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Abstract

A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by

pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is

applied to simultaneously minimize the (1) remedial design cost and (2) contaminant mass remaining at the end of the reme-

diation horizon. Three test scenarios consider pumping rates for two-, five-, and 15 fixed-location wells as the decision variables.

A single objective genetic algorithm (SGA) formulation and a random search (RS) are also applied to the three scenarios to

compare performances with NPGA. With 15 decision variables, the NPGA is demonstrated to outperform both the SGA al-

gorithm and the RS by generating a better tradeoff curve. For example, for a given cost of $100,000, the NPGA solution found a

design with 75% less mass remaining than the corresponding RS solution. In the 15-well scenario, the NPGA generated the full

span of the Pareto optimal designs, but with 30% less computational effort than that required by the SGA. The RS failed to find

any Pareto optimal solutions. The optimal population size for the NPGA was found by sensitivity analysis to be approximately

100, when the total computational cost was limited to 2000 function evaluations. The NPGA was found to be robust with respect

to the other algorithm parameters (tournament size and niche radius) when using an optimal population size. The inclusion of

niching produced better results in terms of covering the span of the tradeoff curve. As long as some niching was included, the

results were insensitive to the value of the parameter that controls niching ðrshare > 0Þ. � 2002 Elsevier Science Ltd. All rights

reserved.

1. Introduction

When faced with subsurface remediation manage-

ment problems, decision makers must frequently weigh

multiple objectives such as minimizing cost, minimizing

health risk, minimizing cleanup time, and maximizing

reliability. In these cases, it may be of value to the de-

cision makers to view the tradeoffs between the con-

flicting objectives, providing a more effective means of

selecting and implementing the best-suited remedial

alternative for a given site.

The majority of applications of optimization tools to

subsurface remediation problems have been based on

single objective optimization methods. Single objective

methods can accommodate multiobjective problems in

several ways, such as minimizing a weighted, linear

combination of the objective functions or minimizing a

single objective while transforming the remaining ob-

jectives into constraints. However, these methods rely

on a priori knowledge of the appropriate weights or

constraint values. Furthermore, they are only capable of

finding individual points on the tradeoff curve (or sur-

face) for each problem solution.

True multiobjective methods have the potential to

simultaneously generate all possible optimal combina-

tions of objectives, with less effort than other ap-

proaches. Multiobjective problems involve several

objective functions, each of which is a function of de-

cision ðdÞ and state variables ðsÞ. A generic multiobjec-

tive problem can be stated as:

O1 ¼ max =min½f1ðd1; d2; . . . dn1 ; s1; s2; . . . sn2Þ�
O2 ¼ max =min½f2ðd1; d2; . . . dn1 ; s1; s2; . . . sn2Þ�

..

.

Om ¼ max =min½fmðd1; d2; . . . dn1 ; s1; s2; . . . sn2Þ�
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subject to the following set of constraints:

d1 6 d�
1 ; d2 6 d�

2 ; . . . ; dn1 6 d�
n1
;

s1 6 s�1; s2 6 s�2; . . . ; sn2 6 s�n2 ;

where there are m objective functions, n1 decision vari-

ables, and n2 state variables.

As already mentioned, previous approaches for

solving the multiobjective problem have involved re-

ducing the problem dimension, either by combining all

objectives into a single objective (e.g. [27]) or optimizing

one while the rest are constrained (e.g., [3]). Once this

reduction has been made, single-objective optimization

methods (e.g. linear programming, [10]; non-linear

programming, [11]; mixed-integer programming, [25],

simulated annealing, [4]; genetic algorithms, [21]) can be

applied to the optimal remediation design problem.

Wagner [26] and more recently, Freeze and Gorelick [7],

provide extensive reviews on the applications of opti-

mization to groundwater remediation design.

Alternative multiobjective methods optimize all ob-

jectives simultaneously, eliminating the need for deter-

mining appropriate weights or formulating constraints.

Multiobjective approaches in this category operate on

the concept of ‘‘Pareto domination’’, which states that

one candidate dominates another only if it is at least

equal in all objectives and superior in at least one. The

‘‘degree of domination’’ for a design is proportional to

the number of designs it is dominated by. For example,

in Fig. 1, where the objective is to minimize both ob-

jective functions, designs 1 and 2 dominate design 3

because they are superior in both objectives. Moreover,

designs 1 and 2 are said to be ‘‘non-dominated’’ because

there are no existing designs that dominate them. This

concept is utilized by evolutionary algorithms such as

the multiobjective genetic algorithm (MOGA, e.g. [6])

and the niched Pareto GA used in this work.

Ritzel et al. [24] applied two variations of the genetic

algorithm (GA), a Pareto GA and a vector-evaluated

genetic algorithm (VEGA), to a multiobjective,

groundwater pollution containment problem. The mul-

tiobjective problem was formulated to minimize the

containment design cost while maximizing the design’s

reliability. The Pareto GA relied on a ranking scheme

that ordered the population according to each contain-

ment design’s degree of domination. The VEGA

searches for multiple solutions to multiobjective prob-

lems simultaneously by selecting a fraction of the next

population, based on the associated values of each ob-

jective function. Although the VEGA is considered a

multiobjective optimization method, Richardson et al.

[22] reported that VEGA tended to favor the extrema of

the objective functions, such that only the endpoints of

the tradeoff curve were found. Ritzel et al. [24] concluded

that the Pareto GA was superior to the VEGA in finding

the largest portion of the Pareto optimal solutions.

Cieniawski et al. [2] investigated the performance of

four GA formulations in solving a multiobjective

groundwater monitoring problem where they simul-

taneously maximized reliability of a monitoring system

and minimized the contaminant plume size at time of

first detection. They implemented a weighted GA,

VEGA, Pareto GA and a VEGA/Pareto GA combina-

tion and compared them to results generated by simu-

lated annealing. The VEGA/Pareto GA method was

shown to be more computationally efficient and more

successful at generating the greatest portion of the

tradeoff curve than the other GA formulations. They

recommended that a form of fitness sharing [9] be used

to enhance the Pareto GA in this area, where crowding

in the Pareto optimal solutions is alleviated by de-

creasing the fitness of crowded individuals.

Previous approaches for optimal groundwater re-

mediation design have largely focused on single-objec-

tive optimization. Although some groundwater quality

management efforts have considered multiobjective op-

timization, these approaches did not succeed in gener-

ating a sufficient representation of full range of Pareto

optimal designs. In this work, we present an improved

version of the niched Pareto genetic algorithm (NPGA),

a multiobjective technique originally developed by Horn

et al. [13], and apply it to a hypothetical contaminated

groundwater remediation scenario.

There are several parameters (i.e., population, niche

radius, tournament size, crossover rate, and mutation

rate) that control the performance of this version of the

NPGA. Although theoretical guidelines have been

suggested for choosing optimal values for some of the

algorithm parameters, these guidelines apply only to

idealized, abstract problems [14–16]. The objectives of

this work are to (a) develop a multiobjective approach

for optimal groundwater remediation design using the

NPGA, (b) explore the sensitivity of the NPGA to the
Fig. 1. Ranks of candidate designs based on the concept of Pareto

domination.
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parameters that control the behavior of the algorithm in

terms of computational performance, and (c) compare

the NPGA to two other optimization approaches: a

single-objective genetic algorithm (SGA) and a random

search (RS).

2. The niched pareto genetic algorithm

Horn et al. [13] developed an evolutionary multiob-

jective optimization algorithm based on a suggestion by

Goldberg [8] that introduced speciation along with the

theory of a spatially ordered search space. This method,

known as NPGA, extends the traditional GA to mul-

tiple objectives through the use of Pareto domination

ranking and fitness sharing (or niching). Exploitation of

the entire set of Pareto optimal designs is maximized by

the selection pressure induced by the Pareto ranking and

tournament competitions, and the diversity is main-

tained by fitness sharing. The addition of the sharing

function is expected to overcome the challenge of finding

and maintaining the entire tradeoff curve during the

optimization process, as noted by Ritzel et al. [24]. This

method is a promising approach for solving multiob-

jective optimization problems because of its adaptability

to a wide variety of problems and its ability to search

non-linear and discontinuous search spaces without

relying on the need for continuous first and second

derivatives.

McKinney and Lin [21], Ritzel et al. [24], and Huang

and Mayer [16] give detailed descriptions of the tra-

ditional GA selection, reproduction, and mutation op-

erators and a general overview of the GA as applied to

single-objective, groundwater quality management

problems. The heuristic parameters that are common

between single and multiobjective GAs are population

size, crossover probability, and mutation probability.

Both sets of methods also can rely on tournament

competition for deciding which candidates should go

forward into the next generation. The extension of the

traditional GA to the NPGA involves the addition of

two specialized genetic operators: (1) Pareto domination

ranking and (2) continuously updated fitness sharing.

These operators alter the traditional mechanism of se-

lection by partial ordering of the population and by

maintaining diversity in the population through suc-

cessive generations.

Tournament competition and fitness sharing create

two principal genetic pressures that control the evolu-

tionary process in the optimization algorithm. Selection

pressure is controlled by the tournament size and

propagates the designs towards the optimal frontier.

Larger tournament sizes induce greater selection pres-

sures. Fitness sharing promotes diversity by dispersing

the designs over the limits of the tradeoff curves. The

amount of searching performed by the NPGA is con-

tingent on the size of the population and the level of

selection pressure applied.

Fig. 2 summarizes the basic steps followed by the

NPGA. To initiate the selection process in the NPGA,

each individual in the population of designs is assigned a

rank equal to the degree of Pareto domination experi-

enced by that design. The degree of domination, or

rank, of an individual design is the total number of

designs in the population that dominate that design. A

design is said to dominate another individual in the

population if it is at least equal in all objectives to that

individual and better in at least one. Non-dominated

designs, or those that are not dominated by any indi-

viduals in the population, are assigned a rank of zero. In

Fig. 3, where the objectives are to minimize both cost

and mass remaining, an example of a Pareto domination

ranked population of 10 designs is shown.

Once the entire population has been ranked accord-

ing to the Pareto domination rank, candidate designs

are chosen for reproduction. The mechanism of selec-

tion used here is similar to the tournament selection

process described by Ritzel et al. [24] and Cieniawski et

al. [2]. The controlling variable in tournament selection

competitions is the tournament size. Tournament se-

lection begins by randomly selecting a group of candi-

dates from the population of ranked designs. The

candidates in the tournament selection are then pitted

against each other by comparing their respective ranks.

If there is a single candidate with the lowest rank (i.e.

less dominated), this candidate is the ‘‘clear winner’’ of

the tournament and is selected for reproduction. If all

the lowest ranked candidates in the tournament are non-

dominated or otherwise equal in rank (i.e. no clear

winner), none of the candidates are preferred and the

tournament selection ends in a tie. Fig. 4 demonstrates

each of these outcomes for a tournament size of two (the

minimum tournament size). If the two candidates des-

ignated by triangles were selected in the tournament, the

design designated by the open triangle would be the

clear winner, because it is dominated by fewer designs

than the solid triangle. If the candidates designated by

the squares in Fig. 4 were chosen for the tournament,

the tournament would end in a tie (‘‘no clear winner’’).

In the case of a tie, an additional process is needed to

select a tournament winner. Fitness sharing is a method

for selecting the winning candidate that promotes the

dispersal of candidate designs along the Pareto front.

Our application of fitness sharing involves assessing the

degree of crowding, or population density, experienced

by each candidate. The population density around each

candidate is calculated within a specified Cartesian dis-

tance (in objective function-space), called the niche

radius (see Fig. 5). The niche count is calculated by

summing the number of designs within the niche radius

of each candidate, weighted by the radial distance be-

tween the candidate and the other designs, or
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mi ¼
X

j2pop
1

 

�
d 0
ij

rshare

!

; ð1Þ

where d 0
i;j is the scaled, radial distance between candidate

i and candidate j and rshare is the niche radius. Both di;j
and rshare are measured in scaled, objective function

space, such that 0 < d 0
i;j <

ffiffiffi

2
p

. The values of the ob-

jective functions are scaled as in

O0
i ¼

Oi � Oi;min

Oi;max � Oi;min

; ð2Þ

where O0
i, Oi;min; and Oi;max are the scaled, minimum, and

maximum values of objective Oi, respectively.

Thus, in the no clear winner case, preference is given

to the candidate with the lowest niche count. In Fig. 5,

the design shown as a solid square has two candidate

designs within the niche radius, whereas the design

Fig. 2. Process flowchart for the NPGA. The parameters that control specific algorithm steps are listed in italics to the right of the flow chart.

Fig. 3. Pareto domination ranking for a population of ten designs.

Designs of equal rank are designated by the same symbol.
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shown as an open square has no candidate designs

within this distance. The open square would be given

preference and would be the winner of the tournament

selection process.

3. Numerical experiments

The objectives of the numerical experiments are to (1)

investigate the performance of the NPGA as a function

of the size of the search space, (2) compare the NPGA

performance with two other methods for generating the

tradeoff curve, and (3) investigate the NPGA per-

formance as a function of algorithm parameters.

3.1. Multiobjective management model

The application of the multiobjective problem focuses

on the active remediation of a hypothetical, contami-

nated groundwater site by pump-and-treat (PAT) tech-

nology. The decision variables are well extraction rates

as a function of location. It was assumed that the ex situ

treatment technology for the contaminated groundwater

is granular activated carbon (GAC). The two objectives

are to minimize cost and maximize cleanup per-

formance. The cost of a PAT remediation system in-

cludes capital costs incurred from installation of

recovery wells and operational costs from pumping and

groundwater treatment as in

min J ¼ a1New þ
X

New

k¼1
a2QkHkTð Þ

"

þ
X

NTSP

l¼1
a3tlQk

Ck;l

KABC
1=n
k;l

 !#

; ð3Þ

where J is the total cost of the remedial design, New is the

number of active wells, NSTP is the number of time steps

within the remediation horizon T ¼ Rtl;Qk is the ex-

traction rate of well k, Hk is the total drawdown at well

k, Ck;l is the average flow-weighted concentration re-

moved by well k in time step l, tl is the length of time

step l, KAB and 1/n are the Freundlich GAC adsorption

parameters for a given contaminant and carbon adsor-

bent, and a1, a2; and a3 are the coefficients for capital,

pumping, and treatment costs, respectively. The treat-

ment cost term is linearly related to the GAC utilization

rate, _mmGAC, which is based on a steady-state mass bal-

ance on the GAC reactor

q _mmGAC ¼ QCk;l � QC�;

where q is the concentration of the contaminant on the

adsorbent and is given by a Freundlich isotherm equa-

tion, q ¼ KAB C�ð Þ1=n [23], and C� is the target effluent

concentration from the GAC reactor. The second term

on the right-hand side is ignored because Ck;l � C� for
most of the simulation period.

The second objective function is based on a measure

of cleanup performance. The usual approach is to re-

quire that point concentrations at monitoring or

pumped wells do not exceed a target concentration. The

approach used here is different in that cleanup per-

formance is treated as a variable to be maximized, rather

than as a fixed constraint. Furthermore, the total con-

taminant mass remaining in the aquifer ðMRÞ is used as a
measure of cleanup performance, rather than point

concentrations. In the simulations, the use of MR avoids

the arbitrariness of selecting well locations for moni-

toring performance. In the field, point concentrations

are inherently uncertain, due to variability in aquifer

properties and measurement errors. Since the MR is

Fig. 4. Two possible tournament selection outcomes, where the

candidates have equal ranks (designated by a j) or unequal ranks

(designated by either an M or N). The open triangle is the winner in the

case of unequal ranks.

Fig. 5. Performing fitness sharing on two tournament selection can-

didates ranks (designated by either an � or j) with equal ranks. The

winner here is the less crowded design represented by the open square.

M. Erickson et al. / Advances in Water Resources 25 (2002) 51–65 55



determined by integrating over point concentration

values, it tends to average out the uncertainty.

The mass remaining objective function is formulated

as:

minMR0 ¼ 100
MR

MI
; ð4Þ

where MR0 is the percent mass remaining after the re-

medial horizon is complete; MI and MR are the initial

mass present in the aquifer at the beginning of the

remediation horizon and the mass remaining at the end

of the remediation horizon, respectively. In the simula-

tions of the aquifer-contaminant system, MI is a known.

However, in the field, the value of MI usually is not

known, unless the initial contaminant release has been

documented or there is a conservative constituent

present and the composition of the contaminant source

is known.

In groundwater management and remediation prob-

lems, drawdown constraints are usually enforced to

protect against aquifer dewatering. Constraints can be

applied explicitly in optimization problems by formu-

lating penalty functions that decrease the values of the

objective functions proportionally to the magnitude of

constraint violations. Although the algorithm per-

formance is sensitive to the form of the penalty function,

there are only qualitative guidelines for choosing the

optimal formulation. In an effort to avoid the use of

penalty functions, the drawdown constraint is enforced

by limiting the maximum extraction rate per well Qmax
k ,

as in the following:

06Qk 6Qmax
k for Qmax

k ¼ Qmax
T =New;

yk ¼ 1; . . . ;New; ð5Þ

where Qmax
T is the maximum total extraction rate, Qmax

T is

determined by running a series of single-well flow sim-

ulations, where the extraction rate is varied until the

maximum allowable drawdown (15% of the aquifer

thickness) is reached. The constraint is applied through

the encoding/decoding of the decision variables, such

that the value of the individual well extraction rates

cannot exceed Qmax
k . Although this approach for en-

forcing the drawdown constraint is straightforward for

the cases presented here, it may not be appropriate for

heterogeneous cases or cases with a large number of

decision variables.

The state variables, hydraulic head and contaminant

concentration are determined with a groundwater flow

and contaminant transport simulator. The steady-state

confined groundwater flow equation for a non-deform-

ing, saturated, aquifer system is

r K � rhð Þ ¼
X

k

Q0
kdðx� xk; y � ykÞ; ð6Þ

where K is the hydraulic conductivity, Q0
k is the extrac-

tion rate per unit aquifer volume from well k located at

xk and yk, and d is the delta Dirac function. The hy-

draulic head, h, is related to the total drawdown, H , by

H ¼ zgs � hþ hl, where zgs is the ground surface eleva-

tion and hl is the estimated head loss due to piping in

treatment train.

Contaminant concentrations are determined by

solving the mass balance equation for a neutrally

buoyant, conservative aqueous chemical constituent,

given by

oC

ot
þrðvCÞ � r D � rCð Þ

¼ �
X

j

Ck

n
Q0

kdðx� xk; y � ykÞ; ð7Þ

where C is the aqueous concentration in the aquifer, Ck

is the aqueous concentration removed by well k, and n is

the effective porosity. The hydrodynamic dispersion

tensor, D, is defined as

D ¼ aT vj jð þ D�ÞIþ aLð � aTÞ
vv

vj j ; ð8Þ

where aL and aT are the effective longitudinal and

transverses dispersivity coefficients, I is the unit tensor;

and D� is the molecular diffusivity. The pore velocity, v,
is given by Darcy’s relationship as

nv ¼ �Krh: ð9Þ
We employ a two-dimensional finite difference ap-

proximation to solve the groundwater flow Eq. (6) and a

particle-tracking method to solve the mass transport

Eq. (7). The numerical codes have been validated by

Maxwell [18,19]. Additional background information

pertaining to the development of this numerical simu-

lator can be found in [17].

3.2. Description of groundwater system

To explore the performance and efficiency of the

NPGA, the simulation/optimization algorithm was ap-

plied to a simple, hypothetical contaminated ground-

water site. The site is modeled as a confined

homogeneous aquifer 1000 m long by 1010 m wide and

30 m thick (see Fig. 6). The two-dimensional finite-dif-

ference grid system consists of 10-m square grid blocks.

Constant-head boundaries are imposed on the east and

west sides of the model domain and no-flow boundaries

are imposed on the north and south sides. The aquifer is

modeled as having a homogeneous, isotropic hydraulic

conductivity. Groundwater extraction wells are modeled

as being open over the entire thickness of the confined

aquifer. Removal of contaminant by the treatment sys-

tem is simulated as equilibrium, non-linear adsorption

onto the GAC.

Trichloroethlyene (TCE), a commonly observed and

studied groundwater contaminant, is used as the hypo-
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thetical contaminant and is treated as a conservative,

dissolved species. A constant source of approximately

750 ppm is used to generate the initial concentration

plume shown in Fig. 6. The contaminant plume evolves

until approximately 1000 kg of TCE is released into the

confined aquifer system as a dissolved species. The

source is then removed and active remediation begins.

The length of the remediation horizon is ten years. Table

1 summarizes the aquifer, contaminant, and treatment

system properties. The aquifer properties (porosity, hy-

draulic conductivity, and background pore velocity) are

similar to those found for a non-uniform, fine to me-

dium sand. The longitudinal dispersivity was chosen to

be equivalent to the gridblock size so that numerical

errors would be minimized and the transverse disper-

sivity is set as a typical fraction of the longitudinal dis-

persivity ðaT ¼ aL=5Þ.

3.3. Structure of numerical experiments

We chose to examine the performance of the NPGA

with two, five, and 15 decision variables, where each

decision variable corresponds to the pumping rate at a

fixed-location well. The NGPA parameters we investi-

gate are population size, tournament selection size, and

niche radius. Table 2 lists the cost coefficients used in the

numerical experiments. Table 3 describes the problem

characteristics for each scenario.

SGA and RS methods. We compare the performance

of the NPGA with two methods for generating the

tradeoff curve: an SGA and RS. With the SGA method,

minimizing cost is the objective and the percent mass

remaining is held as a constraint. The tradeoff curve is

constructed by executing separate SGA runs, each with

a different value of the mass remaining constraint. The

percent mass remaining constraint was imposed via the

multiplicative penalty approach described by Chan

Hilton and Culver [1]. The constrained optimization

problem can be formulated as

min J 1
��

þ wMR0 	
; ð10Þ

where the cost function, J , is identical to the cost

function in Eq. (3), w is the constraint violation weight,

and MR0 is defined as Eq. (4). We assumed that three

separate SGA runs with the constraint values equally

distributed (on a log scale) over the possible range of

mass remaining would be sufficient to delineate the

tradeoff curve.

The RS is a simplistic approach to finding optimal

solutions, where values of the decision variables are

randomly generated from a uniform distribution. The

tradeoff curve is formed by the Pareto optimal subset of

the randomly generated set of decision variables. We

compare the NGPA, SGA, and RS in terms of (a) the

Pareto optimality of the tradeoff curves and (b) the span

of the tradeoff curves. Table 4 lists the values of the

algorithm parameters used in the comparisons. We use

the same random seed in each numerical experiment.

Coding of decision variables, size of search space, and

scaling of objective functions. For all three methods, the

decision variables are coded in binary form. The binary

Table 1

Parameters for flow, transport and treatment simulations

Parameter Value Source

Porosity 0.25 (dimensionless) Assumed

Hydraulic conductivity 3:82� 10�5 m/s Assumed

Background pore velocity 2:7� 10�2 m/d (west to east) Calculated from constant head boundary

conditions and above parameters

Longitudinal dispersivity 10 m Assumed

Transverse dispersivity 2 m Assumed

GAC adsorption coefficient, KAB 28.4 (mg/gm) (l/mg)1=n Hand [12]

GAC adsorption coefficient, 1/n 0.48 Hand [12]

GAC effluent concentration 5 ppm Fetter [5]

Fig. 6. Plan view of the hypothetical aquifer system showing the initial

contaminant plume and fixed-location extraction wells used in the

numerical experiments. The contaminant plume is contoured at 100,

10, 1, and 0.1 ppm levels.
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representation is transformed to a real form by scaling

with maximum ðQmax
k Þ and minimum ðQmin

k ¼ 0Þ allow-
able pumping rates. The size of the search space, or the

number of possible solutions, Np, is dependent on the

number of bits, Nb, used to represent the decision vari-

ables in the search methods, which corresponds to the

precision of the decision variables, dQk. The number of

bits is calculated as follows:

2Nb � 1 ¼ Qmax
k � Qmin

k

dQk

ð11Þ

and the number of possible solutions is given by

Np ¼ 2Nb
� 	New : ð12Þ

The objective functions are scaled as described in

Eq. (2), so that the scaled distances in Eq. (1) can be

calculated. The maximum and minimum objective

function values do not change from generation to gen-

eration; they are fixed at the beginning of a run. The

maximum cost value is estimated using results from

initial sets of optimization runs. The NPGA results were

insensitive to changes in the maximum objective func-

tion values. A 100% increase and 50% decrease in the

maximum cost were found to have no impact on final

results. The minimum value for cost assuming no action

is zero; similarly, the minimum mass removed is 0%. The

maximum mass removal is 100%.

Performance measures. The algorithms (NPGA,

SGA, or RS) proceed until a fixed amount of compu-

tational effort is consumed. One unit of computational

effort is equivalent to one set of objective function

evaluations, which involves one execution each of the

flow and transport simulators and the corresponding

calculation of the cost and mass remaining objective

function values. The computational time required to run

the flow and transport simulators is typically more than

90% of the total time needed to evaluate the objective

functions. Thus, one unit of computational effort is

approximately equal to the effort required for one run of

the flow and transport simulators. One execution of the

flow and transport simulators consumes approximately

2.5 min of CPU time on a Sun Ultra 80 workstation

with a 450 MHz processor.

Since the computational effort is fixed for the simu-

lation/optimization experiments, we use as performance

measures: (a) the percentage of Pareto optimal solutions

found by each method and (b) a qualitative evaluation

of the span of the tradeoff curve covered by these solu-

tions. We determine the percentage of Pareto optimal

solutions found by a method m by aggregating all of the

Pareto optimal solutions found by the methods and

calculating Pm=PM , where PM is the total number of

Pareto optimal solutions found by all methods and Pm is

the number of Pareto optimal solutions found by

method m. The endpoints of the tradeoff curve are de-

fined as the maximum MR0 achievable ð�100%) and the

minimum MR0 achievable, given the maximum pumping

rate constraint.

Table 4

Optimization algorithm parameters for the multiobjective (NPGA) and single-objective (SGA) solution methods applied to two-, five-, and 15-well

scenarios

Parameter NPGA 2 wells NPGA 5 wells NPGA 15 wells SGA all scenarios

Population size 50 50 100 50

Tournament selection size 2 2 10 2

Niche radius 0.5 0.05 0.5 –

Probability of crossover 0.9 0.9 0.9 0.9

Probability of mutation 0.001 0.001 0.001 0.001

MR0 constraint violation weight – – – 150

Table 3

Problem characteristics for two-, five-, and 15-well scenario scenarios

Scenario Candidate well

locationsa
Maximum number

of objective function

evaluations allowed

Decimal pre-

cision in flow

rate (m3/d)

Maximum flow

rate per well

ðm3=dÞ

Number of bits

per decision

variable

Number of

possible

designs

2 wells 7, 8 500 2.5 250 7 �104
5 wells 2, 6, 7, 8, 12 1000 2.5 100 6 �109
15 wells All wells 2000 2.5 33 4 �1018

aNote that these locations refer only to the possible locations for the given scenario, and that not all of these wells will be active for a given design.

Refer to Fig. 6 for locations.

Table 2

Cost coefficients used in numerical experiments

Parameter Value Source

Capital cost coefficient, a1
8 in. (two-well scenario) 10,800 $/well Means [20]

6 in. (five-well scenario) 8500 $/well Means [20]

4 in. (15-well scenario) 5800 $/well Means [20]

Power cost coefficient, a2 1.05 Means [20]

Treatment cost coefficient, a3 2.14 Means [20]
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Although the SGA was nominally subjected to a

stopping criterion based on a fixed amount of compu-

tational effort, each SGA run converged before the

stopping criterion was reached. We report the number of

flow and transport simulations expended to reach con-

vergence, which is defined as the point where the entire

population converges to a single solution. The best

solution (lowest cost) found during the run was used as

the optimal value.

Archiving. In the NPGA, SGA and RS methods, we

implement design archiving. Archiving eliminates re-

dundant objective function evaluations by saving the

objective function values for every design, beginning

with the initial population. If, in a subsequent genera-

tion, a design is found to have been evaluated previ-

ously, the previous evaluation is used, and only the

remaining, new designs are evaluated. The archives are

searched by comparing the active set of decision vari-

ables to the sets stored in the archives, using a hashing

algorithm.

Archiving typically resulted in reducing the number

of objective function evaluations by 50%, which is ap-

proximately the same as the reduction observed for

CPU time. As the number of digits used to code the

decision variables or the number of decision variables

increases, the archive search requires more CPU time

and storage space. However, only the binary decision

variables and the associated, floating point values of the

objective function are stored, so that only of the order of

100 bytes are required for each design. For the simula-

tions reported in this work, the archiving effort did not

exceed 0.01% of the total CPU time for a simulation and

the maximum archive file size was less than 10 kB.

4. Results and discussion

We present the results in terms of the distribution of

the Pareto offline data. The Pareto offline data consist of

the Pareto optimal designs found in each generation,

beginning with the initial population. In subsequent

generations, Pareto optimal designs are copied into the

Pareto offline data set, and any designs from previous

generations that are now dominated are removed.

Fig. 7 shows the results from a typical NPGA run,

where the cost is plotted against the mass remaining on a

log scale. In this computational experiment, the NPGA

ran for 200 generations with a population size of 50,

tournament selection size of 2, and niche radius of 0.005.

The PAT remedial design involved estimating extraction

rates for fifteen fixed-location wells (see Fig. 6 for lo-

cations). In Fig. 7, the Pareto offline designs are shown

for every 50th generation. In this case, the minimumMR0

possible was 2%, due to the maximum extraction rate

constraint. The improvements seen in the final set of

optimal solutions are significant when compared to the

initial population. As the algorithm proceeded, the span

of the tradeoff curve increased until Pareto optimal de-

signs were found over the entire possible range of

tradeoffs. While designs in the higher cost region of the

tradeoff curve (greater than about $140,000) appear to

have converged quickly (within 50 generations), the re-

maining portion of the tradeoff curve was not generated

until at least 150–200 generations elapsed.

The designs also improved considerably in terms of

Pareto optimality as the algorithm proceeded. For ex-

ample, the cost of designs with about 5% mass remain-

ing improved by nearly 20% from the first to the 50th

generation. The cost of the designs with 50% mass re-

maining improved by about 50% from the first to the

100th generation. Although the position of the starting

set of solutions varies from random population to ran-

dom population, the convergence behavior shown in

Fig. 7 is typical of all of the runs conducted with the

NPGA.

In Fig. 8, the extraction rate distribution and final

contaminant plume contours are given for 60%, 15%,

and 4% MR0 designs, respectively. These figures dem-

onstrate that the NPGA is finding reasonable results,

since as MR0 decreases, more extraction wells are re-

quired. In addition, the distribution of extraction rates is

symmetric about the mean direction of flow, for the

most part, as is the final contaminant plume. The ex-

traction rate distribution shown in Fig. 8(c) is not an

entirely intuitive result, however, since the two wells not

on the plume centerline (wells #3 and #15, see Fig. 6 for

well numbering system) are not opposite each other. The

optimization algorithm cannot be expected to recognize

the physical nature of the optimal solution, i.e. sym-

metry, but it should yield optimal results. To assess the

optimality of the asymmetric solution, a new simulation

Fig. 7. NPGA results for the 15-well scenario: Pareto optimal designs

at intervals of 50 generations with a population size of 50 designs.
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was conducted where the extraction rate at well #15 was

exchanged with that of #13 to produce an almost sym-

metric design. A simulation using the new, almost

symmetric design resulted in costs and mass removals

that were only 2.5% and 0.5% lower, respectively, than

the cost associated with the asymmetric design. These

small differences imply that, since the solution is insen-

sitive to the pumping rate distribution in the off-cen-

terline wells, the optimization algorithm will not

necessarily find a symmetric solution.

The relationships of the total extraction rates,

treatment costs, and total costs to percent mass re-

maining are illustrated in Fig. 9. For higher values of

MR0, treatment costs dominate the overall cost of a

design. However, as MR0 decreases below 10%, in-

stallation costs are increasingly significant, since the

number of wells required to meet the given value of

MR0 increases sharply below this level. The total ex-

traction rate also increases sharply for MR0 < 10%,

since below this level, the volume of water that must

be extracted to meet the given level of MR0 increases
exponentially.

As mentioned in the Section 3, it is likely that the

initial mass ðMIÞ will be uncertain in a field situation. If

the transport equation is linear in concentration, then

the concentrations are linearly related to the source

concentration and thus the initial mass of contaminant.

In this case, the effects of uncertainty in MI can be an-

alyzed by shifting the tradeoff curves along the MI axis.

If the processes active in the contaminant-aquifer system

result in non-linear transport, a more involved analysis

is required and is the subject of the ongoing work.

Fig. 8. NPGA results for the 15-well scenario: distribution of extraction rates (left-hand side) and contaminant plume at the end of remediation

(right-hand side) for: (a) a 60% MR design, (b) a 15% MR design, and (c) a 4% MR design. Plume contours are spaced by a factor of 10 ppm. Well

locations are indicated by dots.
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4.1. Sensitivity to number of decision variables and

comparison of NGPA performance with SGA and RS

We applied the NPGA, SGA, and RS to hypothetical

remediation scenarios using two, five, and 15 as the

number of wells for which optimal extraction rates must

be found. Table 5 shows a component cost breakdown

for MR0 ¼ 5% designs for these scenarios. The cost

breakdown shows that, in general, the treatment costs

account for the majority of the total costs. The results in

Table 5 also show that, for designs that can achieve

MR0 ¼ 5%, not all of the possible wells are used in each

scenario.

For the two-well tradeoff curve (Fig. 10), the cost

increases from MR0 ¼ 100% until a level of approxi-

mately MR0 ¼ 0:1% is achieved, below which the cost

begins to approach an asymptotic value. The asymptotic

behavior is primarily due to the fact that, for

MR0 < 0:1%, the concentration of water extracted from

the aquifer is below the desired effluent concentration

for the treatment system. Thus, as MR0 decreases further
below 0.1%, the only additional increase in cost is due to

the energy requirements for pumping.

The results in Fig. 10 show that each method is

equally effective at generating the trend of a tradeoff

curve, for the case where the search space is relatively

small. If the NPGA, SGA, and RS results are

aggregated, we find that the NPGA generated 70% of

the aggregated Pareto optimal designs, spanning the

entire range of MR0. The RS found the remainder of

the aggregate Pareto optimal designs, spanning

MR0 ¼ 0.0001% to MR0 ¼ 40%. The NPGA and RS

runs each consumed the limit of 500 objective function

evaluations. The three SGA runs, using mass re-

maining constraints of 0.001%, 0.1% and 10%,

consumed a total of 641 evaluations. All of the

SGA runs converged to a single solution before the

limit of 500 objective function evaluations was

reached.

The final Pareto offline results for the five-well

scenario are shown in Fig. 11. In this scenario, the costs

increase sharply as a function as MR0 decreases, but
approach an asymptotic value asMR0 drops below about

1%. This behavior is similar to that of the two-well case,

which is explained by the fact that the treatment costs

approach zero for MR0 < 0:1%. The NPGA generated

95% of the aggregate Pareto optimal designs, compared

to 4% for the RS. The minimum cost designs found by

SGA for the three constraint values of MR0 ¼ 0.05%,

5%, and 50% are nearly Pareto optimal solutions. The

SGA designs were found at the expense of 1661 evalu-

ations. The NPGA and RS runs each consumed the limit

of 1000 objective function evaluations. Although the

NGPA clearly found more Pareto optimal solutions

than the other methods, the tradeoff curves generated by

each method are of a similar shape and position.

The Pareto offline results for the fifteen-well sce-

nario are shown in Fig. 12. These results exhibit ap-

proximately a linear (cost)-log (MR0) relationship over

Table 5

Comparison of Pareto optimal 5% MR0 designs found by the NPGA for the two-, five-, and 15-well scenarios

Test

scenario

Number of active

wells

Total flow rate

ðm3=dÞ
Total capital cost

($)

Total pumping

cost ($)

Total treatment

cost ($)

Total

cost ($)

2 wells 1 81 10,800 1100 126,400 138,300

5 wells 2 76 17,000 1000 123,500 141,400

15 wells 6 173 34,000 2400 122,500 159,100

Fig. 10. Final Pareto offline results for two-well scenario found by the

NPGA, SGA and RS.

Fig. 9. NPGA results for the 15-well scenario: total pumping rates,

treatment costs, and total costs for final Pareto optimal designs.
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the entire range of MR0. This relationship is due to the

fact the number of wells required to achieve a given

value of MR0 increases linearly with a log change in

MR0. All three methods were capable of finding de-

signs that spanned the full range of mass remaining

values. However, the results show that the NPGA

found solutions that would achieve 25–250% better

performance than the RS, measured in terms of the

MR0 achieved for given values of cost. For example, a

$100,000 design generated by the NPGA achieved

20% mass remaining, whereas an RS design with a

cost of $100,000 achieved only 65% mass remaining.

In addition, the NPGA produced 352 Pareto optimal

solutions that span the entire range of tradeoffs, while

the RS failed to find any designs on the Pareto front.

Although the three SGA runs found designs that are

near optimal in cost with respect to the NPGA, the

total computational expense was 2713 objective func-

tion evaluations, as compared to 2000 for the NPGA.

The inability of the five- and 15-well cases to identify

designs with mass removals as low as the two-well case is

caused by the drawdown constraint. Recalling Eq. (1),

the drawdown constraint is enforced by setting a maxi-

mum extraction rate per well, which is equal to the total

maximum extraction rate divided by the number of

wells. Since the total maximum extraction rate is con-

stant, the total extraction is applied over a successively

broader area as the number of wells increases. The result

is that the efficiency of the remediation effort declines as

the number of wells increases.

4.2. NPGA parameter sensitivity

Population size and tournament size. In general, we

observed that there is an optimal population size that

gives the best tradeoff between finding designs that are

Pareto optimal and designs that span the tradeoff curve.

This observation is illustrated in Fig. 13 where popula-

tions of 100 and 150 designs covered a greater span of

the tradeoff curve than the population of 50 designs. The

results from the run with a population size of 50 indicate

that designs for larger values of MR0 ðMR0 > 40%Þ were
not found. Although the NPGA run with a population

of 150 found Pareto optimal designs that spanned the

possible range of MR0 values, it performed worst in

terms of the number of Pareto optimal designs found, as

shown in Table 6. This result is due to the fixed limit on

the number of objective functions. Under these cir-

cumstances, runs with smaller population sizes can

propagate through more generations, thus advancing

the Pareto front farther than runs with larger population

sizes. Thus, a population size of 100 seems a good bal-

ance of search breadth versus search duration. We have

also found that when the population size was at an

optimal value, the NPGA was less sensitive to selection

pressure, crossover rates, and decision variable pre-

cision.

Selection pressure also can be increased by enlarging

the tournament size. Fig. 14 shows a comparison of

results obtained with tournament sizes of 2, 4 and 10 for

Fig. 12. Final Pareto offline results for 15-well scenario found by the

NPGA, SGA and RS.

Fig. 13. Final Pareto offline results for 15-well scenario using NPGA:

population sizes of 50, 100, and 150 designs and a tournament size of 2

designs.

Fig. 11. Final Pareto offline results for five-well scenario found by the

NPGA, SGA and RS.
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a population size of 50. The increase in tournament size

to 10 improved the span of the tradeoff curve signifi-

cantly, although there was a corresponding decrease in

Pareto optimality for the highest cost designs.

Niching. In cases with low tournament size, we ob-

served that niching produces a greater span of the

tradeoff curve. As shown in Fig. 15(a), where the tour-

nament size is 2 and the population is 50, the entire

tradeoff curve is spanned for rshare > 0. Even without

explicit niching, the algorithm is able to maintain some

diversity on the Pareto optimal front. This performance

is most likely due to the Pareto domination ranking

tournaments, since individuals in more crowded areas

will tend to have more individuals dominating them.

When the tournament size is increased to 10, the ef-

fect of niching on the span of the tradeoff curve is almost

(a) (b)

(c)

Fig. 15. Final Pareto offline results for 15-well scenario using NPGA: niche radii of 0, 0.5, and 1.0 with: (a) a population of 50 designs and a

tournament size of 2, (b) a population of 50 designs and a tournament size of 10, and (c) a population of 100 designs and a tournament size of 2.

Fig. 14. Final Pareto offline results for 15-well scenario using NPGA:

tournament sizes of 2, 4 and 10 and a population of 50.

Table 6

Performance results for NPGA Pareto optimal solutions for three population sizes

Population size Number of

generations

Number of objective function

evaluations allowed

% of population that is

Pareto optimal

50 89 2000 95

100 26 2000 50

150 15 2000 30
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negligible, as shown in Fig. 15(b). This result is due to

the high selection pressure induced by large tournament

sizes, creating populations that are more consistently

diverse over the evolutionary process. The results in

Fig. 15(b) also indicate that the increase in tournament

size produces better results in terms of Pareto optimality

for the cases where niching is applied. When the popu-

lation size is increased from 50 to 100 (compare Fig.

15(a) and (c)), the cases with niching perform better in

terms of Pareto optimality. It is likely that with the

smaller population (50), there is limited diversity within

a single generation, such that the addition of niching

improves the search by maintaining greater diversity.

Conversely, for the larger population size (100), there is

sufficient diversity, and so niching does not help. From

our limited results, there appears to be no optimal set-

ting of rshare, other than rshare > 0. Indeed, the choice of

niche radius seems itself to be a problem with two

conflicting objectives: spanning the tradeoff curve versus

Pareto optimality.

5. Conclusions

In summary, the NPGA has been applied to a

groundwater quality management problem consisting of

active remediation by pump-and-treat. The sensitivity of

the algorithm to the parameters that control the be-

havior of the algorithm was assessed, namely population

size, tournament size, and niche radius. A population of

100 designs gave the best performance in terms of dis-

tribution of designs along the tradeoff curve. For the

two- and five-well cases, smaller populations (50 de-

signs) lacked sufficient diversity to adequately explore

the range of tradeoff curves. While larger population

sizes (150 designs) offered more diversity, a larger frac-

tion of the generated designs was inferior, for all of the

cases. When the population size is at an optimal value,

the NPGA is less sensitive to selection pressure, values

of crossover and mutation probabilities, and decision

variable precision.

There is an optimal degree of selection pressure, with

respect to the span of the tradeoff curve and the number

of Pareto optimal points. Increasing the selection

pressure via the tournament size produced solutions

with a more complete span of the tradeoff curve. How-

ever, too much selection pressure resulted in more in-

ferior solutions. Increasing the amount of selection

pressure via increasing the tournament size (from 2 to

10) produced solutions that spanned wider tradeoff

curves, but were inferior in some portions of the curve.

Niching appears to increase the span of the tradeoff

curve for various population sizes and selective pres-

sures (i.e., tournament sizes), but its effect on Pareto

optimality is unclear. It appears that the results are in-

sensitive to the value of the parameter that controls ni-

ching ðrshareÞ, as long as some niching is allowed.

A series of test problems was conducted where the

NPGA was compared to two other methods, SGA and

RS. As the problems increased in complexity, by con-

sidering additional decision variables, the NPGA was

more effective and efficient than either the SGA or the

RS in finding more Pareto optimal designs that span the

entire tradeoff curve. When applied to a 15-well

scenario, the niched Pareto genetic algorithm outper-

formed the SGA by finding 352 Pareto optimal designs

with 30% less effort than the three single-objective runs.

The NPGA produced solutions that were 25–250%

better performance than the RS, measured in terms of

the mass remaining for a given cost.

The NPGA can be an effective method for producing

tradeoff curves for subsurface remediation problems.

Tradeoff curves such as those presented here may give

decision makers the capability of making better in-

formed decisions. The NPGA can accommodate addi-

tional objective functions, such as maximizing reliability

or minimizing remediation time. The algorithm is flexi-

ble with respect to the number and types of decision

variables that can be considered. For example, future

studies may include extraction rates as a function of

location and time. Further tests of the applicability of

this approach should consider realistic, contaminated

sites, especially those with a significant degree of heter-

ogeneity.
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