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Entropy-based multi-objective genetic algorithm for design
optimization

A. Farhang-Mehr and S. Azarm

Abstract Obtaining a fullest possible representation of
solutions to a multiobjective optimization problem has
been a major concern in Multi-Objective Genetic Algo-
rithms (MOGAs). This is because a MOGA, due to its
very nature, can only produce a discrete representation
of Pareto solutions to a multiobjective optimization prob-
lem that usually tend to group into clusters. This paper
presents a new MOGA, one that aims at obtaining the
Pareto solutions with maximum possible coverage and
uniformity along the Pareto frontier. The new method,
called an Entropy-based MOGA (or E-MOGA), is based
on an application of concepts from the statistical theory
of gases to a baseline MOGA. Two demonstration exam-
ples, the design of a two-bar truss and a speed reducer,
are used to demonstrate the effectiveness of E-MOGA in
comparison to the baseline MOGA.

Key words multiobjective optimization, genetic algo-
rithms, entropy

1
Introduction

Several recent techniques have been developed to im-
prove the coverage and uniformity of solutions obtained
by Multi-Objective Genetic Algorithms (MOGAs) (e.g.
Camponogara and Talukdar 1997; Reynolds 2000). In
particular, these algorithms attempt to generate addi-
tional solutions to fill in under-represented areas along
the Pareto optimal frontier. The basic concept in these
techniques is to randomly select and project some candi-
date points near the edge of a gap to fill in the interior
or exterior voids in a solution set. Unfortunately, it may
be difficult to judge whether or not such heuristics will
in general improve the overall solution quality along the
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Pareto frontier. However, one can find an analogy in the
statistical theory of gases, which can be taken advantage
of to improve the coverage and uniformity of the solutions
obtained by a MOGA.

When an ideal gas undergoes an expansion inside of an
enclosure, the gas molecules move randomly (i.e. without
having any a priori information about the geometry of the
enclosure) and achieve a homogenous and uniform equi-
librium state with maximum entropy (Fay 1965). One
may apply this analogy of the expansion of an ideal gas
in an enclosure to the evolution of solutions obtained by
a MOGA in order to achieve uniformly distributed solu-
tions with a maximum possible coverage along the Pareto
frontier.

Some other similarities can also be observed between
a Genetic Algorithms (GA) and Statistical Thermo-
dynamics (ST). Both GA and ST describe statistical
evolution of a population (i.e. individual designs in the
GA and molecules in the ST), define the microscopic
and macroscopic specifications of a system, and intro-
duce constraints. Indeed, statistical thermodynamics
provides a favourable platform for emulating the genetic
algorithms. A formalism recently introduced by Prugel-
Bennett and Shapiro (1994, 1997) uses the methods of
statistical thermodynamics to analyze the dynamics of
GA operators for maximum entropy in a single objec-
tive GA (also Shapiro et al. 1994, 1995). Moreover, Kita
et al. (1996) as well as Cui et al. (2001) took advantage
of the thermodynamical notion of energy and entropy to
prevent premature convergence of the population to the
Pareto optimal frontier and preserve diversity. Based on
these concepts, a fitness scaling strategy is introduced
(Kita et al. 1996) to control the genetic similarity and di-
versity of the individuals by postponing the maturity of
the population. However, postponing the maturity may
not always be desirable since it increases the execution
time of a MOGA. As such, Sobieski et al. (1998) suggested
an alternative operator, instead of regular crossover and
mutation operators, that was based on projection of solu-
tion points according to a bell-curve distribution. The use
of this alternative operator could provide better diver-
sity in the population without degrading the convergence
rate of the optimization process. However, no research
has been reported in the literature that applies the no-
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tion of statistical thermodynamics to create enhanced
operators (see, for example, Fonseca and Fleming (1995)
and Coello Coello (1999) for a comprehensive review of
the evolutionary based multiobjective optimization ap-
proaches). Such an operator (along with regular crossover
and mutation operators) can articulate the diversifica-
tion of individuals in the population such that a state of
maximum entropy (i.e. maximum possible diversity in the
population) is achieved. The rest of the paper is devoted
to this issue. The newMOGA emulates the distribution of
solutions along a Pareto frontier with the expansion of an
ideal gas in an enclosure to reach a uniformly-distributed
state with maximum entropy.

2
Entropy-based multiobjective genetic algorithm
(E-MOGA)

In this section, we present an Entropy-based MOGA (or
E-MOGA). We briefly review a statistical model for an
ideal gas and then devise the E-MOGA according to this
model. This is followed by a detailed description of the
E-MOGA.

2.1
Statistical model of an ideal gas

As a background (Toda et al. 1991), consider an ideal
gas that consists of a set of moving molecules. Suppose
that the vectors x and v give the position and velocity
of a molecule in the gas, respectively. The state-space is
defined by a 2n-dimensional domain whose coordinates
are x1, . . . , xn, and v1, . . . , vn, where n is the dimen-
sion of the space. (For example, in the real world, n is
equal to 3.) A point in this domain represents the state
of each molecule at some instant, and the state of the
entire collection of molecules is represented by a set of
points. One particular arrangement of these points in
the state-space is called a microstate. Each microstate
has an external property (such as total energy) that
is called a macrostate. Hence, each microstate corres-
ponds to a particular macrostate, but there are many pos-
sible microstates that correspond to the same macrostate
(Desloge 1996; Penrose 1970).

It is assumed that an ideal gas in its equilibrium state
is homogeneous, isotropic and time-invariant. If one adds
an additional assumption that all microstates whose cor-
responding macrostate satisfies some imposed boundary
conditions (i.e. the constraints) have the same probabil-
ity to occur, then at the equilibrium state, theMaxwellian
distribution is obtained (Fay 1965):

f(x,v, t) = n

(
λ

π

) 3
2

exp
(
−λv2

)
, (1)

where v is the magnitude of the velocity vector, v, and
the distribution function, f(x,v, t), is defined as the dens-

ity of points in the state-space. (Note that this is different
from the density of molecules in the position-space.) The
quantity λ is a positive constant. However, if one is inter-
ested in the number of molecules with a speed between
v and v+dv, then f can be integrated to obtain the vel-
ocity distribution, fv. For example in a three-dimensional
enclosure, the velocity distribution function is

fv(x,v, t) = 4πv2f(x,v, t) , (2)

which indicates the density of the molecules in the
velocity-space (whose coordinates are the velocity com-
ponents of the molecules). This distribution is used later
on in this paper to assign a velocity to the individuals in
the E-MOGA.

One can define the thermodynamic probability, W,
of a macrostate as the number of microstates associated
with it. The entropy,H, of this state is then defined as

H = k ln(W ) , (3)

where k is a constant. One can think of the entropy as
a system attribute that indicates how the system will
thermodynamically evolve (Desloge 1996). Then for each
state of the gas, one can define a single-valued function
with the following property: if a constraint is imposed on
the system or removed from it, the system will evolve to
its new equilibrium state with a maximum entropy. This
concept of entropy is used to develop an E-MOGA, as de-
scribed in the following.

2.2
Development of E-MOGA via analogy with the ideal
gas model

Consider the operations of a two-objective MOGA, as
shown in Fig. 1a. We designate the set of non-dominated
points after t iterations as St. (Nondominated points for
a given population refer to the best possible points in the
population among which there exist tradeoffs, i.e. from
one point another along the nondominated points, an im-
provement in the value of one objective translates into
the degradation of the value of the other objective.) As
the population evolves from the nondominated points for
the initial population, S0, to the nondominated points
after t iterations, St, the Pareto solution set or frontier
is formed. The “iteration number” in the E-MOGA, t,
corresponds to “time” in statistical thermodynamics. As
shown in Fig. 1a, the Pareto solution set may consist of
several clusters of points and may not cover the entire
range of Pareto frontier. Clustering is a well-known phe-
nomenon in aMOGAwherein solutions that are desirable
to be spread evenly along the Pareto frontier are instead
grouped together.

As can be seen in Fig. 1b, a direct analogy can be ob-
served between the operation of a MOGA and an ideal
gas undergoing an expansion in an enclosure. According
to the definition of an ideal gas, there is no interaction
between the molecules of an ideal gas in an enclosure.
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Fig. 1 Analogy of: (a) evolution of the solutions in a MOGA
(b) spread of an ideal gas molecules in an enclosure

That is, the molecules move along random directions un-
til they collide with the boundary of the enclosure. As
a result of the collision with the boundary, the molecules
are reflected back into the enclosure with the same vel-
ocity they had before the collision but along a differ-
ent direction following the “mirror’s law”. As we men-
tioned before, if the velocity distribution of such a system
follows the Maxwellian distribution, the set of particles
will automatically evolve to maximize the entropy and
consequently result in the uniformity of coverage of the
molecules in the enclosure. To an outside observer, the
gas expands gradually until it fills the enclosure and even-
tually reaches a uniform, homogenous and time-invariant
state. Hence, if we can simulate this behavior of the ideal
gas and apply it to a MOGA to control the expansion of
points along the Pareto frontier, then the final state of so-
lutions along the Pareto frontier will be as much uniform
as possible, producing the fullest possible representation
of the Pareto set, instead of a set of clustered points.

The objective of this paper is therefore to modify
a MOGA so that it enables an expansion of solutions
in lateral directions. (A lateral direction is defined in
Sect. 2.2.2. In short, it is a random direction normal to
the evolution direction shown in Fig. 1(a).) At the same
time the evolution of solutions takes place with the GA
operations. To achieve the objective of this paper, we pro-
ceed with some modifications to a baseline MOGA, as
described in the following sections. [The baseline MOGA,
hereafter called MOGA-NA, was recently developed by
Narayanan and Azarm (1999)].

2.2.1
Velocity assignment

A velocity value is assigned to every individual of the
population in an E-MOGA, according to the ideal gas
model. At the beginning of the process, each individual is
labelled with a velocity according to the Maxwellian vel-
ocity distribution in (2).This velocitywill remain constant
during the entire optimization process. This is similar to
the case of the ideal gas, where the magnitude of velocity
of a molecule does not change but its direction changes as
it collides with the boundaries of the enclosure.

2.2.2
Transverse expansion hyper-surface

MOGA operations mainly consist of evolving the popula-
tion via the GA operators of crossover and mutation, as
it approaches the Pareto frontier. To extend the MOGA
operations so that it also simulates an expanding ideal
gas in an enclosure, at the beginning of each iteration the
population is expanded laterally, normal to the progress
vectors. Progress vectors are defined as the vectors along
which the individuals in the population are expected to
evolve. The progress vector is different for each point
in the population and should be estimated individually.
To estimate this vector, we propose an algorithm that is
based on the relative position and fitness of points in the
objective space while all operations are performed in the
variable space.

Consider the two-objective optimization problem
shown in Fig. 2, wherein there are N1 non-dominated so-
lution points in the population at its current stage of
evolution. We label these points as P1, P2, . . . , PN1 . If we
eliminate these points from the population, we obtainN2
nondominated points, denote these as PN1+1, PN1+2, . . . ,
PN1+N2 . As we repeat this process, the population is par-
titioned into several sets of points. We assign a ranking
of one to the first set (i.e. N1 points, the fittest points
in the current population), a ranking of 2 to the second
set of points, and so on. Each set will form a curve or

Fig. 2 Estimation of the progress vector in a two-dimensional
objective-space
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a hyper-surface for the higher dimensions of the objec-
tive space, hereafter referred to as a transverse-expansion
hyper-surface.

The lateral expansion of the solutions is done in a di-
rection tangent to this hyper-surface. As the solutions are
evolved, these transverse hyper-surfaces gradually con-
verge to the Pareto frontier. (These hyper-surfaces will be
(m-1)-dimensional in an m-dimensional objective space.
For example as shown in Fig. 3, the transverse hyper-
surface of a three-objective problem will be a two-di-
mensional surface on which the population is expanded
laterally.)

Fig. 3 Transverse expansion of individuals in E-MOGA

Consider the point Pi on the first nondominated set
(1≤i≤N1), see Fig. 2.We denote the vector connecting Pk
to Pi as Zki . We define an offset vectorAi as

Ai =

N1∑
k=1

Zki

N1
(1≤i≤N1) (4)

wherein Ai is an offset vector, since it is almost tangent
to the transverse hyper-surface and points to the nearest
edge of the nondominated set. In addition, the magnitude
of this vector is larger for a point near the edge of the
set while in the middle of the set its magnitude is small.
Similarly, the vectorBi is defined

Bi =

N1+N2∑
k=N1+1

Zki

N2
(1≤i≤N1) . (5)

As can be seen in Fig. 2, since the points in N1 are
evolved (in terms of all objectives) as compared to the
points in N2, Bi consists of a normal-progress compon-
ent in addition to the offset vector. If the points in the
first and second non-dominated sets,N1 andN2 points in
Fig. 2, respectively, are distributed in the same fashion,
then the offset vectors due to both of these first and sec-
ond nondominated sets are approximately equal. Hence,
one can subtract the offset vector, Ai from Bi to obtain

a progress vector

Ci =Bi −Ai =

N1+N2∑
k=N1+1

Zki

N2
−

N1∑
k=1

Zki

N1
(1≤i≤N1) , (6)

where Ci estimates the progress vector of the point Pi
(Fig. 2). So far, we have assumed that Pi is in the first
non-dominated set, i.e. the N1 points in the population.
For a point Pi, in general, in the m-th nondominated set,
we have

Ci =

N1+N2+...+Nm+Nm+1∑
Zki

k=N1+N2+...+Nm+1

Nm+1
−

N1+N2+...+Nm∑
Zki

k=N1+N2+...+Nm−1+1

Nm

where

(N1+ . . .+Nm−1+1)≤ i≤ (N1+ . . .+Nm) . (7)

It is clear that the above-mentioned estimate becomes
less accurate for very inferior or poor ranking points
and their corresponding hyper-surfaces since they may
not consist of enough points to give an acceptable esti-
mate of offset and progress vectors. However, as men-
tioned later in this paper, we are mainly interested in
the good-ranking hyper-surfaces with better fitness and
higher chance of reproduction.

Now that we have obtained Ci , a lateral movement
vector is chosen randomly in a direction normal to the
progress vector of each individual, as shown in Fig. 4.
Each point moves along its lateral movement vector until
it violates a constraint (just like a molecule in an enclo-
sure that moves along a straight line until it collides with
the enclosure boundaries). This will be described later, in
the constraint handling section.

Fig. 4 Lateral-movement vector is chosen randomly, normal
to the progress vector

2.2.3
Expansion operator

The expansion operator is applied at each iteration of
the E-MOGA. This operator enhances each individual (or
a certain percentage of the population) as follows.
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1. A new chromosome (child) is generated by moving the
chosen individual (single-parent) along its assigned
lateral-movement vector in the variable-space.

2. The magnitude of the movement is proportional to its
assigned velocity (as described in Sect. 2.2.1).

Since this operator is applied every iteration, it simulates
the gradual movement and expansion of gas molecules
with different velocity magnitudes and directions. How-
ever, there are two parameters that should be set in the
E-MOGA, the expansion percentage and expansion start,
as described in the following.
Expansion percentage. To keep the number of function

calls as low as possible, we apply the expansion operator
only to a certain percentage of the fittest individuals in
the population. As these points are expanded to the new
regions, they act as seeds for the new offspring in those
regions.
Expansion start. As described in Sect. 2.2.2, the esti-

mation of the progress vector is based on the relative pos-
ition and fitness of the points. Specifically as the number
of the first and second ranked nondominated points (i.e.
N1 and N2 points in Fig. 2) increases, the corresponding
progress and lateral-movement vectors can be estimated
more accurately. Hence, if we let the population evolve for
a few iterations before we start applying the lateral ex-
pansion operator, there will be more points in these sets
resulting in a more accurate estimation of the progress
and lateral-movement vectors. In the examples discussed
at the end of this paper, for instance, the expansion starts
at the fifth generations. Thereafter, the expansion opera-
tor is applied to all subsequent generations.

2.3
Constraint handling

When a gas molecule collides with the boundary of an
enclosure, it is reflected back into the enclosure without
achange in itsvelocitymagnitude.However, themovement
direction will be different and follows the mirror’s reflec-
tion law (Fig. 5a). Similarly, a constraint for an E-MOGA
is a hypersurface in the variable space and can be treated
as a boundary (or a wall). This is shown in Fig. 5b.
Assume that all individuals in the initial population are
feasible. Every time that the population undergoes an
expansion (i.e. an expansion operator is applied), there
might be several points that attempt to violate one or
more constraints to enter the infeasible region. We re-
flect these points back into the feasible region according
to the mirror’s reflection law and assign to them a new
lateral-velocity vector (Fig. 5b). This constraint handling
aspect of E-MOGA makes it a “feasible-direction” type
search method. This is because if all individuals in the
initial population satisfy the constraints, all subsequent
generations will remain within the feasible domain. To en-
sure that the initial population is feasible, the E-MOGA
checks for infeasible points before the first generation un-
dergoes expansion and replaces, via a random number

Fig. 5 (a) A molecule reflects back into the enclosure after
it hits the enclosure’s wall. (b) The solution point is reflected
back to the feasible region if it violates the constraint

generator, all infeasible individuals with feasible ones.
This is continued until all individuals in the initial popu-
lation are feasible.

2.4
E-MOGA: step-by-step description

A detailed flowchart for the proposed E-MOGA is shown
in Fig. 6. Below, the algorithm is described step-by-step.

Step 1. The initial population is generated randomly
until all individuals are feasible.

Step 2. A velocity is assigned to each individual in the
population according to the Maxwellian proba-
bility distribution function in (2). This velocity
remains constant throughout the process. (See
Sect. 2.2.1.)

Step 3. The individuals in the population are rank-
ordered and the hyper-surfaces are created (i.e.
sets N1,N2, . . . , as described in Sect. 2.2.2)

Step 4. The progress vectors of the individuals are esti-
mated from (7).

Step 5. A lateral movement vector is assigned to each
individual randomly, normal to the progress vec-
tor obtained in Step 4.

Step 6. The expansion operator is applied to a pre-
specified percentage of the population. (See
Sect. 2.2.3.)
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Select for reproduction

YES

NO

YES

NO

Fig. 6 Flowchart E-MOGA

Step 7. After the expansion is applied to the individu-
als, they are checked for constraint violations.

Step 8. If an individual violates a constraint, it is re-
flected back from the corresponding constraint
boundary and a new movement direction is as-
signed according to the mirror reflection law
(Sect. 2.3). Go back to Step 7.

Step 9. The expanded population is evaluated and
a fitness value is assigned to each individual.

Step 10. A certain percentage of the individuals are se-
lected for reproduction. The chance of being
selected is higher for the fittest individuals.

Step 11. The selectedparents undergo crossover andmu-
tation. The offspring are added to the current
population. Then the entire population is rank-
orderedand theworst individuals arediscarded.

Step 12. If the stopping criterion is not met, go to Step
3 and continue. Otherwise, stop.

As statedbefore for the idealgas expansion, thepopula-
tion of chromosomes in E-MOGA is expected to gradually
achieve the maximum-entropy macrostate that indicates
a uniform probability distribution of microstates. During
the process, as the individuals are expanded, the entropy
of the population increases gradually. That is why we call
this algorithm an “Entropy basedMOGA” or E-MOGA.

3
Test examples

The proposed E-MOGA has been applied to two en-
gineering examples, the design of a two-bar truss and
a speed-reducer, for demonstration and comparison
against a baseline MOGA.

3.1
Two-bar truss

The first example involves the design of a two-bar truss
that was originally formulated as a single-objective prob-
lem by Kirsch (1981). The problem was reformulated
later to demonstrate the application of a MOGA to multi-
objective engineering problems (Narayanan and Azarm
1999). In this example, as illustrated in Fig. 7, the ver-
tical position of point C and the cross-sectional areas of
links AC and BC are to be selected and thus the design
variables, which are all continuous, are x1, x2 and y. The
design objectives are to minimize the total volume (and
consequently the weight) of the structure and to mini-
mize the tensile stress in link AC. The constraints are the
maximum allowable stresses in AC and BC that should
not exceed 100000 kPa and the total volume of the ma-
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Fig. 7 Two-bar truss

terial used in the structure that should be held less than
0.1m3.

Constraints are imposed on the design objectives (i.e.
objective constraints), as shown in the formulation of the
problem. This is because the Pareto set is asymptotic and
extends from −∞ to ∞. As x1 and x2 approach zero,
fvolume goes to zero and fstress,AC and fstress,BC approach
infinity. On the other hand, as x1 and x2 approach infin-
ity, fvolume goes to infinity and fstress,AC and fstress,BC
approach zero. Hence, in order to generate Pareto optimal
solutions in a reasonable range, the objective constraints
are imposed. The problem formulation is shown below

minimize fvolume = x1
(
16+y2

) 1
2 +x2

(
1+y2

) 1
2 , (8)

minimize fstress,AC =
20
(
16+y2

) 1
2

yx1

s.t.

fvolume ≤ 0.1

fstress,AC ≤ 100000

fstress,BC ≤ 100000

1≤ y ≤ 3

x1, x2 > 0
where fstress,BC =

80
(
1+y2

) 1
2

yx2
.

The problem has been solved with both the baseline
MOGA (MOGA-NA; Narayanan and Azarm 1999) and
E-MOGA. The value of the GA parameters used to solve
this problem is listed in Table 1.

Figure 8 illustrates the gradual evolution of solutions
in both MOGA-NA (see Figs. 8a, c and e) and E-MOGA
(see Figs. 8b, d and f). As shown in these figures, a sig-
nificant improvement is observed in the results obtained
by E-MOGA as compared with those by MOGA-NA. In
the final Pareto-optimal set of MOGA-NA, Fig. 8e, the
majority of solution points are clustered in two regions
with the rest of the Pareto frontier is left empty or very
sparingly populated. In contrast, Fig. 8f shows a more
evenly distribution of solution points along the Pareto
frontier in E-MOGA, without any noticeable clustering of
the points. Moreover, comparing the range of the optimal
solution set obtained from each technique, one can notice
that E-MOGA covers a larger portion of the Pareto fron-
tier. Hence, based on this example, it can be concluded

Table 1 MOGA parameters in the two-bar truss example

Optimization technique MOGA-NA E-MOGA

population size 200 200
replacement per generation 10 10
function calls 550 550
crossover type 2-point 2-point
crossover probability 0.8 0.8
mutation probability 0.01 0.01
bits per variable 10 10
expansion percentage N/A 10%
expansion start N/A 5-th gen.
expansion finish N/A 45-th gen.

that the Pareto set generated by E-MOGA is significantly
better than that generated byMOGA-NA in terms of uni-
formity and coverage of the Pareto frontier.

3.2
Speed reducer

This example was originally formulated by Golinski
(1970) as a single-objective optimization problem. The
problem has been converted into a two-objective op-
timization problem [following Azarm et al. (1989) for
a three-objective formulation]. The example represents
the design of a simple gear-box, as shown in Fig. 9, that
can be used in a light airplanes. The seven design vari-
ables in the formulation are: gear face width (x1), teeth
module (x2), number of teeth of pinion (x3 – integer
variable), distance between bearings on shaft 1 (x4), dis-
tance between bearings on shaft 2 (x5), diameter of shaft
1 (x6), and diameter of shaft 2 (x7). The first design
objective, f1, is to minimize the volume. The second ob-
jective, f2, is to minimize the stress in one of the two gear
shafts.

The design is subject to a number of constraints im-
posed by gear and shaft design practices. An upper and
lower limit is imposed on each of the seven design vari-
ables. There are 11 other inequality constraints (one of
which is a constraint imposed on the first objective), as
follows: g1 is an upper bound of the bending stress of the
gear tooth; g2: upper bound of the contact stress of the
gear tooth; g3, g4 are upper bounds of the transverse de-
flection of the shafts; g5–g7 are dimensional restrictions
based on space and/or experience; g8, g9 are design re-
quirements on the shaft based on experience; and g10, g11
are constraints on stress in the gear shafts. The optimiza-
tion formulation is

minimize fvolume = f1 = 7.854x1x
2
2×

(
x23
3
+1.493x3−4.309

)
−1.508x1

(
x26+x

2
7

)
+

7.477
(
x36+x

3
7

)
+0.7854

(
x4x

2
6+x5x

2
7

)
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Fig. 8 Pareto solution sets for the two-bar truss example: (a) MOGA-NA; 150 function calls, (b) E-MOGA; 150 function calls,
(c) MOGA-NA; 250 function calls, (d) E-MOGA; 250 function calls, (e) MOGA-NA; 550 function calls, (f) E-MOGA; 550 func-
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g7 : 5−
x1

x2
≤ 0

g8 : 1.9−x4+1.5x6 ≤ 0

g9 : 1.9−x5+1.1x7 ≤ 0

g10 : f1(x)≤ 1300

g11 :

√(
745x5
x2x3

)2
+1.575×108

0.1x37
≤ 1100 .

The lower and upper limits on the variables are
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Fig. 10 Pareto solution sets for speed-reducer example: (a) MOGA-NA; 150 function calls, (b) E-MOGA; 150 function calls,
(c) MOGA-NA; 250 function calls, (d) E-MOGA; 250 function calls, (e) MOGA-NA; 550 function calls, (f) E-MOGA; 550 func-
tion calls

g18,19 : 7.3≤ x1 ≤ 8.3

g20,21 : 7.3≤ x1 ≤ 8.3

g22,23 : 2.9≤ x1 ≤ 3.9

g24,25 : 5.0≤ x1 ≤ 5.5

Fig. 9 Speed-reducer
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Table 2 MOGA parameters in the speed-reducer example

Optimization technique MOGA-NA E-MOGA

population size 50 50
replacement per Generation 10 10
function calls 550 550
crossover type 2-point 2-point
crossover probability 0.8 0.8
mutation probability 0.05 0.05
bits per variable 10 10
expansion percentage N/A 10%
expansion start N/A 5-th gen.
expansion finish N/A 45-th gen.

The Pareto solutions obtained using E-MOGA and
MOG-NA are shown in Fig. 10 and the parameters are
listed in Table 2. It is clear from these graphs that
E-MOGA has again out-performed MOGA-NA, in terms
of both the coverage of the Pareto frontier and the uni-
formity of spread. The range of pareto frontier covered
by solutions from E-MOGA is significantly larger than
that of MOGA-NA. Also, the solution points are spread
uniformly in E-MOGA while they are mostly clustered in
MOGA-NA.

4
Conclusions

In this paper, we presented a new multi-objective ge-
netic algorithm, an entropy-based MOGA (E-MOGA),
based on an analogy with the thermodynamic behavior of
an ideal gas undergoing expansion in an enclosure. The
E-MOGA expands a sample of population while it also
the population evolves as it approaches the Pareto fron-
tier in order to achieve maximum uniformity and cover-
age of the solutions. The constraint handling technique
developed in E-MOGA is based on a feasible direction
concept. That is, if individuals in the initial population
satisfy the constraints, all of their subsequent generations
will remain feasible.

As a demonstration, both E-MOGA and a baseline
MOGA, i.e. MOGA-NA, were applied to a two-bar-truss
example and a speed-reducer optimal design problem. In
both examples, the results by E-MOGA showed dramatic
improvement in terms of uniformity and coverage of so-
lutions. In particular, the Pareto solutions obtained from
MOGA-NA contained obvious gaps and clusters while
those from E-MOGA were almost free of them. In add-
ition, the solutions obtained from E-MOGA covered a sig-
nificantly wider range of the Pareto frontier compared to
MOGA-NA.
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