
In: Proceedings of the fifth international conference on adaptive computing in design
and manufacture (ACDM 2002)

Full Elite Sets for Multi-objective
Optimisation

Richard M. Everson, Jonathan E. Fieldsend, Sameer Singh

Department of Computer Science
University of Exeter, Exeter, EX4 4PT, UK.
{R.M.Everson,J.E.Fieldsend,S.Singh}@exeter.ac.uk

Abstract

Multi-objective evolutionary algorithms frequently use an archive of non-dominated
solutions to approximate the Pareto front. We show that the truncation of this archive
to a limited number of solutions can lead to oscillating and shrinking estimates of
the Pareto front. New data structures to permit efficient query and update of the full
archive are proposed, and the superior quality of frontal estimates found using the full
archive is illustrated on test problems.

1 Introduction

Genetic algorithms and evolutionary techniques have been successfully used for a
number of years for the optimisation of single objectives. However, one often desires
the optimisation of more than one objective, for example, product performance and
cost of production. In [1], for example, multi-objective optimisation is applied to
four performance measures of a gas turbine, and in [2] different loads in trusses are
the competing objectives to be minimised. Recently different measures of a neural
network’s performance for financial prediction have been optimised [3]. In all these
cases a single solution will seldom optimise all objectives, and the goal of optimisation
methods is to discover solutions that lie on the curve (for two objectives) or surface
(more than two objectives) that describes the optimal trade-off possibilities between
objectives. This surface is known as the Pareto front and solutions lying on it are
known asnon-dominatedsolutions. A non-dominated solution lying on the Pareto
front cannot improve any objective without degrading at least one of the others, and,
given the constraints of the model, no solutions exist beyond the Pareto front.

Although evolutionary methods have been used in multi-objective optimisation
for many years, there has been recent renewed practical and theoretical interest in
multi-objective genetic algorithms (MOEAs) [1, 4, 5, 6]. In a comparative study Zit-
zler et al. [7] show that their Strength Pareto Evolutionary Algorithm (SPEA) out-
performs other algorithms on a variety of standard test problems.

1

Laumannset al. [8] have presented a unified model for multi-objective evolution-
ary algorithms (UMMEA), of which SPEA is an example. Algorithms in this class
extend the notion ofelitism to multi-objective algorithms by maintaining an archive
or frontal set,Ft, of non-dominated solutions, in addition to the usual GA population,
Bt. As the evolutionary algorithm proceeds this archive set comprises the current es-
timate of the Pareto front. It is also actively used in the search process as part of the
cross-over process to generate new individuals, rather than being a mere static store of
the best solutions found.

For computational reasons the archive is of fixed size in SPEA: if it were allowed to
grow without bound the cost of searching it to discover whether new solutions should
be added to it becomes prohibitive. However, fixing the size of the archive can lead to
defects in the the speed and stability of the SPEA and algorithms like it, manifest in
the form of shrinking, oscillating and retreating estimates of the Pareto front. In this
paper we describe some of the problems inherent in representing the Pareto front by
a limited number of solutions, and we present a novel data structure, the dominated
tree, for storing the non-dominated solutions.

2 Background

The notions of non-dominance and Pareto optimality, which we briefly review, are
central to most MOEAs. Without loss of generality we assume that the multi-objective
problem seeks to minimiseD objectives,yi = fi(x), i = 1, . . . , D, where each
objective depends onx, aP -dimensional vector of parameters. The multi-objective
optimisation problem may be succinctly stated as:

Minimise y = f(x) = (f1(x), . . . , fD(x)) (1)

subject to e(x) = (e1(x), . . . , eJ(x)) ≥ 0 (2)

wherex = (x1, x2, . . . , xP) andy = (y1, y2, . . . , yD) andej(x), j = 1, . . . , J are
constraints upon the solution.

When there is more than one objective to be minimised it is clear that there may
be solutions for which performance on one objective cannot be improved without
sacrificing performance on at least one other. Such solutions are said to bePareto
optimal [9] and the set of all Pareto optimal solutions is said to form the Pareto front.
The notion ofdominancemay be used to make Pareto optimality more precise. A
decision vectoru is said tostrictly dominateanotherv (denotedu ≺ v) iff

fi(u) ≤ fi(v) ∀ i = 1, . . . , D (3)

and fi(u) < fi(v) for some i (4)

Less stringently,u weakly dominatesv (denotedu � v) iff

fi(u) ≤ fi(v) ∀i = 1, . . . , D (5)

A set ofM decision vectors{wi} is said to be anon-dominated set(an estimate of
the Pareto front) if no member of the set is dominated by any other member:

wi 6≺ wj ∀i, j = 1, . . . ,M (6)

2

t := 0
(F0, B0, p

e
0) = initialise()

while terminate(Ft, Bt, pet) = false:
t := t+ 1
F ′t := update(Ft−1, Bt−1)
Ft := truncate(F ′t)
pet := adapt(Ft, Bt−1, p

e
t−1)

Bt := vary(sample(evaluate(Ft, Bt, pet)))
end

Figure 1. The sequential unified multi-objective evolutionary algorithm [8].Ft denotes the
elite archive,Bt the general population andpet the elitism intensity at generationt.

3 UMMEAs

Laumannset al. [8] have described a general framework for multi-objective evolu-
tionary algorithms incorporating elitism. Fig. 1 summarises the sequential UMMEA
framework in terms of various stochastic operators. The general genetic population
B0 is initialised, together with the elite setF0 which is generally initialised to be the
empty set. At each generation, the elite set is augmented to formF ′t by incorporating
those solutions inBt−1 which are not dominated any member ofFt−1∪Bt−1; also any
elements of theFt−1 which are dominated by members ofBt−1 are deleted fromF ′t .
For computational reasons, the updated frontal set is then truncated (usually to some
fixed size). In the SPEA this truncation is achieved by clustering. In the final stage of
the algorithm the fitness of individuals is evaluated and used to control the sampling
of individuals from both the frontal set and the search population for crossover and
mutation to yield an offspring populationBt. The crossover and mutation operators
are abstractly represented by thevary()operator. In SPEA [10] and a recent extension
to SPEA [11] fitness ofx is evaluated according to the number of individuals inFt
dominatingx.

The ‘elitism intensity’,pet , controls the probability that an individual from the elite
archive set will be selected for the binary tournament [8]. A straight-forward scheme
is to choosepet = |Bt|/|Ft| so that equal numbers of individuals are chosen fromBt
andFt. In [11] a more sophisticated method for sampling fromFt is described which
ensures that all regions of the front are equally well represented in the population
entering the binary tournament. This prevents the search from concentrating in regions
in which there are already many individuals and thus forces exploration along the
entire estimated Pareto front.

3.1 Truncation

The archive of elite solutions forms the best estimate of the Pareto front at any stage. It
should therefore ‘advance’ in the sense that no individual inFt should be dominated
by any member of an earlier frontal set,F0, . . . , Ft−1. Informally, we say that an

3

Figure 2. A retreating archive set produced by clustering. Panels illustrate the elite set at
successive generations. Elements ofFt are shown as open circles, those entering are shown as
filled circles, and elements to be clustered are circled.

individualx liesbehindthe front if a member of the frontal set dominatesx.
The truncation stage of UMMEAs, introduced to control the size ofFt and thus

the space required to store it, and, more crucially, the time required to search it, can
be deleterious: in particular, the front can fail to advance and instead may retreat or
oscillate.

In SPEA, for example,Ft is truncated by clustering members ofFt according to
their separation in objective space and then replacing clusters with the member closest
to the cluster centroid.

The effect of clustering is illustrated in Fig. 2. Fig. 2a illustrates an archive set with
a maximum ofM = 6 members. In Fig. 2b a new non-dominated member (drawn as a
filled circle) has entered the set. Since there are now7 elements in the frontal set, one
must be removed by clustering; the pair of solutions nearest each other form a cluster
of two and one of them (chosen at random) is deleted, resulting in the set shown in
Fig. 2c. If at a subsequent generation a new element enters the frontal set (Fig. 2d),
the clustering process will reduce the frontal set as shown in Fig. 2e to yield a frontal
set (Fig. 2f) containing an element that lies behind (is dominated by) elements of the
original frontal set (Fig. 2a). Repeated occurrences of this process can lead to the
estimated front retreating or, more commonly, oscillating as the front advances in the
search stage but retreats during clustering.

This artifact has two principal consequences. First, search time is wasted ‘redis-
covering’ individuals and regions that have been eliminated by clustering. Secondly,
numerical simulations show that this oscillation is particularly serious when the es-
timated front lies close to the true front; the oscillation can prevent convergence to

4

the true front, leading to poor estimates and difficulties in assessing convergence. Al-
though the artifact has been illustrated here using clustering to limit|Ft| other trunca-
tion methods suffer from the same artifacts.

In order to counter this artifact we propose that all non-dominated solutions are
retained to form the archive or frontal setFt. Such a frontal set has the desirable
property that it cannot retreat or oscillate. The frontal set therefore always moves
towards the true Pareto front. In addition to improving the efficiency of the algorithm,
this property also permits sensible convergence criteria to be defined.

4 Dominated trees

As the frontal set contains all the currently non-dominated decision vectors found,
it may become very large as the search progresses. Since, at each generation,Ft
must be queried to discover whether elements of it are dominated by elements of
the search population and vice versa, linear-time query, deletion and insertion can
become prohibitive. Data structures to facilitate searchingFt in logarithmic time are
thedominatedandnon-dominated trees.1

Sun & Steuer have also described a modification to quadtrees for maintaining non-
dominated sets [12], and the PAES [13] and PEAS [14] algorithms are both based upon
recursively dividing objective space into hyper-rectangles that could be supported by
quadtrees; however, both algorithms truncate the archive set.

Here it is convenient to regard members of the frontal set and individuals from
the search population as pointsy in D-dimensional space. Geometrically, finding
individuals inF that dominatey amounts to finding frontal individuals that lie to the
‘south-west’ or ‘left and below’y.

The ‘dominates’ relation imposes a partial order on individuals. However, since
the elements ofF are mutually non-dominating, this relation cannot be used directly
to construct, for example, a binary tree to enable fast searching.

The dominated tree consists of an ordered list ofcomposite points(usually stored
as binary tree). Each composite point represents (upto)D elements ofF and compos-
ite points are defined so that they are ordered by the weakly-dominates relation,�.
An example of a dominated tree is shown in Fig. 3.

The essential property of dominated trees is that the composite points are ordered:

ci � cj iff i > j (7)

Usually, the stronger condition,ci ≺ cj iff i > j, will hold. In addition, ifcj � ci
then the constituent points ofci also dominatecj . Thus, for example, in Fig. 3 the
constituent points ofc4, c5c6 andc7 dominatec3. Note, however, that they do not
necessarily dominate the constituent points ofc3, namelyy3 andy6.

It should be emphasised that the points forming the tree in Fig. 3 do not form a
non-dominated set. This is for expository purposes, because non-dominated sets in
two dimensions have the peculiar property that listing the points in order of increasing

1An example implementation of dominated and non-dominated trees is available fromhttp://www.
dcs.ex.ac.uk/academics/reverson/moea

5

Figure 3. A dominated tree. 13 pointsym in two dimensions and the composite pointsci
(squares) forming a dominated tree. The open circle,q, marks a query point. Composite nodes
listed are:c1 = (y1,y5) � c2 = (y2,y7) � c3 = (y3,y6) � c4 = (y4,y8) � c5 =
(y9,y10) � c6 = (y11,y12) � c7 = (y13,y13).

first coordinate (objective),y1, is equivalent to listing them in order of decreasing
second coordinate,y2. With more than two objectives this is no longer the case and
the points illustrated in Fig. 3 are more akin to the general case.

Construction. Construction of a dominated tree fromM = |F | pointsF = {ym}M1
proceeds as follows. The first composite pointc1 is constructed by finding the point
ym with maximum first coordinate; this value forms the first coordinate of the com-
posite point:

c1,1 = max
F

ym,1 (8)

This pointym is now associated withc1 and deleted fromF . Likewise, the second
coordinate ofc1 is the maximum second coordinate of the points remaining inF ,
thus c1,2 = maxF ym,2. In this manner each coordinate ofc1 is defined in turn.
The process is then repeated to constructc2 and subsequent points untilF is empty.
Note that in construction of the final composite point, (that is, the composite point that
dominates all other composite points)F may be empty before theD coordinates of the
composite point have been defined. As illustrated byc7 in Fig. 3, in this case theym
(y13 in Fig. 3) already comprising the composite point serve to define the coordinates
in any unfilled dimensions.

6

Since (except possibly for the dominating composite point)D elements ofF are
used in the construction of each composite point, the maximum number of composite
points isdM/De.

Although we have described the construction of a dominated tree from a static
frontal set, dynamic insertion and deletion are straight-forwardly accomplished, to-
gether with a rebalancing or ‘cleaning’ operation [11].

Query. Given a test pointq, the properties of dominated trees can be used to dis-
cover which points inF dominateq. Although the dominated tree may conveniently
be implemented as a binary tree, the query procedure is most easily described in terms
of an ordered list ofL = dM/De composite points. First, the list is searched to find
the indicesh andl of composite pointsch andcl that dominate and are dominated by
q respectively:

l =
{

0 if c1 ≺ q
max {i : ci ≺ q} otherwise

(9)

and

h =
{
L+ 1 if ci � q
min {i : ci � q} otherwise

(10)

Also, denote bycH the ‘least’ composite point that strictly dominatesch:

H = min {i : ci ≺ ch} (11)

For the query point illustrated in Fig. 3,l = 2, h = 5 andH = 6. (Note that it is
not necessarily true thatH = h + 1.) Sincech ≺ q it is clear that all the constituent
points of the composite pointsci that dominatech, H ≤ i ≤ L, also dominateq.
(Note that the constituent points ofch (and indeed andci) that only weakly dominate
ch, need not dominateq; in Fig. 3 c5 ≺ q, but y9 ⊀ q.) Also, sinceq ≺ cl
and the constituent points ofcl have at least one coordinate equal to a coordinate of
cl, it may be concluded thatq is not dominated by any of the constituent points of
c1, . . . cl. Each constituent pointci with l < i < H must be checked individually to
determine whether it dominatesq; in Fig. 3 the pointsy3,y6,y4,y8,y9,y10 must be
individually checked.

Note that when determining whetherq is to be included inF , q can be imme-
diately rejected ifh < L because it is certainly dominated by at least one of the
constituents ofcL.

Since the composite points are arranged as a sorted list, determination ofl and
h takesO(lg(M/D)) comparisons each. Hence the total number of comparisons re-
quired isO(2 lg(M/D)+K), whereK is the number of points that have to be checked
individually. Clearly, certain configurations ofF andq can result in all elements ofF
being checked — in linear time. However, such arrangements are seldom encountered
in practice and the logarithmic query time permits the use of very large frontal sets.

If it is determined thatq is to be included inF (because it is not dominated by
any element ofF), those elements ofF which are dominated byq must be identified
and deleted fromF . Queries about which elements ofF are dominated byq can be
answered using the dominated tree, however, it may be inefficient. This is because

7

althoughq ≺ ci for i ≤ l, q need not dominate the constituent points of theseci
and the constituent points must therefore be checked individually. Thus in Fig. 3,
q ≺ c2 ≺ c1, but y5 andy7 are not dominated byq. Thenon-dominated treeis a
data structure which permits this sort of query to be answered efficiently.

Non-dominated are analogous to dominated trees. A non-dominated tree consists
of a ordered composite points,ci � cj iff i < j, with the additional property that
if ci � cj , then the constituent points ofcj are also dominated byci. Construction
and querying of non-dominated trees is analogous to dominated trees and they are not
discussed further here.

5 Numerical example

We briefly illustrate the benefits of retaining all non-dominated solutions by com-
paring the performance of SPEA [10] and E-SPEA [11], a modification of SPEA
which retains all non-dominated solutions. Although standard benchmark functions
for MOEAs exist [7], these are peculiar in that the first objective,y1 depends solely
on the single parameterx1. We therefore prefer to use the more severe test functions
which are defined in terms of the following five base functions:

B1(x) =
P∑
i=1

|xi −
1
3

exp i/m2| 12

B2(x) =
P∑
i=1

[xi −
1
2

(cos (10π (i/m)) + 1)]2

B3(x) =
P∑
i=1

∣∣xi − sin2 (i− 1) cos2 (i− 1)
∣∣ 1

2

B4(x) =
P∑
i=1

|xi −
1
4

(cos (i− 1) cos (2 (i− 1)) + 2) | 12

B5(x) =
P∑
i=1

[xi −
1
2

(sin (1000π (i/m)) + 1)]2

where m = 30 andxi ∈ [0, 1]. We then define the following two-dimensional test func-
tions: F1(x) = (B1(x), B2(x)), F2(x) = (B3(x), B4(x)), F3(x) = (B3(x), B5(x)),
the three-dimensional objective function,F4(x) = (B1(x), B4(x), B5(x)) and the
four-dimensional functionF5(x) = (B1(x), B3(x), B4(x), B5(x)).

A detailed discussion of measures for comparing non-dominated sets is given in
[11]. Here we compare two non-dominated sets,A andB, byV(A,B) ∈ [0, 1] which
measures the fraction of the volume of the minimum hypercube containing both fronts
that is strictly dominated by members ofA but is not dominated by members ofB.
V (A,B) is defined as follows. For any set ofD-dimensional vectorsY , letHY

denote the smallest axis-parallel hypercube containingY :

HY =
{
z ∈ RD : ai ≤ zi ≤ bi for some a,b ∈ Y, i = 1, . . . , D} (12)

8

V(S,E) V(S,E)
F1 0.01 4.91
F2 0.02 3.92
F3 0.08 8.65
F4 0.61 8.00
F5 0.12 6.13

Table 1. Comparison of SPEA and E-SPEA on five test functions.V(S,E) measures the
percentage of objective space dominated by the SPEA front but not dominated by the E-SPEA
front, whileV(S,E) measures the fraction dominated by the E-SPEA front but not by the SPEA
front. Figures in bold are significant at the 2% level (Wilcoxon signed ranks test).

Now denote byhY (y) : HY 7→ [0, 1]D the normalising scaling and translation that
mapsHY onto the unit hypercube. This transformation serves to remove the effects
of scaling the objectives. Finally, let

DY (A) = {z ∈ [1, 0]D : z ≺ hY (a) , a ∈ A} (13)

be the set of points in the unit cube which are dominated by the normalised elements
of A. ThenV (A,B) is defined as

V (A,B) = λ
(
DA

⋃
B (A) \DA

⋃
B (B)

)
(14)

whereλ (A) denotes the Lebesgue measure ofA.
Despite this awkward definition,V (A,B) andV (B,A) are easily calculated by

Monte Carlo sampling ofHA
⋃
B and counting the fraction of samples that are domi-

nated exclusively byA orB. V(A,B) is insensitive to spatial distribution of elements
in the setsA andB, as well as rescaling of the objective axes. Note, however, that
V(A,B) 6= V(B,A) sinceA may dominate parts ofB whileB dominates parts ofA.
Also note that ifW is a non-dominating set, andA ⊆ W andB ⊆ W , V (A,B) and
V (B,A) may both be positive.

5.1 Results

Table 1 shows a comparison of the fronts found by an implementation of SPEA [10]
and E-SPEA, an extended version of ESPEA which retains all non-dominated solu-
tions [11].

The two EAs were each executed 30 times on each test problem, and the resultant
non-dominated solutions saved at the end of each run. In the case of E-SPEA these
were simply those individuals residing inF at the end of run, whereas an off-line store
of the non-dominated solutions discovered by SPEA was kept. For both algorithms
the |Bt| = 80. In SPEAFt was limited to 20 individuals (the same number as used
in SPEA studies [7]), all of whom were entered into the binary tournament selection
for breeding; in E-SPEA 20 individuals for breeding were selected quasi-randomly,
ensuring a spatially uniform distribution across the front (see [11] for details). Both
algorithms used single point crossover with a crossover rate of 0.8 and a mutation rate

9

Figure 4. Empirical fronts. The two estimated Pareto fronts generated by SPEA and E-SPEA
for test functionF1. The non-dominated individual from 30 separate runs of 2500 generations
are plotted.

of 0.01. In each of the 30 different runs E-SPEA and SPEA were initialised from
identical decision vector populations, andx0

i ∼ U(0, 1).
Denoting the aggregate frontal set after 2500 generations from SPEA and E-SPEA

by S andE respectively, table 1 showsV(S,E) andV(E,S). These results indicate
that the E-SPEA frontal set lies substantially ‘in front’ of that found by SPEA, al-
though the fact thatV(S,E) > 0 indicates that there are regions were the SPEA front
is ‘in front’. Fig. 5.1 shows the two estimated Pareto fronts for test functionF1. It is
clear that not only is the E-SPEA front substantially ‘in front’ of the SPEA front, it is
also of wider extent: another artifact of truncation is that the front tends to shrink as
extremal solutions are discarded by clustering and other forms of truncation.

It is worth noting that although the frontal set may become large, its rate of increase
is at most linear, because at most|Bt| individuals may be added at any generation.
Indeed Fig. 5 shows that the rate is far smaller than this maximum. Nonetheless Fig. 5
indicates that frontal sets of several hundreds are quickly encountered, necessitating
efficient structures for manipulating them.

6 Conclusion

We have argued that truncation of the archive of non-dominated solutions in MOEAs
is detrimental to their performance. Truncation is detrimental to both the quality of the
approximation to the true Pareto front and to the rate of convergence. The theoretical
argument is supported by empirical results on realistic test functions. Truncation is
usually introduced for computational expediency, to avoid the expense of searching

10

Figure 5. Size of frontal set. Number of non-dominated individuals located by E-SPEA versus
generation.

through a large archive of non-dominated solutions at each generation. To relieve the
burden of a linear search we have introduced the dominated and non-dominated tree
data structures which permit logarithmic time search.

Retaining all non-dominated solutions confers a desirable property on the frontal
set, namely that it can only ‘advance’: solutions in the archive cannot be dominated by
any solution from a previous generation. This property, in turn, permits the introduc-
tion of robust stopping criteria that have so far been absent from the MOEA literature
[11].

References

[1] C.M. Fonseca and P.J. Fleming. Genetic Algorithms for Multiobjective Opti-
mization: Formulation, Discussion and Generalization. InProceedings of the
Fifth International Conference on Genetic Algorithms, pages 416–423, San Ma-
teo, California, 1993. Morgan Kaufmann. URLciteseer.nj.nec.com/
fonseca93genetic.html .

[2] P. Hajela and C-Y. Lin. Genetic search strategies in multicriterion optimal de-
sign. Structural Optimization, 4:99–107, 1992.

[3] J.E. Fieldsend and S. Singh. Pareto Multi-Objective Non-Linear Regression
Modelling to Aid CAPM Analogous Forecasting. InProc. IEEE Intl. Conf. on
Computational Intelligence for Financial Engineering, 2002.

[4] J. Horn, N. Nafpliotis, and D.E. Goldberg. A Niched Pareto Genetic Algorithm

11

for Multiobjective Optimization. InProceedings of the First IEEE Conference
on Evolutionary Computation, IEEE World Congress on Computational Intel-
ligence, volume 1, pages 82–87, Piscataway, New Jersey, 1994. IEEE Service
Center. URLciteseer.nj.nec.com/horn94niched.html .

[5] J.D. Schaffer. Multiple objective optimization with vector evaluated genetic al-
gorithms. InProc. of the First Int. Conf. on Genetic Algorithms, pages 99–100,
1985.

[6] N. Srinivas and K. Deb. Multiobjective Optimization Using Nondominated Sort-
ing in Genetic Algorithms. Evolutionary Computation, 2(3):221–248, 1995.
URL citeseer.nj.nec.com/srinivas94multiobjective.html .

[7] E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results.Evolutionary Computation, 8(2):173–195, 2000.
URL citeseer.nj.nec.com/zitzler99multiobjective.html .

[8] M. Laumanns, E. Zitzler, and L. Thiele. A Unified Model for Multi-Objective
Evolutionary Algorithms with Elitism. InProc. of the 2000 Congress on Evol.
Comp., pages 46–53. IEEE, 2000.

[9] D. Van Veldhuizen and G. Lamont. Multiobjective Evolutionary
Algorithms: Analyzing the State-of-the-Art. Evolutionary Com-
putation, 8(2):125–147, 2000. URL citeseer.nj.nec.com/
vanveldhuizen00multiobjective.html .

[10] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. PhD thesis, Swiss Federal Institute of Technology Zurich
(ETH), 1999. Diss ETH No. 13398.

[11] J.E. Fieldsend, R.M. Everson, and S. Singh. Extensions to the Strength Pareto
Evolutionary Algorithm.IEEE Trans. Evol. Comp., 2001. URLwww.dcs.ex.
ac.uk/people/reverson . (submitted).

[12] M. Sun and R.E. Steuer. InterQuad: An interactive quad tree based procedure for
solving the discrete multiple criteria problem.European Journal of Operational
Research, 89:462–472, 1996.

[13] Joshua D. Knowles and David Corne. Approximating the nondom-
inated front using the pareto archived evolution strategy.Evolution-
ary Computation, 8(2):149–172, 2000. URLciteseer.nj.nec.com/
knowles00approximating.html .

[14] D. W. Corne, J. D. Knowles, and M. J. Oates. The pareto envelope-based se-
lection algorithm for multiobjective optimization. In Hans-Paul Schwefel Marc
Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne Lutton, Juan
Julian Merelo, editor,Parallel Problem Solving from Nature - PPSN VI 6th
International Conference, Paris, France, 16-20 2000. Springer Verlag. URL
citeseer.nj.nec.com/corne00pareto.html .

12

