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Abstract 
This paper applies genetic algorithms (GAs), a powerful general-purpose 
biologically motivated optimization technique, to the multi-objective problem of 
spectrum optimization. Two objectives, color and efficiency, are address using 
real spectra, although the addition of other objectives (e.g., color rendering, color 
temperature) is relatively straightforward. 
 
The direct application of the method presented is to transform the spectrum of 
newly developed lighting technologies to have desirable color properties while 
maximizing efficiency. Other applications of this methodology include the design 
of a filter for the input of a fiber optic system such that the color at then end of a 
given length of fiber has particular properties (e.g., appears “white”), while the 
efficiency of the system is minimally affected.  
 
The principal findings described in this paper are the implementation of an 
efficient multi-objective fitness function tailored to this problem and a method for 
speeding convergence of the GA by "smoothing the chromosomes."   
 
An algorithm, data and results from several approaches are presented. 
 



  

Introduction 
It is the goal of lighting manufacturers to produce light sources with maximum 
luminous efficacy, the ratio of the total luminous flux to total power input (i.e., 
"amount of light" per Watt). Luminous flux (F) is defined as:  
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where Pλ is the spectral radiant flux (in Watts) of the light source at wavelength λ, 
Vλ is the photopic luminous efficiency function, and ∆λ is the wavelength interval 
over which values of spectral radiant flux are evaluated1. Some typical values of 
luminous efficacy for the lamps considered in this paper are 107 lm/W for High 
Pressure Sodium (HPS), 107 lm/W for Metal Halide (MH), and 13 lm/W for an 
incandescent lamp. 
 
However, the desire to maximize luminous efficacy is tempered by the desire for 
the source to have appropriate color appearance. The most desirable color for 
"white" light is generally considered to be somewhere on the blackbody locus 
(the locus of points in color space corresponding to blackbody radiators at 
different temperatures). 
 
Over time, new light source technologies are developed. To be successful in the 
marketplace, these sources may need to be tuned to have maximum luminous 
efficacy while maintaining good color appearance. It is possible to filter a broad-
spectrum light in an infinite number of ways so that it is acceptably colored, but 
most of these will reduce luminous efficacy by an unacceptable amount. Thus, a 
problem facing the lighting industry is to develop filters (or reflector coatings) that 
produce acceptable color while at the same time minimizing the reduction of 
luminous efficacy.  
 
The goal of this research is to develop a general-purpose method for tuning the 
visible spectrum of any light source to any achievable color while maximizing 
luminous efficacy. Genetic algorithms are used to solve this multi-objective 
optimization problem. 
 

Genetic Algorithms 
Most optimization methods make strong assumptions about the search space 
(e.g., the fitness space is approximately quadratic; local minima or maxima are 
small or non-existent), which allows the optimal solution to be quickly 
determined. These methods are very powerful (i.e., fast) for the comparatively 
small set of problems for which their assumptions are known to be correct (or 
nearly so). However, there are many problems where the character of the fitness 
space is unknown, or known to be unsuitable for classic optimization techniques. 
Genetic algorithms (GAs) are a family of general-purpose optimization 
methodologies based on the theory of natural selection. GAs make no 
assumptions about the search space, so they can be applied to almost all 
optimization problems. However, GAs exchange applicability for speed – 



  

although they can be used on a wide variety of problems, they are typically 
slower to converge to a solution than algorithms designed for a specific problem.  
 
GAs employ a vocabulary borrowed from genetics2. A chromosome is the 
encoding of an individual solution to an optimization problem. A chromosome is 
composed of an ordered series of genes (i.e., a specific gene always occupies 
the same position in a chromosome), which each represent a parameter of the 
problem. Each gene has a set of alleles, which are valid values for that gene. A 
population is composed of a collection (typically of fixed size) of chromosomes. 
An iteration of the algorithm during which a new population is produced is known 
as a generation.  
 
Fitness functions are used to evaluate the "goodness" of a chromosome, and can 
be either minimized or maximized, depending on the goal of the optimization. For 
example, consider a minimization problem represented by a chromosome with 
two genes, [x, y], and the fitness function: 
 

fitness = (x − y − 2)2  
 
The fitness of the chromosome with gene values of [9, 3] is 16 and the fitness of 
chromosome [0, -1] is 1; therefore, [0, -1] is a better (“near optimal”) solution for 
this minimization problem, although not the optimal solution.  
 
Two operations are performed on the population of chromosomes to explore the 
search space, mutation and crossover. Mutation is the assignment (with low 
probability of occurrence) of a random change to the allele value of one gene in a 
chromosome. Crossover is the exchange of portions genetic material from a pair 
of 'parent' chromosomes to produce a pair of 'children'. Parents are chosen 
(through a variety of means) based on fitness - fitter chromosomes are selected 
more frequently than less fit chromosomes.  
 
A simple method of crossover is single point crossover, where the chromosomes 
are split at a randomly selected point, and genes to the left of the split for one 
chromosome are exchanged with genes to the right of the split for the other 
chromosome, and vice versa. For example, consider these two parent 
chromosomes: 

[3, 4, 9, 1, 7, 6, 4, 8, 1] 
[6, 3, 8, 1, 4, 3, 4, 6, 0] 

If the crossover point were between the third and fourth gene, these children 
would result: 

[6, 3, 8, 1, 7, 6, 4, 8, 1] 
[3, 4, 9, 1, 4, 3, 4, 6, 0] 

There are many other methods of crossover that are not described here.  
 
Figure 1 is a flowchart of the GA optimization process. First an initial population 
is generated, and the fitness of each chromosome is calculated. A stopping 



  

criterion (e.g., a maximum number of generations; a fitness threshold; low 
population diversity; etc.) is checked: if it is passed, the algorithm is finished, if it 
fails, selection, crossover, and mutation take place, another generation is 
produced, and the process returns to the “evaluate fitness” step.  
 
Figure 1. The GA optimization process.  
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The three items in the shaded box in Figure 1 are where the GA process differs 
substantially from other optimization methods. Selection favors fitter 
chromosomes. Selection and crossover tend to explore 'promising' regions of the 
search space. Mutation helps prevent premature convergence to local optima by 
sampling new areas of the search space.  
 
This section provided an overview of genetic algorithms, so that the reader is at 
least familiar with terms and concepts used later in the paper. However, because 
of space limitations, only the barest outline was possible. Detailed presentations 
of genetic algorithms are provided by Goldberg3, Michalewicz2, or Mitchell4. With 
the exception of Ashdown5, GAs have not been widely employed by the lighting 
research community.  
 

Spectral power distribution & color measurement 
The radiant power per unit wavelength as a function of wavelength is known as 
the spectral power distribution (SPD). Radiometric, photometric, and colorimetric 
properties of a source can be determined from the SPD. The goal of this work is 
to take any given SPD and filter it such that it has a specific color (e.g., near the 
blackbody locus) while maximizing luminous efficacy. The SPDs used in this 
project are shown in Figure 2.  
 
Color is characterized using a system developed by the CIE (the ISO recognized 
body for all matters regarding the science and art of lighting). The CIE system6 
measures color in terms of pairs of x and y chromaticity coordinates. The SPD 
can be converted to x and y following a standard methodology1. Brightness is not 
a factor in the CIE system: an orange (fruit) and a chocolate bar have about the 
same chromaticity coordinates, but an orange has a much higher reflectance 
than chocolate. Similarly, two lamps may have different SPDs, but still have the 
same chromaticity coordinates. 
 
  



  

Figure 2. SPD for Metal Halide, High Pressure Sodium and Incandescent lamps. 
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The a priori fitness function 

A lamp might be filtered in an infinite number of ways to have a certain set of 
chromaticity coordinates. However, only one of those ways will filter out the least 
amount of light, maximizing luminous flux for that lamp at that color. Thus it is 
desirable for a filter to have at least the following two properties: a) it minimizes 
the color difference between the desired and the actual light, and b) it maximizes 
relative efficiency. Moreover, from a practical perspective, it is desirable for filters 
to be relatively "smooth", with only a few notches. Therefore, a reasonable 
fitness function to maximize might be: 
 
  fitness = efficiency – α*color  + β*smoothness 
 
where α and β are weighting factors, efficiency is the ratio of the luminous flux 
from the filtered lamp to the luminous flux from the unfiltered lamp, color is the 
distance in CIE space from the desired color, and smoothness is "smoothness" 
of the spectrum, which could be defined in a number of ways.  
 
A critical part of any GA optimization problem is the proper implementation of the 
fitness function. This is particularly the case for multi-objective optimization: the 
objectives need to be balanced such that no single term dominates the others. If 
one term is much greater than the others near the optimum, the GA may get 
trapped in a region where that term is acceptable, but the other terms are 
unacceptable, causing the GA to converge slowly or not at all. In this case, the 
efficiency term was left as is, and the other terms where scaled as described 
below. The value of the color term should be low near the objective, and high 
away from the objective. Since distance from the desired color is always less 
than one in CIE space, this suggests straight Euclidean distance. 



  

 
It proved to be difficult to obtain reasonable solutions while trying to 
simultaneously balance the three contributing terms of the proposed fitness 
function (efficiency, color, and smoothness). In an effort to make the problem 
easier to solve, smoothness was initially dropped from the fitness function. This 
proved to be fortunate, because it turned out that smoothness is automatically 
achieved when the other two criteria are met (provided they are properly 
balanced). However, some manipulations related to smoothness can speed up 
the convergence of the GA by half an order of magnitude as explained in the 
section on smoothing the chromosome. 
 

GA implementation and early results 
A floating-point representation was used for this problem. Michalewicz2 suggests 
that floating point representations tend to converge faster, reach more consistent 
results, and provide higher precision than binary representation. The visible 
spectrum (400 to 701 nm) was partitioned in 151 bins, each 2 nm wide. Each 
chromosome consisted of 151 genes, where each gene represents the 
transmittance of the filter over a 2 nm band of the visible spectrum. The 2 nm bin 
width was chosen as a compromise between smoothness and computational 
tractability. Valid allele values for each gene could range from zero to one. 
 
Population sizes between 8 and 100 were experimented with. The results 
presented in this paper are all for a population size of 50. Three mechanisms of 
crossover were applied simultaneously: (i) single point crossover (described 
previously); (ii) arithmetic cross-over (produces two complimentary linear 
combinations of the parents); and (iii) heuristic cross-over (cross-over based on 
interpolation, moving in the direction of the fitter chromosome). Three 
mechanisms of mutation were applied: (i) uniform mutation (set a gene to a 
random value); (ii) non-uniform mutation (change a gene by a random amount, 
the maximum amount of change decreasing as the maximum number of 
generation is approached); and (iii) boundary mutation (set the gene to its 
maximum or minimum value). Because the value of most of the genes could be 
expected a priori to be near the boundaries, the boundary mutation rate was set 
relatively high. Details of the crossover and mutation mechanisms are presented 
in Houck7.  
 
It is necessary for the fitness function to be well balanced to achieve reasonable 
results. Figure 3 represents an early solution (i.e., the spectral transmittance of a 
filter) before a reasonable balance for the fitness function was found: the color is 
right, but the efficacy is terrible, and the solution is physically infeasible because 
it is impossible to synthesize a filter with the transmittance properties in Figure 2. 
The GA can not search around the efficacy space in this case, because the color 
penalty is too restrictive.  
  



  

Figure 3.  An infeasible solution for the incandescent lamp. 
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Figure 4. A good solution for the incandescent lamp (cf., Figure 3). 
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Results like those presented in Figure 3 indicate that color is dominating the 
fitness function in the region of the search space near the color optimum (i.e., the 
fitness function was not well balanced). Therefore, the color portion of the fitness 
function was modified such that it was low in a small region near the objective (to 
give the GA room to search efficacy space) and quite high away from the 



  

objective (encouraging the GA to stay away from unfruitful areas in the search 
space). Trial and error led to adopting:  
 

2.5*(distance/0.08)2 
 
for the color term of the fitness function. This small area of low penalty around 
the color objective allows the efficiency to improve (in slight steps), even if color 
gets slightly poorer (also in small steps). Figure 4 shows a plot of a solution for 
the incandescent lamp with the color penalty relaxed. The color is good, efficacy 
is high (compared to the maximum efficiency this source can achieve at this 
color), and the solution is (in principal) physically realizable.  
 
However, even for the relatively simple problem (because of the smoothness of 
the SPD) of the incandescent lamp, the GA does not converge quickly. Figure 5 
is a plot of the fitness of the best chromosome and the average chromosome in 
the population by generation number for a typical run on the incandescent lamp. 
The population is still improving noticeably after 500 generations, and does not 
achieve 0.995 % of the maximum until about 1350 generations. The GA 
converges even slower for more difficult problems (e.g., the HPS and MH 
spectra), taking about 10,000 generations to reach stable results. 
  
Figure 5.  Best and average fitness for early version of the GA (incandescent 
case). 
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Improved performance by "smoothing the chromosomes" 
While the time to run the GA in the above example is relatively small and 
sufficient to be a practical tool for lamp design, a faster implementation is always 
desirable. Convergence time of the GA was improved by half an order of 



  

magnitude by capitalizing on known properties of good chromosomes – learned 
in part from experimentation with the system as described so far. Chromosomes 
for good solutions should exhibit the following two properties: (i) many gene 
values are exactly at the limits of the allele (i.e., 100% transmission or 0% 
transmission); and (ii) adjacent wavelength-bins have nearly the same value 
(smoothness). These two properties were incorporated directly in a revised GA 
scheme. 
 
When the chromosome is passed to the function that evaluates the fitness, two 
versions of the chromosome are evaluated: the version directly passed to the 
evaluation function, and a version where the chromosome is modified based on 
the two properties outlined above. The fitness function is compared for both 
versions and the fitter chromosome is passed back to the population. The 
smoothing is done as follows: 
 

If {10% of the time} 
  Genes greater than 0.5 are increased by 10% 
  Genes less than 0.5 are decreased by 10% 

[push towards boundaries] 
Elseif {90% of the time} 
  Genes greater than 0.96 are set to 1.0 
  Genes less than 0.04 are set to 0.0 

[push towards boundaries] 
  If {gene not at the boundary (i.e. not 1 or 0)} 
    Gene[i]=0.2*Gene[i-1]+0.6*Gene[i]+0.2*Gene[i+1] 

[smooth] 
  Elseif {gene at the boundary} 
    If {Gene[i-2] != Gene[i] != Gene[i+2] & 20% of the time} 
      Gene[i]= 0.1*Gene[i-1] + 0.8*Gene[i]+0.1*Gene[i+1] 

[detach single points “stuck” at the boundary] 
    Endif 
  Endif 
Endif 

 
Smoothing the chromosome has a remarkable effect on the convergence rate. 
The solution for the incandescent lamp looks similar to the one presented in 
Figure 4 and differs by a small amount over a few nm right at the edges of the 
notch. However, the time to arrive at this solution differs dramatically as 
illustrated by Figure 6, a plot of the fitness of the best chromosome and the 
average chromosome in the population against generation number for a typical 
run of the incandescent lamp using the smoothed GA. The population is 
improving noticeably up to 400 generations, and achieves 0.995% of the 
maximum after 385 generations (cf. 1350 for the unsmoothed algorithm).  
 
For ease of comparison, the fitness of the best chromosome is plotted against 
generation for the smoothed and unsmoothed versions in Figure 7. The 
smoothed version is essentially done at 500 generations, while the unsmoothed 
version needs many additional generations achieve the maximum fitness. The 
improved performance of the smoothed GA is similar for the tougher MH 



  

spectrum, and the still tougher HPS spectrum. The smoothed GA converges after 
1000 generations for the MH and HPS spectra. 
 
Figure 6. Best and average fitness for the "smoothed GA" (incandescent case). 
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Figure 7.  Fitness of the fittest chromosome for "smoothed" and "unsmoothed 
GA". 
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Results 

Figure 8 presents the filters designed by three typical runs of this technique, one 
on each of the three spectra (MH, HPS, and incandescent) plotted in Figure 2. 
The chromaticity coordinates of the target color was (x = 0.48; y = 0.32). This 



  

point was selected to be about equidistant from the unfiltered spectra of the three 
lamps considered, and achievable (albeit at low efficiency) by all three lamps. 
Table 1 gives the chromaticity coordinates and efficiency for these solutions. The 
color is correct, and the efficiency is the maximum achievable for those lamps at 
that color.  
 
Table 1. Chromaticity coordinates and efficiency of the filtered spectra.  
 
Lamp 

 
Unfiltered x 

 
Unfiltered y 

 
Filtered x 

 
Filtered y 

Filtered 
Efficiency 

Incandescent 0.418 0.397 0.479 0.321 0.650 
HPS 0.525 0.414 0.480 0.321 0.230 
MH 0.369 0.382 0.479 0.321 0.510 
 
Figure 8. Optimal filter transmittance for the three spectra (for the given problem). 

400 450 500 550 600 650 700

0.0

0.2

0.4

0.6

0.8

1.0

Incandescant

0.0

0.2

0.4

0.6

0.8

1.0

High Pressure Sodium

400 450 500 550 600 650 700
0.0

0.2

0.4

0.6

0.8

1.0

wavelength (nm)

Metal Halide

Tr
an

sm
itt

an
ce

 



  

 
Figure 9 shows the progress of the GAs through color space. The filled symbol 
shows the chromaticity coordinates of the unfiltered lamp. The line leading from 
each symbol is the chromaticity coordinate of the lamp filtered by the filter 
encoded in the best chromosome each time a new best solution is generated. 
The inset figure in the lower left corner shows the CIE chromaticity coordinates 
plotted (not to the scale of the main figure) in the x-y plane. The box in the inset 
figure shows the area plotted in the main portion of the figure. About 260 filtered 
spectra are plotted for each lamp. Note that only approximately the first 20 are 
distinguishable outside the “blob” at (.48, .32).  
 
Figure 9. Path of the GA through the color space (see text for explanation). 
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Figure 10 is a way to visualize the path of the GA through the color and efficiency 
space. This figure plots efficiency against x and y chromaticity coordinates 
(individually), with each spectrum in a different subplot. The symbols represent 
the unfiltered chromaticity coordinates. The filled symbols represent the x 
chromaticity coordinate; the empty symbols represent the y chromaticity 
coordinate. The line leading from each symbol is the efficiency of the lamp 
filtered by the filter encoded in the best chromosome each time a new best 
solution is generated, plotted against the respective x or y chromaticity 
coordinate.  
 
Figures 9 and 10 plot the path of the GA through color and efficiency space over 
time. Early on, relatively large steps toward the correct color are made, as shown 
in the region of Figure 9 where the individual points are distinguishable and the 
region of relatively horizontal movement in Figure 10 (following the first big step 
from the unfiltered lamp). After the correct color is found, efficiency is optimized 



  

in many small steps (the predominantly vertical, “squiggly” portion of Figure 10, 
at the opposite end of the line from the symbol). The small horizontal movements 
in this portion of the line represent tradeoffs between color and efficiency (i.e., a 
small deviation from the ideal color for a small gain in efficiency).    
 
Figure 10. Path of the GA through the search space (see text for explanation). 
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The two portions of the path of the GA through the color and efficiency space 
described above are a feature of the solution space (rather than a result of the 
way color and efficiency are scaled, as one might expect). It is easier to find the 
right color, because there are many different solutions to that portion of the 
problem. Meanwhile, it is quite difficult to find the most efficient solution because 
there are very few (probably only one) “most efficient” solution, and 



  

comparatively few solutions that are “very efficient”. It is a tribute to the power of 
genetic algorithms that they are able to find an efficient solution at all.  
 

Conclusions 
This study showed that a genetic algorithm approach proved to be very effective 
for the problem of filter optimization. The "smoothed GA" modification resulted in 
faster convergence of the algorithm by about half an order of magnitude, by 
incorporating the knowledge that in order to achieve a smooth spectrum adjacent 
genes should have similar values. 
 
An interesting result of this study is the insight into the trade-off between multiple 
objectives. The balance between objectives is not very important early on; 
however, as the population approaches the optimum, changes in any one gene 
should produce a comparable magnitude change in all of the objectives. Thus 
changes in the transmittance at any one wavelength should affect the color and 
the efficiency terms by very small, and comparable, amounts, allowing tradeoffs 
to be effectively made (i.e., moving toward worse color for a small gain in 
efficiency, or vice versa). 
 
If the researcher (or manufacturer) were willing to accept a simple notch as a 
solution (for reasons of manufacturing cost, for example), a chromosome with 
only two genes, one for position and one for width, might be a better encoding of 
the problem. Moreover, a deterministic method of solving this modified problem is 
also suggested by the results: draw a ray from the starting point of the lamp on a 
CIE (x,y)-chromaticity diagram to the desired filtered color, and continue this ray 
to the far spectrum locus. Use the intersection of the ray and the spectrum locus 
as a starting point for a simple hill-climbing algorithm.  
 
However, because GAs are so adaptable, the application of GAs to spectrum 
tuning goes well beyond the scope of this problem. For example, this technique 
can provide rather than one particular solution (i.e., maximum efficiency at a 
particular color, as outlined here) the set of Pareto-optimal8 solutions to a multi-
objective spectrum optimization problem (e.g., the surface of all color and 
efficiency solutions possible, or the CRI and efficacy front suggested by 
Opstelten9). This technique could be used to design a filter for a light source such 
that the light, after passing through a given length of fiber optic cable, appears 
white (or any other color). Other objectives can easily be added, such as 
determining solutions with a minimum color rendering index (CRI) or a target 
correlated color temperature (CCT).  
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