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Abstract
Genetic Algorithms are often employed for
neural network feature selection. The efficiency
of the search for a good subset of features,
depends on the capability of the recombination
operator to construct building blocks which
perform well, based on existing genetic material.
In this paper, a commonality-based crossover
operator is employed, in a multiobjective
evolutionary setting. The operator has two main
characteristics: first, it exploits the concept that
common schemata are more likely to form useful
building blocks; second, the offspring produced
are similar to their parents in terms of the subset
size they encode. The performance of the novel
operator is compared against that of uniform, 1
and 2-point crossover, in feature selection with
probabilistic neural networks.

1 INTRODUCTION
Evolutionary algorithms (EAs) are increasingly employed
in neural network modelling for tasks, ranging from
evolution of connection weights, network architectures
and learning rules to evolution of inputs, control
parameters and ensembles of networks [1]. In particular,
EAs have been used to aid the selection of feature subsets
in various classification tasks (e.g. [2] [3]). Recently, the
use of Multi Objective Evolutionary Algorithms (MOEA)
has been suggested for feature selection [4]. In addition, a
novel, commonality-based crossover operator has been
introduced, called Subset Size Oriented Common
Features (SSOCF) operator [5]. When put in a
multiobjective evolutionary setting, the SSOCF operator
can facilitate the search for good subsets of features. This
is achieved, first by preserving building blocks with
promising performance, and second by promoting useful
population diversity across the range of Pareto optimal
solutions. In multiobjective optimisation, a key concept is
that of Pareto optimality. Solutions are compared against
each other in terms of Pareto dominance, i.e. a solution is
dominant over another only if it has better performance in
at least one criterion and non-inferior performance in all
criteria. A solution is said to be Pareto optimal if it cannot

be dominated by any other solution in the search space. In
complex search spaces, wherein exhaustive search is
infeasible, it is very difficult to guarantee Pareto
optimality. Therefore, instead of the true set of optimal
solutions (Pareto Set), one usually aims to derive a set of
non-dominated solutions with objective values as close as
possible to the objective values (Pareto Front) of the
Pareto Set. Feature selection is well-suited to
multiobjective optimisation. In the simplest case, it
involves two objectives: feature subset size minimisation
and performance maximisation. In this paper, a variation
of the niched Pareto GA (NPGA) [6] is employed. This is
known to be a fast MOEA [7], since tournament
domination is determined by a random subsample of the
population. However, any MOEA could be employed in
this setting. Details of the MOEA employed in this work
can be found in [5]. This paper examines the performance
of the SSOCF operator against n-point crossover
operators in multiobjective evolutionary feature selection.

2 SUBSET SIZE-ORIENTED COMMON
FEATURES CROSSOVER

Common uniform or n-point crossover operators can be
disruptive, since they may result in breaking up useful
building blocks. When the aim is to identify good subsets
of features for different subset sizes, common crossover
operators can have an additional negative side effect. A
standard crossover operating on two individuals, coding
subsets of size n and m, tends to yield offspring with
complexity approximately (n+m)/2. Therefore, the EA
tends to explore mostly medium-sized subsets, while the
edges of the non-dominated front are less well explored.
In [5], the SSOCF crossover operator is introduced, a
commonality-based operator, which helps preserving
building blocks of promising performance. It also yields
offspring populations with relatively even distribution,
across the range of the Pareto front, while it does not
require mating restrictions. It exploits the concept that
preserving the maximal common schema of two parents
results in a more creative recombination strategy,
compared to standard crossover. This concept has been
recently termed the Commonalty-Based Crossover
Framework [8].
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Commonality-based operators have been previously
employed for feature selection in [9] and [10]. In the
former (CF/RSC algorithm), the non-common features are
discarded and any features additional to the common are
inserted as the result of mutation. In the latter (CHC
algorithm), half of the differing bits are crossed at random
[11], and therefore this operator also tends to average the
number of selected bits. In both CF/RSC and CHC the
aim is to identify a single solution. Here, instead of
aiming at a single solution, we seek to obtain a range of
solutions across the Pareto front. In the simplest case,
these are non-dominated solutions in a two-dimensional
complexity-performance space. The SSOCF operator
utilises the subset size of each mating parent as the
desirable target state for each offspring. The functionality
of the SSOCF operator is illustrated in Figure 1. Both
offpring preserve the common features of their parents.
The non-shared features are inherited by the offspring
corresponding to the ith parent with probability (ni-nc/nu),
where ni is the subset size of the ith parent, nc is the
number of commonly selected features across both mating
partners and nu is the number of non-shared selected
features. Those non-shared features which are not
inherited by the first offspring are inherited by the second.
The SSOCF operator has no effect when one parent is a
subset of its mating partner. In such cases, any potential
modification is the result of consequent mutation. The
SSOCF operator lends itself to a simple mutation
adaptation strategy, while there is no need to adapt the
crossover rate. This strategy is described in detail in [5].

3 FITNESS ASSIGNMENT WITH
PROBABILISTIC NEURAL NETS

In classification, performance can be assessed in terms of
the misclassification rate. In this paper, feature selection
is treated as a multiobjective optimisation problem, in the
Pareto sense. The objectives are subset size minimisation
and performance maximisation. We consider a dual
modelling performance criterion consisting of the
estimated misclassification rate and the cost function. The
former is common regardless of the classifier and the
training algorithm employed, whereas the latter depends
on the choice of classifier and algorithm. The major
computational cost, associated with the use of EAs for

feature selection, is in the feature subset evaluation.
Probabilistic neural networks (PNNs) have modest
computational requirements for reasonably small data sets
[12]. They are based on simple kernel density estimation,
equivalent to Parzen windows. PNNs use Bayes rule to
estimate the posterior class probabilities, that an input
vector x corresponds to the class iω . The primary
performance measure in our experiments is the estimated
misclassification rate, while the secondary is a sum
squared error form [5]. Classifiers built without some of
the useful features carry an omission bias. A second type
of bias, which is more difficult to handle, is the selection
bias. This occurs as a result of the data-dependent nature
of the subset selection process. Selection bias becomes
more of a problem when the ratio of the number of
training patterns to the number of potential predictor
variables is small. A simple way of reducing selection
bias is by resampling. Here, ten different random splits of
the available data set are employed, each into three
subsets. The first is employed for training; the second for
assessing the impact of different subsets of inputs during
the MOEA feature selection. The third data set (the test
set) is kept aside for independent evaluation of the final
models. Fitness assignment during the MOEA search is
performed by taking the average fitness over the different
validation sets. A three-element fitness vector is passed to
the MOEA. The first two values, the misclassification rate
and the feature subset size, are the primary objectives to
be minimised. The third value is the cost function and is
treated as a secondary cost term, only employed to
compare individuals achieving the same misclassification
rate. An additional benefit of the resampling is that it
reduces the effect of the noise in fitness evaluation.

4 EXPERIMENTAL INVESTIGATION
We compare the performance of the SSOCF operator
against that of standard n-point crossover on a
benchmarking data set of considerable dimensionality, the
ionosphere dataset [13]. It consists of 351 patterns, with
34 attributes and one output with two classes. Ten random
permutations of this data set are employed. Each one is
split in 3 subsets. The training set consists of 176 patterns,
the validation set 88 and the evaluation set 87. In addition,

Selected
Features

n1=8

Chromosome Length: lc=13
common bits: 5

commonly selected: nc=2Chromosome

c1 * 1* * ***0 * *100

Parents

1 10 1 1100 1 1100

c2

non-common bits: nu=8
n2=4 1 *1 1 111* 1 1***0 11 0 0010 0 0100

OffspringChromosome  c o1 Chromosome  c o2

1 10 1 1010 1 1100 0 11 0 0100 0 0100

Figure 1: Example of the functionality of the Subset Size Oriented Common Features Operator
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the best non-dominated solutions found by forward
selection and backwards elimination are compared against
those found by MOEA. In terms of computational costs
the MOEA is considerably more expensive than
sequential methods. The sequential procedures always
continue from the subset having the best performance at
each step. The following settings are employed:
• Four different runs have been performed with each one
of the SSOCF, uniforn, 1 and 2-point crossover.
• N-point crossover settings: crossover rate: 0.85,
mutation rate: 1/ cl . ( cl  is the chromosome length)
• triangular sharing function; sharing threshold is 4/cl .
• tournament group size: 3; sampling group size: 20.
• PNN smoothing factor: 0.2.
• Initial population: uniform distribution across the
feature subset size and the different features.
• Parent population size: 200.
• Sequential feature selection: the best subsets found by
both forward selection and backwards elimination.
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Figure 2: Non-dominated solutions
In both sequential and MOEA feature selection there are
cases where an increase in the subset size does not
improve performance. Experiments carried out have
shown that the MOEA consistently finds a number of
solutions missed by the sequential feature selection. In
particular, the front identified by MOEA feature selection
consists of 9 feature subsets, with 6 of them missed by
sequential feature selection (Figure 2). The results are
illustrated in Figure 3, where the average number of non-
dominated solutions found, out of a non-dominated front
of size 9 is shown for generation 25, 50, 100 and 150.

5 CONCLUSION
An experimental comparison of the commonality-based
SSOCF operator against standard n-point crossover has
been performed. All operators were employed in a MOEA
feature selection setting. MOEA feature selection
discovers a number of non-dominated solutions missed by
both forward selection and backwards elimination. The
results obtained provide strong evidence that the SSOCF
operator can find a larger set of non-dominated solutions,
compared to the n-point crossover. Moreover, these
solutions are found at a much earlier stage of the MOEA
feature selection process. Among n-point operators there

is no clear winner with the exception of the uniform
crossover, which appears to be more disruptive.
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Figure 3: Average number of non-dominated solutions
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