone trails of infrequently travelled paths become
weaker and those of frequently travelled shortest paths are reinforced.

The use of artificial ant colony systems has first been proposed by Dorigo
and co-authors. Details of single objective optimisation techniques based
on ant colonies can be found, e.g. in Dorigo (1992), Dorigo et al. (1996),
and Dorigo et al. (1997). In recent years (since 1999) ant colony optimiza-
tion technique have also been proposed for multiobjective combinatorial
optimization. Because of the way ant colony systems work, their applica-
tion is most attractive for problems for which solutions can be constructed
sequentially, and all applications in the MOCO area to date are of such a
type: TSP, VRP, sequencing and scheduling problems, and portfolio selec-
tion problems.

9.1 Multiobjective Ant Colony Optimization Algorithms

Multiobjective ant colony optimization algorithms have been proposed for
problems with a weighted sum of objectives, Doerner et al. (2001b), a
hierarchy on the objectives (lexicographic optimization, Gambardella et
al. (1999), Gravel et al. (2002), T’Kindt et al. (2002)) and in the Pareto
optimality sense, Doerner et al. (2004), Iredi et al. (2001), Mariano and
Morales (1999b), McMullen (2001), and Shelokar et al. (2000). They either
use a single colony (Doerner et al. (2004), Gravel et al. (2002), Iredi et
al. (2001), McMullen (2001), Shelokar et al. (2000), T’Kindt et al. (2002))
or multiple colonies (Doerner et al. (2001b), Gambardella et al. (1999),
Iredi et al. (2001), Mariano and Morales (1999b)). Most of the algorithm
use both heuristic information, which is problem specific, and pheromone
information to calculate the probability for making the next step in the
solution construction procedure. As a typical example of a multicolony
system for finding efficient solutions we present an algorithm adapted from
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Iredi et al. (2001), see Algorithm 6.

Algorithm 6 Multicolony Ant Algorithm by Iredi et al. (2001)

input : m, a, the size of all colonies and one colony
α, β, weight of pheromone and heuristic information

output : PE, the set of potentially efficient solutions

begin MCAA

PE ← ∅
repeat for colony l = 1, . . . , m

a
loop

initialisePheromone(τ)
initialiseHeuristic(η)

for ant k = 1, . . . , a loop
assignWeight(k, l, λ)
constructSolution(k, l, p(λ, α, β), τ, η, xl

k)
localPheromoneUpdate(τ, xl

k)
end for

end for
PE ← nonDominated(PE,∪k,l{xl

k})
globalPheromoneUpdate(τ,∪k,l{xl

k}, PE)

until stoppingCriterion

end MCAA

The details of the algorithm are problem dependent. In the scheduling
problem discussed in Iredi et al. (2001), pheromone and heuristic infor-
mation is stored in square matrices, where the indices of ηij and τij refer
to having job j in position i in the sequence. Heuristic information is
computed according to the objectives and remains unchanged during the
algorithm. Initially, τij = τ0. Let m be the total number of ants and a be
the number of ants per colony.
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Several methods for the choice of weights λ ant k of colony l uses for
the first (of two) objectives are proposed.

assignweight(k, l, λ) =
k − 1

(m/a)− 1

assignweight(k, l, λ) =
l − 1

a
+

k

m

assignweight(k, l, λ) =
i− 1

a + 1
+

2(k − 1)

(a + 1)((m/a)− 1
.

In the first case, the ants in each colony use the same weights, in the second
the weight intervals for the colonies have only the boundaries in common,
wheras in the last the weight interval of colony l intersects with those of
colony l − 1 and l + 1.

The probability by which job j is chosen to be in position i is given by

pij =
τ1λα

ij τ2(1−λ)α
ij η1λβ

ij η2(1−λ)β
ij

∑
h∈S τ1λα

ih τ2(1−λ)α
ih η1λβ

ih η2(1−λ)β
ih

,

where α and β are weights of pheromone and heuristic information, respec-
tively.

All ants that generated a solution in PE in the current iteration con-
tribute to the pheromone update. First τij is set to (1 − ρ)τij for all (i, j)
(evaporation). Then τh

ij ← (1 − ρ)τh
ij + 1/r, for all (i, j) appearing in the

r updating ants. Since each colony maintains its own pheromone matrices,
the update can either be done by colony or by region in PE. No local
pheromone update is done.

The algorithm of Doerner et al. (2004) for portfolio selection also fits
in this framework. Here p = 1, pheromone is initialised to τ0 > 0, heuristic
information ηi(x) is based on feasibility, depends on the partial solution
constructed so far, and is updated during the algorithm. The authors use
a random assignment of weights to cope with the many objectives.

Local pheromone update is τk
i ← (1 − ρ)τk

i + ρτ0 for objective k and
project i, if project i has been added to a portfolio by an ant. The ants who
contributed a solution to PE in the current iteration update the pheromone
globally using τk

i ← (1 − ρ)τk
i + ρ∆k

i , where ∆k
i is 10, if project i appears

in the best solution for objective k and 5 if it is in the second best solution.
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The solution is constructed by adding project i to the portfolio if a
uniformly distributed random number q is not bigger than a parameter
q0 and

∑p
k=1(λkτ

k
i )α)(ηi(x))β is maximal among all projects that can be

added to the partial solution x and have ηi(x) > 0. Otherwise the project
to be added is chosen randomly with probability

pi =

∑p
k=1(λkτ

k
i )αηi(x)β

∑
h ∈ S(x)

∑p
k=1(λkτ

k
h )αηh(x)β

.

9.2 Bibliographic Notes

Shelokar et al. (2000), Shelokar et al. (2002), Shelokar et al.
(2003): In Shelokar et al. (2000) an ant algorithm for multiobjective
continuous optimization is proposed. An interesting feature is that it
combines the ant system methodology with the strength Pareto fitness
assignment of Zitzler and Thiele (1998) and clustering methods. The
algorithm is applied to reliability engineering problems in Shelokar et
al. (2002) and to the optimization of reactor regenerator systems in
Shelokar et al. (2003).

McMullen (2001): In this paper a just-in-time sequencing problem with
the objective of minimizing the number of setups and minimizing the
usage rates of raw materials is addressed. The problem is reformu-
lated as a TSP by spatialising the data and applying a standard single
objective ant colony algorithm.

Gambardella et al. (1999): Here, a bicriteria vehicle routing prob-
lem with time windows with the lexicographically sorted objectives
of minimizing the number of vehicles and minimizing total travel dis-
tance is solved by a multicolony ant system called MACS. The algo-
rithm uses one colony for each objective, local and global pheromone
update. The colonies cooperate through the use of the global best
solution for the global pheromone update. Local search is applied
to improve the quality of each solution found. Numerical tests show
that the algorithm improves some of the best known solutions of test
problems from the literature.

Mariano and Morales (1999a), Mariano and Morales (1999b):
The algorithm MOAQ uses one ant colony for each objective function.
All colonies have the same number of ants. (Partial) solutions of
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each colony are used in the next colony. The algorithm is applied to
two literature problems (and compared with VEGA (Schaffer (1984)).
The research is motivated by the real world problem of designing a
water distribution network for irrigation to minimise network cost
and maximise profit.

Iredi et al. (2001): The authors propose a number of ant colony opti-
mization algorithms to solve bicriteria combinatorial problems, in-
cluding ones with single and multiple colonies. Various methods
for pheromone update and weight assignment (in order to browse
the whole non-dominated frontier) are proposed and tested on a
single machine scheduling problem to minimise total tardiness and
changeover cost. Numerical tests are presented.

Doerner et al. (2001a), Doerner et al. (2002), Doerner et al.
(2003), Doerner et al. (2004): The problem framework is that
of a multiobjective portfolio selection problem. The authors consider
a rather large number of objectives p = (B + R)T , where B is the
number of benefit categories, R is the number of resources, and T is
the planning period. They use one colony and a random selection of
weights of objectives for each ant. The global update considers the
best and second best solutions for each objective found in the current
iteration. The results on test problems are compared with NSGA
(Srinivas and Deb (1994)), PSA (Czyzak and Jaszkiewicz (1996)),
and the true efficient set (for small problems).

Doerner et al. (2001b): The authors solve a special case of the pickup
and delivery problem with the linearly combined objectives of total
number of vehicles and empty vehicle movements by a multicolony
approach. The colonies use different heuristic information, and their
sizes change during the algorithm.

T’Kindt et al. (2002): A (single) ant colony optimization approach is
proposed for a two machine bicriteria flowshop problem to minimize
makespan and total flowtime in a lexicographic sense. The solutions
produced by the ants are improved by local search.

Gravel et al. (2002): The problem of sequencing orders for the casting
of aluminium provides the background in this paper. Four objectives
are considered in a lexicographic sense. A distance function based on
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penalties for bad performance is used to translate the problem into
a TSP setting. Global pheromone update considers only the primary
objective.

10 Other Approaches and the Trend

In addition to the previously discussed multiobjective versions of the now
classic metaheuristics (GA, SA, and TS), and the now very popular ant
colony systems, there are other MOMH. Several of them have been pub-
lished most recently or have until now been discussed only during interna-
tional conferences:

• The first works using Artificial Neural Networks (ANN) to solve MOP
have been published (Malakooti et al. (1990), Sun et al. (1996), Sun
et al. (2000)) at the beginning of the Nineties. However, the ANN
approach remains marginal.

• Adaptations of metaheuristics, such as the Greedy Randomized Adap-
tive Search Procedure GRASP, Gandibleux et al. (1998), and Scatter
Search, Beausoleil (2001), have been presented at recent international
conferences.

• Papers concerning a dedicated heuristic, Köksalan (1999), a stochas-
tic search method (Sysoev and Dolgui (1999)) and a comparison
of neighbourhood search techniques for MOP, Marett and Wright
(1996), are also worthy of mention.

Combinatorial optimisation is rich in term of results. It is natural to
bridge between the known theoretical results for single objective combinato-
rial problems and MOCO. Managed inside a MOMH, this information can
be used advantageously to enforce the aptitude of approximation methods.
For example, adding an additional constraint to the unidimensional biob-
jective knapsack problem will help to reduce the search space, Gandibleux
and Fréville (2000).

Another promising way is to design MOMH components that take the
specific aspect of MOCO into account. In Gandibleux et al. (2004), simi-
larities in solutions and subsets of exact solutions are used advantageously



Approximative Solution Methods for MOCO 47

by the components of an evolutionary method. Here, interesting perfor-
mance results are measured with a path relinking operator, Glover and
Laguna (1997), given a subset of optimal solutions (or approximations) in
the initial population. Path-relinking generates new solutions by exploring
the trajectories that connect good solutions. A path-relinking operation
starts by randomly selecting IA (the initiating solution) and IB (the guid-
ing solution), two individuals from the current population (Figure 9). The
path-relinking operation generates a path IA(= I0), I1, . . . , IB through the
neighbourhood space, such that the distance between Ii and IB decreases
monotonically in i, where the distance is defined as the number of positions
for which different values are assigned in Ii and IB.

x1 x2

move I1

swap

IA=I0 IB
move I2

Figure 9: Path-relinking operator principle.

Although many such paths may possibly exist, one path is chosen using,
for example, random moves based on a swap operator. Such randomness
introduces a form of diversity to the solutions generated along the path. For
every intermediate solution Ii, a single solution is generated in the neigh-
bourhood (Figure 10). This principle has been successfully implemented
for computing the complete non-dominated frontier of assignment problems
with two objectives. Figure 11 provides a sample of these results. Using the
same numerical instances, this population-based method based on specific
operators outperforms MOSA (Tuyttens et al. (2000)).

MOCO problems rarely tackled hitherto are now investigated with
MOMH. These include timetabling problems (Paquete and Fonseca (2001)),
space allocation problems (Pires et al. (2001)), multi-period distribution
management problems (Ribeiro and Lourenço (2001)), and vehicle routing
problems (Geiger (2001) and Rahoual et al. (2001)), to name a few.

The last aspect of research concerns issues related to computer imple-
mentation. Efficient data structures, such as the quad-tree, have proven
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0
0

z2

z1

IA

IB

N(IA)

Figure 10: Illustration of a possible path construction. IA and IB are two indi-

viduals ramdomly selected from the current population (small bullets). IA is the

initiating solution, IB is the guiding solution. N (IA) is the feasible neighbourhood

according to the move defined. IA− I1− I2− I3− I4− IB is the path that is built.

their efficiency for managing non-dominated criterion vectors, Habenicht
(1983) and Sun and Steuer (1996). Reusable software, such as object-
oriented frameworks for multiobjective local search, is under development,
Claro and Sousa (2001).

These new trends promise many future papers.
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sur la Résolution Pratique de Problèmes NP-Complets, Nice, France, 27–29
May 2002, 19–30.

Baykasoglu A. (2001a). Goal programming using the multiple objective tabu



50 M. Ehrgott and X. Gandibleux

search. Journal of the Operational Research Society 52, 1359–1369.

Baykasoglu A. (2001b). MOAPPS 1.0: Aggregate production planning using the
multiple objective tabu search. International Journal of Production Research
39, 3685–3702.

Baykasoglu A., Owen S. and Gindy N. (1999). A taboo search based approach
to find the Pareto optimal set in multiple objective optimisation. Journal of
Engineering Optimization 31, 731–748.

Beausoleil R. (2001). Multiple criteria scatter search. In: Sousa J.P. de (ed.),
MIC’2001 Proceedings of the 4th Metaheuristics International Conference,
Porto, July 16-20, 2001 2, 539–543.

Ben Abdelaziz F., Chaouachi J. and Krichen S. (1999). A hybrid heuristic for
multiobjective knapsack problems. In: Voss S., Martello S., Osman I. and
Roucairol C. (eds.), Meta-Heuristics: Advances and Trends in Local Search
Paradigms for Optimization. Kluwer Academic Publishers, 205–212.

Burkard R.E., Rote G., Ruhe G. and Sieber N. (1989). Algorithmische Unter-
suchungen zu bikriteriellen kostenminimalen Flüssen in Netzwerken. Wis-
senschaftliche Zeitung der Technischen Hochschule Leipzig 13, 333–341.

Claro J. and Sousa J.P. de (2001). An object-oriented framework for multiobjec-
tive local search. In: Sousa J.P. de (ed.), MIC’2001 Proceedings of the 4th
Metaheuristics International Conference, Porto, July 16-20, 2001 1, 231–236.

Coello C.A., Van Veldhuizen D. and Lamont G. (2002). Evolutionary Algorithms
for solving multi-objective problems. Kluwer Academic Publishers.

Coello C.A. (1996). An Empirical Study of Evolutionary Techniques for Multi-
objective Optimization in Engineering Designe. Ph.D. Dissertation, Tulane
University.

Coello C.A. (1999). A comprehensive survey of evolutionary-based multiobjective
optimization techniques. Knowledge and Information Systems 1, 269–308.

Coello C.A. (2000). An updated survey of GA-based multiobjective optimization
techniques. ACM Computing Surveys 32, 109–143.

Coello C.A. (2004). List of references on evolutionary multiobjective optimization.
http://www.lania.mx/~ccoello/EMOO/.

Corley H.W. (1985). Efficient spanning trees. Journal of Optimization Theory
and Applications 45, 481–485.

Czyzak P. and Jaszkiewicz A. (1996). A multiobjective metaheuristic approach to
the localization of a chain of petrol stations by the capital budgeting model.
Control and Cybernetics 25, 177–187.

Czyzak P. and Jaszkiewicz A. (1997). Pareto simulated annealing. In: Fandel G.



Approximative Solution Methods for MOCO 51

and Gal T. (eds.), Multiple Criteria Decision Making, Proceedings of the XIIth
International Conference, Hagen (Germany), Lecture Notes in Economics and
Mathematical Systems 448, 297–307.

Czyzak P. and Jaszkiewicz A. (1998). Pareto simulated annealing – A metaheuris-
tic technique for multiple objective combinatorial optimization. Journal of
Multi-Criteria Decision Analysis 7, 34–47.

Dahl G., Jörnsten K. and Lokketangen A. (1995). A tabu search approach to
the channel minimization problem. Proceedings of the International Confer-
ence on Optimization Techniques and Applications (ICOTA’95), 5-8 July 1995,
Chengdu, China, 369–377.

Mira de Fonseca C. M. (1995). Multiobjective Genetic Algorithms with Appli-
cations to Control Engineering Problems. Ph.D. Dissertation, University of
Sheffield.

Deb K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley.

Delorme X., Gandibleux X. and Rodriguez J. (2003). Résolution d’un problème
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DISCUSSION

Rafael Caballero(1) and Carlos Romero(2)
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In the last years, there has been a Kuhnian revolution in the optimisation
and computation sciences that basically consists in the so called metaheuris-
tics approaches. Under this name several methods like Genetic Algorithms,
Tabu Search, Simulated Annealing, etc, have appeared. All these methods
share the common purpose of guiding a heuristic search to explore the fea-
sible set, in order to obtain “good solutions” to complicated mathematical
programming problems.

The metaheuristics approaches overcome the main difficulties associated
to the multiple objective optimisation problems. In fact, these methods are
underpinned by algorithms designed for linear cases (with continuous or in-
teger/binary variables). Hence, when they are applied to complex problems
(i.e., huge number of integer/binary variables, non-linear functions, logic
constraints, non-convex feasible sets, etc), the determination of a precise
optimum is very difficult if not impossible. However, the complexities cited
above are quite common in many real-world problems. This situation has
generated an important advance in the development and application of
metaheuristic approaches as it is extensively shown in the paper that we
are commenting. It should also be noted, that the problems formulated and
solved with the help of metaheuristics come from very different disciplines
such as: artificial intelligence, neural networks, data mining, classification
problems, etc. The main and single disadvantage of this type of approach
is that global optimality of the solution obtained cannot be guaranteed.

On the other hand, combinatorial optimisation is a relevant approach,
among other things, for their potential applications to many real problems
such as: capital budgeting, assignment problems, travelling salesman prob-
lem, etc. However, in many real world applications, where many decision
variables and constraints are involved, finding an optimal solution to such
type of problems can become an extremely difficult task. This difficulty
is due to that in combinatorial optimisation, the feasible set has not a
convex structure, but a lattice of points or a set characterised by disjoint
line segments in the close relative mixed-integer programming problems.
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Moreover, these computational difficulties achieve almost the level of im-
possibility, when realistically several objectives are considered within the
combinatorial optimisation scenario.

For the reasons above commentated, it is not a surprise the boom of
papers that have appeared in around the last ten years, addressing mul-
tiobjective combinatorial optimisation (MOCO) problems with the help
of metaheuristics procedures. This boom, that is, this period of normal
science, using again a Kuhnian language, required a serious work of as-
sessment and systematisation. This task, has been superbly undertaken by
Professors Ehrgott and Gandibleux in the survey that we are commenting.
In fact, they have not only collected an impressive number of references in
the field, but what is much more important, they have been able to put all
the work into perspective, analysing with rigour the pros and cons of these
methodological approaches. They have also outlined the most promising
trends in this area, and they have finished with a sentence that we com-
pletely agree and provides a highlight of the future in this discipline “The
new trends promise many future papers”.

The papers reviewed by Ehrgott and Gandibleux focus in the descrip-
tion and assessment of the existing metaheuristics for the determination
of the Pareto-efficient frontier; that is, they basically assess the return of
each method with respect to a measurement of the computational effective-
ness. Perhaps, it should also be interesting an additional effort analysing
the surveyed methods, also from the perspective of the traditional multiple
objective programming methods. In this way, the potential links between
both families of approaches will be clarified. Thus, it seems promising to es-
tablish connections between metaheuristics approaches and several multiple
objectives approaches like methods using scalarising functions, aspiration
levels, weights, as well as methods that interact with the decision-maker.
This orientation will increase clarity and precision in the future dialogue,
among researchers and practitioners belonging to both fields of specialisa-
tion.

Regarding future trends, we dare to point out two directions still not
well explored, where metaheuristics seem specially promising. One line
refers to developments and refinements in the use of interactive metaheuris-
tics methods for MOCO problems. In this direction, is advisable a recent
paper by Phelps and Köksalan (2003). In this research, the interaction with
the decision-maker is made up through “pairwise” comparisons, that they
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are used to estimate the fitness of the newly generated solutions. It seems
to us, that this type of interaction as well as its implication within the
heuristic procedure, might be of great interest in the near future. This is
specially relevant in real applications, where the computation time of each
interaction must be small in order to make the whole interaction process
viable.

The other line of research refers to the use of this type of approach
not only to the approximation of the efficient set, that we are aware that
is a very complex task, but also in the determination of the optimum or
best-compromise solution. In fact, within a MOCO context not only the
feasible set has a complex structure (e.g., lack of convexity), what requires
metaheuristics procedures for its computation, but also the multi-objective
preferential function is specially complex (e.g., lack of concavity).

References

Phelps S.P. and Köksalan M. (2003). An Interactive Evolutionary Metaheuris-
tic for Multiobjective Combinatorial Optimization. Management Science 49,
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————

Carlos A. Coello Coello

Centro de Investigación y de Estudios Avanzados
del Instituto Politécnico Nacional, Mexico

The paper by Ehrgott and Gandibleux constitutes, with no doubt, a very
valuable source for those interested in the use of metaheuristics for multiob-
jective combinatorial optimization (MOCO). The paper is very well written
and it provides a comprehensive (and well explained) coverage of the most
significant works developed in the area.

My first comment is regarding the multiobjective evolutionary algo-
rithms (MOEAs) discussed in Section 6. Although it is true that VEGA,
MOGA93, NSGA and NPGA are the most remarkable MOEAs from the
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early days of the field, it would be nice if the authors could briefly refer to
the most remarkable modern MOEAs in current use. From these, the most
noticeable absence is the NSGA-II (Deb el al. (2002)) which is one of the
most competitive MOEAs designed to date. Another important MOEA
that is missing is SPEA2 (Zitzler et al. (2002)), which is a slightly revised
version of SPEA that has become increasingly popular. It is also worth
mentioning that there is a “memetic” version of PAES that has been used
for MOCO (see Knowles and Corne (2000)).

An issue that was recently brought to my attention has to do with
the remarkable similarities between the ant colony and GRASP. This is
despite the fact that they were both developed at different time periods,
with different motivations and within different research communities. It
would be nice if the authors could briefly comment on this matter.

I would add to Section 10 the two following metaheuristics that have
recently become popular choices for multiobjective optimization:

• Particle Swarm Optimization: This metaheuristic was inspired
by the choreography of a bird flock and has been found to be very
useful in a wide variety of optimization tasks (Kennedy and Eber-
hart (2001)). Despite its extreme simplicity and ease of implemen-
tation (which makes the approach very fast in continuous optimiza-
tion problems), this approach has triggered a considerable amount
of research related to its use in multiobjective optimization, Coello
Coello and Salazar Lechuga (2002), Fieldsend (2003), Fieldsend and
Singh (2002), Hui and Eberhart (2002), Hui et al. (2000), Li (2003),
Mostaghim and Teich (2003), Parsopoulos and Vrahatis (2002), Ray
and Liew (2002), Srinivasan and Seow (2003).

• Artificial Immune Systems: Also with a biological inspiration,
artificial immune systems have become quite popular in the last few
years due to their suitability for certain types of applications, mainly
related to computer security, Dasgupta (1999), De Castro and Tim-
mis (2002). The first attempt to extend an artificial immune system
to deal with multiobjective optimization problems dates back to the
work by Yoo and Hajela (1999) in which a simple linear aggregat-
ing function is used. However, more recently, several other proposals
(from which only a few are based on the concept of Pareto optimal-
ity) have been presented at international conferences, Anchor et al.
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(2002), Coello Coello and Cruz Cortés (2002), Cruz Cortés and Coello
Coello (2003), Cui et al. (2001), Kuparti and Azarm (2000).
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The paper by Ehrgott and Gandibleux presents a thorough treatment of
metaheuristics for solving multiobjective combinatorial optimization (MOCO)
problems. An introduction into the field and its basic terminology is pro-
vided. Especially helpful is the presentation of many method details (almost
as extensive as usually for textbooks) and some pseudo code for various
families of multiobjective metaheuristics and single instances of algorithms.
Since metaheuristics usually require problem-specific adaptations, even a
presentation of pseudo code does not make them immeadiately ready-to-
use. For this purpose, the paper discusses a rich amount of relevant lit-
erature which provides the reader with deeper insights into the research
field and to actually use the methods for his/her specific MOCO problems.
Since the paper is quite comprehensive, this nontechnical discussion note
aims at revisiting some more or less open issues of the wider research field.

1. What is approximation?

Usually, approximation is defined, as done in the paper, in terms of the rel-
ative closeness of the obtained solution(s) to the optimal solution(s) (also
see Kall (1986)). For continuous optimization problems, the question of
approximation is frequently reformulated as a question of convergence, for
which a number of different concepts of formalization do exist. Since many
metaheuristics can be characterized as stochastic search routines, the usual
concepts of (deterministic) convergence have to be replaced by stochastic
ones. Considering the multiobjective nature of an optimization problem,
the idea of closeness to the optimum becomes even more complicated. See,
e.g., Helbig and Pateva (1994) for various concepts of ǫ-efficiency. As in the
case of scalar optimization, an analysis of convergence or stochastic con-
vergence may, in principle, be based on a number of different concepts. For
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instance, in the case of multiobjective evolutionary algorithms for contin-
uous optimization problems, a stochastic convergence analysis is provided
in Hanne (1999).

With respect to MOCO, dealing with a finite set of solutions makes
some things easier and others harder. With a finite set of alternatives a
convergence proof should also, in principle, be possible. However, there
may be metaheuristics which do not allow for convergence even if the avail-
able time is not restricted. For instance, the result that canonical genetic
algorithms do not converge has stimulated quite a lot of discussion and the
insight that small modifications such as an elitist rule which preserves the
best solution(s) guarantees convergence (see, e.g., Rudolph (1994)).

Reaching a specific quality of the results (see Section 3 below) within
a specific time is more problematic. From a theoretical point of view, we
know for some NP-hard problems that it is also difficult to find an approxi-
mate solution (see, e.g., Ausiello et al. (1999), Kann and Panconesi (1996),
or Wanka (2002) for introductions to a complexity analysis of approxima-
tion). For instance, assuming P6=NP, the general travelling salesperson
problem (TSP) is not in APX, the language class of problems with a con-
stant relative approximation quality (see Papadimitriou and Yannakakis
(1993)). For other problems, such as the metric TSP, we may know al-
gorithms guaranteeing a constant relative approximation quality, but we
cannot get significantly better if more time is available. The relationship
of time and approximation quality is considered in the classes PAS and
FPAS. PAS is the language class of problems which can be approximated
in polynomial time, while its subclass FPAS additionally requires that the
computation time is polynomial in 1/ε. In our case, it is possible to show
that the metric TSP is not in PAS under the usual assumption P6=NP (see
Crescenzi et al. (1999) for more general results on approximation classes).

In these cases we know that there will be no polynomial time algorithm
(metaheuristics) which surely delivers a solution of a specific quality. The
usual analysis in complexity theory is, however, some kind of worst case
analysis. Average case analysis may take place based on a randomization
of the algorithms, an idea which, interestingly, has been taken up by var-
ious metaheuristics such as evolutionary algorithms (see, e.g., Jansen and
Wegener (2001)).

Up to now, there is, however, few research on such kind of analysis in
combinatorial optimization. For multiobjective problems, the situation is
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even worse as one of the authors already remarks in Ehrgott (2000). Sum-
marizing, let us remark that approximation properties in single and multi-
ple objective optimization and, thus, the possible success of metaheuristics
significantly depend on properties of the specific class of considered MOCO
problems.

2. What method fits best?

Long time ago there was much discussion on general problem solvers (see,
e.g., Newell and Simon (1963)) and optimism was expressed that such meth-
ods do exist and should be developed soon. Then there came lots of dis-
illusion due to theoretical (e.g. complexity theory) and practical reasons.
Those methods which are today called metaheuristics (most of them are
in fact much older than this expression) are close to the original idea of
general problem solvers. However, as we know, those methods which are
good for a broad range of problems are usually not that good for specific
problems which may better be solved by specialized or adapted methods.
With NP-hard combinatorial problems, which are frequent in practice, it
cannot be expected to find an efficient method (i.e. one with polynomial
running time) which surely solves the problem to optimality. However, dif-
ferent methods do perform differently for a given type of problems or for
specific problem instances.

Therefore, comparative studies of metaheuristics and other methods
applicable to combinatorial problems are necessary. Equally important is
research into problem-specific adaptations of general solution concepts (see,
e.g., Michalewicz (1998) who emphasizes this issue for evolutionary algo-
rithms). The art of designing and tailoring a metaheuristics for a specific
optimization problem has a significant impact on the algorithm’s perfor-
mance. Therefore, comparative studies found in the literature are to be
taken with a pinch of salt.

3. How to measure the quality?

A prerequisite for comparing algorithms and judging the quality of their
results is the availability of a measure of performance. The authors focus
on concepts based on the distance to an ideal solution but also discuss
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some other approaches. Altogether, quite many concepts for measuring
quality can be found in the literature and it is in general not clear whether
different measures are compatible or lead to similar results. This problem
is emphasized in the work by Zitzler et al. (2002) who show that it is not
possible to construct an ideal unary quality measure if there are two or
more objective functions.

However, despite this theoretical analysis, practical considerations re-
quire a suitable measure. A way out of this dilemma may be to introduce
preference-based information which allows some kind of scalarization. As-
sume that a decision maker is, for instance, likely to operate with a reference
point approach (see, e.g., Wierzbicki (1986)) for selecting a compromise so-
lution from the efficient set. Then an appropriate measure for judging the
quality of an approximate Pareto set might be similar to those distance-
based approaches, with the only difference of utilizing a reference point
instead of the ideal point.

4. What if plenty of time is available?

In the case that plenty of time is available, is it necessary to change the
method? Does the method with a significant increase in time really in-
crease the quality of approximation? Or may there be some stagnation,
some kind of “cycling” or “stalling” (such as the cycling and stalling known
from the simplex algorithm (see, e.g., Gal (1994), p. 54); such a cycling
is, for instance, possible in standard tabu search). Or does improvement
of intermediate solutions become disproportionally slow? In that case, the
metaheuristics should not beat an enumerative procedure which - with a
possibly exponential running time - surely would find an optimum (or the
Pareto set). But if there is some, say, “stochastic cycling” (i.e. repetitions
of states are not detected and a stochastic procedure may, therefore, repeat
unsuccessful search steps) then the procedure may take much more time
than an enumerative procedure, even though some kind of stochastic con-
vergence towards the optimum may be given. (With a finite search space,
a proof of stochastic convergence should be possible, see, e.g., Rudolph and
Agapie (2000) for some results on multiobjective EAs.)

This question is not an artificial or academic one: Think of the situation
that for some kind of optimization problems fast or real-time preliminary
solutions (with a possibly poor quality) are required during the day time
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(e.g. in production planning, scheduling, staff assignment) while over night
there is sufficient time to find a (near) optimal/efficient solution. Such
situations suggest a two-stage approach with 2 different methods if the
metaheuristics does not perform equally competitive for both situations.

5. What to do after having found a solution?

One aspect usually neglected in the area of MOMH is the following: Let
us assume that a metaheuristics has found a reasonable approximation of
the efficient set within an acceptable amount of time. What happens then?
Usually, a decision maker does not require a set of efficient alternatives but
rather a single solution. Most approaches in multicriteria decision making
(MCDM, see, e.g., Gal et al. (1999)), treat these needs by requesting ad-
ditional information from the decision maker (especially preference-related
information) and using it for determining a compromise solution. With the
MOMH methods it is usually assumed implicitly that such a preference-
based MCDM method may be applied after having found an approximation
of the efficient set. Such a proceeding is, of course, possible. A closer con-
nection of an approximation of the efficient set and a preference-eliciting
method may, however, prevent unnecessary computation burdens and/or
lead to better results.

For instance, if a decision maker has specific threshold values for the
individual objectives, efficient solutions violating these thresholds do not
need to be computed. Also, a search into directions leading away from
utopia solutions or reference points (see, e.g., Wierzbicki (1986)) can be
excluded already within the MOMH progress scheme. In an extreme case,
a decision maker may state preference-related information which is used for
an a priori definition of a scalarizing function. In that case, using a conven-
tional, single-objective metaheuristic may be fully appropriate (that’s what
the authors call “false MOMH”). Most frequently, a decision maker may
have problems with stating such information a priori. Instead, he or she
prefers to have some interaction used for exploring the set of potential so-
lutions while stating preference-based information leading to a (hopefully)
unique solution. But also in these cases only a small part of the Pareto set
may be interesting for that interaction purpose and, hence, excluding the
uninteresting regions is preferable when using the MOMH.
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This paper provides a wide view of a field of great interest in the literature,
Multiobjective Combinatorial Optimization (MOCO). Within MOCO we
can find a variety of problems presenting two main common characteristics:

• The huge number of real applications where a MOCO problem must
be solved (as it is shown in this paper).

• The computational cost to solve them.

This way, when facing Combinatorial Optimization problems the estimated
time to be solved can be even more than 2∗108 centuries, as it can be found
in Garey and Johnson (1979). But, the main interest of Combinatorial Op-
timization is the amount of real applications concerning this field, and con-
sequently there is a large demand on methods to solve MOCO problems
within a reasonable computational time. Into this frame, metaheuristics
have been shown as a really powerful tool able to obtain a good perfor-
mance relating the ratio quality of the solutions / time needed to solve. As
it is shown in this work, in the last two decades lots of papers related with
metaheuristics for MOCO problems have been published, different special
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volumes have focused on MOCO, several reviews have appeared, for exam-
ple Ehrgott and Gandibleux (2000), and a wide variety of algorithms have
been developed.

Specially, Multiobjective Evolutionary Algorithms (MOEAs) presented
an intense activity in the nineties. This way, modern MOEAs are shown in
this paper: MOGA (Fonseca and Fleming (1993)), NSGA (Srinivas and Deb
(1994)), NPGA (Horn et al. (1994)), PAES (Knowles and Corne (1999))
and SPEA (Ziztler and Thiele (1998)).

But after this great activity in the nineties, most of these algorithms
have been updated according to recent developments and discussions, of-
fering new versions of most of them, conforming what is called as second
generation algorithms. This way we have now the NSGA-II (Deb et al.
(2000)), that is using elitism and not using niches. Erickson et al. (2001)
proposed the NPGA-2, with a Pareto ranking and a different fitness sharing
scheme: continuously updated fitness sharing. Ziztler et al. (2001) proposed
the SPEA-2, where, among other differences, their are not using clustering
for the archive.

Also some recent algorithms could have been included according with
their good performance with some test problems: PESA, Corne et al. (2001)
or the Micro-Genetic Algorithm in Coello and Toscano (2000).

Relating the quality measures, there is a good paper by Ziztler et al.
(2002) showing how difficult it is to measure the quality of an approximation
of a Pareto frontier, some drawbacks of the most used measures in the
literature and some new ideas.

One main point also that should be taken into account when analysing
metaheuristics is the number and type of parameters. In fact, from my point
of view, it is still one disadvantage of this type of methods, because tuning
these parameters is not an easy task for a person not involved in this topic.
This way, if we want metaheuristics to be widely used by the operational
researchers, we should point out two more aspects of a metaheuristic when
evaluating its performance:

• Number of parameters to be tuned for getting a good performance.

• The understanding of these parameters.

For example, in this paper the parameters of VEGA are shown:
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pop the population size.
Ngen the limits of generations.
parameters the crossover probability and mutation rate.

Then, from the point of view of a person not involved in evolutionary
algorithms it can be easy to understand the main scheme with the first two
parameters, this is:

pop – The more you increase this parameter the more precision
you should get.

–As you increase this parameter the method becomes
more and more slow.

Ngen –Same scheme

But, what happens in general with the crossover operator and the mutation
rate? It is not easy for a person not involved in evolutionary algorithms
to understand how changes in these parameters will have an influence in
the performance of the algorithm or how to fix values to get good solutions
for a given problem. Then, from my point a view, this algorithm will be
“better” without these last two parameters or if the algorithm is able to do
self-tuning for them.

And this could be also a main point in the discussion “Evolutionary
Algorithms versus Neighborhood Search Algorithms”, because, generally,
maybe it’s easier to understand, for a not involved researcher, the param-
eters of the Neighborhood Search algorithms (number of iterations, tabu
tenure, temperature, etc) than the parameters of the Evolutionary algo-
rithms (crossover rate, mutation rate, fitness sharing rate, etc). Then,
when evaluating or analysing metaheuristics it could be important to pay
more attention to the number of parameters, their influence in the per-
formance and the effort needed to implement a good tuning, because also
this could be a main point for the success of this type of tools into the
Operational Research community.
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The paper deals with some of the nowadays more important paradigms
within Operations Research and Applied Mathematics: multiobjective pro-
gramming, combinatorial problems and complexity analysis of solution al-
gorithms. Each one of these paradigms would have deserved an isolated
discussion paper; needless to say that the joint consideration of the three
makes this paper a valuable piece of research that would be well-regarded
for the people working in the three areas.

The authors make a outstanding presentation of different approximative
algorithms for MultiObjective Combinatorial Optimization (MOCO) prob-
lems. Special attention requires the multiobjective extensions of the greedy,
evolutionary, neighborhood search, simulated annealing, tabu search and
ant colonies techniques. The authors review some of the most significant
techniques and papers in each area. Moreover, they do not simply collect
the references, but they have put everything into perspective showing the
insights of each technique. It is also remarkable the effort made by the au-
thors to include pseudocodes of each technique which links the theoretical
concepts to actual computer implementations (absolutely needed in this
field).

MOCO problems are usually NP-hard as well as ♯P-hard. It is well-
known that even those combinatorial problems that are polynomial in the
scalar case (Euler tours, matching, minimum spanning tree problem,. . . )
become NP-hard in the multiobjective counterpart. Therefore, the develop-
ment of good heuristics solving this family of problems is a challenging and
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promising avenue of research. In the last 15 years there has been an impor-
tant advance in this regard. However, the importance of MOCO problems
does not simply rely in their mathematical complexity but also in the large
number of real-world applications that can only be modelled in this way
(see e.g. Ehrgott and Gandibleux (2000)). An important aspect in this
research is to provide each heuristic with a measure of the goodness of the
approximation found. This is a very difficult task but still important. A
recent paper that illustrates the difficulty of finding such a general measure
with regards to efficient sets is the one by Ziztler et al. (2002).

Apart from the good and extensive treatment followed by the authors
in the paper, there are some minor details that could have been brought
to the discussion. One is the application of exact methods to approximate
solution sets of MOCO problems. This can be done by truncating the ap-
plication of the exact method at a given point and taking the incumbent
solution set as the approximation of the exact one. This approach can
be applied with any search technique as Branch and Bound or Dynamic
Programming. This type of approach reinforces the importance of find-
ing general techniques to generate bound sets which simplify any search
strategy for these problems. In addition, there are some challenging prob-
lems that may have been included in the trends. Among them I would like
to mention multiobjective bilevel programming, dynamic MOCO problems
and competitive MOCO problems.

In summary, the paper constitutes an excellent overview of approximate
solution methods for MOCO problems that will be an obligate reference for
any author doing research in this field.
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Matthias Ehrgott and Xavier Gandibleux have provided an insightful sur-
vey of relevant issues in the area of heuristics and meta-heuristics for mul-
tiobjective combinatorial optimization (MOCO). I highly appreciate their
effort to compile this snapshot of the current state-of-the-art in a prosper-
ing field that deals with problems that not only are of theoretical interest
but are of high practical relevance as well. The latter is due to an on-
going paradigm shift: Traditionally, decision-makers have been forced to
provide extensive a priori preference information that then was used to ex-
plicitly formulate an objective function and, thus, to transform the under-
lying, naturally multiobjective problems to (pseudo-) single-objective ones;
goal programming may serve as a prime example for such an approach.
Nowadays, however, an increasing number of managers demand interactive
decision support that allows them to gradually specify their preferences
while analyzing and exploring the solution space and, thus, to participate
in and to control the decision process. Accordingly, there is a need to gen-
erate (Pareto-) efficient solutions. As this is an NP-hard task for MOCO
problems, (meta-) heuristics that usually provide a favorable compromise
between the quality of the approximated solution space and the required
computational effort come into play.

In their paper Matthias and Xavier lead the readers from the very defini-
tion of both MOCO and approximation methods to discovering the various
families of (meta-) heuristic approaches that have been proposed in the
past decades. By this means, they deliver theoretical insight as well as
summarize practical technicalities that should be of value for practitioners
and scientists newly interested in this area. In particular, a commendable
effort is done in detailing the four major “waves” of multiobjective meta-
heuristics that have been seen so far while their description also includes
a lot of material and references needed to put these algorithms to work.
Further, the authors discuss issues related to the quality of the proposed
solution space, such as bounds or performance ratios, that may be of con-
cern even for the more experienced readers who have already implemented
such multiobjective (meta-) heuristics and now are going to evaluate their
performances. And finally, recent algorithmic trends and (supporting) tech-
niques related to the computer implementation are mentioned as well.

While the paper provides a fairly comprehensive overview of relevant
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aspects for the implementation and application of approximate solution
methods for MOCO, I’d like to add two comments:

The first one concerns an issue that may appear as purely “philosophic”
matter at first glance, but actually has practical impact: My concern is
whether bi-objective approaches should be mixed up with “true” multiob-
jective approaches or whether they form a separate class of approaches.
Steuer and Na (2003), for example, point out that by multiple they mean
three or more objectives because difficulty primarily encounters by tran-
siting from two to more than two objectives as the “efficient frontier” is
no longer a frontier but becomes a surface (which avoids the application of
available parametric solution techniques). I agree with that. Moreover, for
the task of investment planning, which constitutes the field of MOCO ap-
plications I’m most familiar with, my practical experience shows that many
decision-makers will not be satisfied even with three or four objectives but
prefer a much more general treatment of objective values over time; e.g.,
instead of getting just the net present value for the cash flow they prefer to
receive information about the annual cash flows for all financial years up
to the planning horizon as separate objectives (for a discussion in the con-
text of research and development project selection cf. Ringuest and Graves
(1990), or Stummer and Heidenberger (2003)). As a consequence, MOCO
applications may have to deal with up to ten or even more objectives. In
general, such an increase in the number of objectives results in an increase
in the number of efficient decision alternatives and, among other effects, in
a considerably higher effort for the administration of the proposed efficient
solutions during the computational runs. As the latter affects the perfor-
mances of the presented approaches to a considerably different extent, I
feel that it should be taken into consideration more thoroughly.

My second comment is partly linked to the first one and basically con-
sists of reporting two preliminary results of an ongoing research project
that aims at comparing multiobjective versions of Ant Colony Optimization
(ACO) and Tabu Search (TS) in the context of portfolio selection; note that
Doerner et al. (2004) have shown that ACO outperforms Simulated Anneal-
ing and Genetic Algorithms for this class of problems. Firstly, it turned out
that ACO outperforms TS particularly for problem instances with a high
number of objectives involved. An in-depth analysis reveals that ACO gen-
erates far less (but more carefully constructed) solution proposals during
its execution and, thus, requires less computing time for checking whether
or not they are efficient: for a typical problem instance (with six objectives
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considered) ACO had to use just 0.68% of the overall runtime while the
TS algorithm needed 27.35%. Moreover, there have been several experi-
ments (with ten objectives considered) for which the TS algorithm spent
even more than 90% of its calculation time just for solution administration
purposes and, consequently, ACO then clearly outperformed TS while this
has not been the case in the first-mentioned example. That should serve
as an indicator that the number of objectives in fact matters. The second
finding highlights that ACO seems to behave more parameter-insensitive
than TS. This is of practical relevance in applications for which only limited
a priori information about a problem’s characteristics is available. How-
ever, when reading through studies in the field of MOCO meta-heuristics I
receive the impression that most authors have already performed exhaus-
tive parameter tests on the available problem instances before comparing
their meta-heuristics and, thus, there is only minor concern with the in-
vestigation of the methods’ robustness with respect to modified parameter
settings or volatile problem characteristics. Since I anticipate an increasing
demand for MOCO meta-heuristics for practical applications in the forth-
coming years (where one cannot expect an expert always being present to
perform appropriate parameter tests), I feel that much more effort should
be brought forward to address this property of MOCO meta-heuristics as
well.

To conclude this discussion, I would like to stress that there are plenty
of opportunities for further research on (meta-) heuristics for MOCO prob-
lems. Promising areas include (i) the evaluation of existing approaches with
respect to their performances when numerous objectives have to be taken
into account as well as with respect to their robustness, (ii) tools that are
aimed towards speeding-up the administration of proposed efficient solu-
tions (such as the quad-tree data structure does), (iii) the consideration
of stochastic and/or dynamic aspects (for a corresponding single-objective
meta-heuristic approach cf. Gutjahr (2004)), and (iv) the development of
hybrid algorithms since the concentration on a sole family of heuristics
could be rather restrictive. Out of the trends listed by the authors I partic-
ularly agree with their expectations in the potentialities of path-relinking.
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Rejoinder by Matthias Ehrgott and Xavier Gandibleux

The discussants raise a number of important points that we would like to
comment on in this rejoinder. Although the focus of each discussant is
different, there are a number of recurring themes, so we respond to those
collectively, rather than to the individual contributions. References listed
below refer to our paper as [EG: xy] or to references in one of the discussions
as [Discussant: xy].

1. New developments in evolutionary algorithms. Pioneer MOEA meth-
ods, but also the recently proposed methods are continuously im-
proved. Here, we can mention NSGAII, SPEA2, NPGA2, PESA2,
µGA2, NPGA2 among others. These have been described in the
book of Coello et al. [EG: Coello et al. (2002)]:

NSGA-II, [Coello: Deb at al. (2002), Molina: Deb at al. (2000)],
is a new version of NSGA which is more efficient (computationally
speaking), uses elitism and a crowded comparison operator that keeps
diversity without specifying any additional parameters.
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SPEA2 [Coello: Zitzler et al. (2002), Molina: Zitzler et al. (2001)]
has three main differences with SPEA: (1) it incorporates a fine-
grained fitness assignment strategy which takes into account for each
individual the number of individuals that dominate it and the num-
ber of individuals by which it is dominated; (2) it uses a nearest
neighbour density estimation technique which guides the search more
efficiently, and (3) it has an enhanced archive truncation method that
guarantees the preservation of boundary solutions

PESA (Pareto Envelope-based Selection Algorithm) has been pro-
posed by Corne et al. in 2000. This algorithm uses a hyper-grid divi-
sion of phenotype space to maintain diversity. In PESA II [Molina:
Corne et al. (2001)], the notion of region-based selection is used. In
region-based selection, the unit selection is a hyperbox rather than
an individual.

µGA2 by Toscano and Coello [Molina: Coello and Toscano (2000)],
is a revised version of µGA algorithm which does not require any pa-
rameter fine-tuning and proposes a dynamic selection scheme through
which the algorithm decides which is the “best” crossover operator
to be used at any given time.

Also, we are continuously noticing new ideas, as recently the PICPA
algorithm where constraint programming techniques and population
of individuals are combined, Barichard and Hao (2003).

We tried to check if these algorithms have been applied on MOCO
problems, but according to our knowledge, the reply today is ‘no’.
However, if the evolutionary algorithms community and the com-
binatorial optimization community continue to bring together ideas
around multiple objective programming problems, it will not be sur-
prising to observe more and more applications of MOEA for solving
MOCO problems in years to come. A library of numerical instances
such as the MCDMlib (www.terry.uga.edu/mcdm/) offers a useful
support for this link.

2. Measurement of quality. This is indeed an area of outstanding impor-
tance. The number of proposed measures of quality indicates how dif-
ficult it is to really judge the quality of a (meta)heuristic algorithm in
the multiobjective context. The paper by Zitzler et al. [Coello, Hanne,
Molina, Puerto: Zitzler et al. (2002)] formalizes this. But then, in a
way it is not surprising that summarizing the quality of approxima-
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tion in one number is impossible in multiobjective optimization. In
fact, Tenfelde-Podehl in her PhD thesis [EG: Tenfelde-Podehl (2002)]
proposes using some of the measures she suggested in common, to
compare the quality of approximations based on multiple criteria.

3. Several discussants point out the need for interactive MOMHs in real
applications. This seems to be a most attractive area for future re-
search, and very little has been done so far. We are thankful for the
reference provided. Two ways can be seen: First, a “direct approach”
that constructs an approximation of the efficient frontier concurrently
with a search for a best compromise, probably focusing the search in
certain areas of the frontier; or a “sequential approach”, where a com-
promise solution is sought among the final approximation. The latter
might be attractive, as a whole arsenal of MCDA methods can be
applied for the selection of a best compromise from among a finite set
of alternatives (the approximation).

4. Combination of optimization with heuristics. We see that as probably
the most interesting direction of research in MOCO. Exact methods
can be used to solve subproblems within the metaheuristic, as well as
heuristics within an exact method (to find bound sets, for example).
We have pointed that out earlier (calling such methods “semi-exact”
[EG: Ehrgott and Gandibleux (2000)]), and research in that regard
is under way.

5. Two versus many objectives. One might indeed consider “multiple”
objectives to imply more than two. And the real challenges of the
field do start with three criteria (when even the computation of the
supported efficient solutions becomes a challenge). But a thorough
understanding of biobjective problems can certainly only be beneficial
to make progress in general MOCO. And we are probably just seeing
the beginning of research in that area, see also Section 7 in [EG:
Ehrgott and Gandibleux (2000)].

6. Tuning of metaheuristics. As pointed out by some discussants con-
sideration must be given to the tuning of metaheuristics. Two main
reasons are apparent. First, in order to be practically useful to de-
cision makers, the input required from DM’s , especially as concerns
technical parameters of the method, needs to be kept to a minimum
(we have experienced this in a study on airline crew scheduling). This
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has to be balanced against the apparent sensitivity of some methods
towards tuning of parameters (Why is a tabu list length of 8 fine,
whereas length 5 gives bad results?). Therefore, algorithms that are
robust with respect to tuning will be important for practical useful-
ness. The second reason is for comparison of different heuristics: One
may ask the provocative question if authors always invest as much
effort into tuning the algorithms they compare their new invention
to, as they do in tuning theirs.

Few dynamic tuning strategies exist, like “reactive GRASP” proposed
for multiobjective optimisation. As mentioned before µGA2 is one
example investigating this issue.

7. Other techniques. The very recent developments of Particle Swarm
Optimization and Artificial Immune Systems have not been men-
tioned in our paper. In fact we are not aware of any studies involving
MOCO so far. However, we would like to add references to the use of
Scatter Search for an extension of the generalized assignment prob-
lem with multiple objectives (Lourenço et al. (2000)), and for the
biobjective knapsack problem (Figueira et al. (2004)).

As the discussion of our paper shows, we are far away from making a
statement as in the urban legend of the patent officer who allegedly resigned
because “everything that can be invented has been invented”.

Finally, we would like to thank all discussants for their comments, and
Thomas Hanne, Justo Puerto, and Christian Stummer, who - apart from
discussing the paper - pointed out typos and some inconsistencies in nota-
tion of the paper.
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