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Abstract. A strategy is proposed for coarse grained Pareto Optimal Front approximation. It is devoted
to industrial design optimization problems when the number of objective function calls that can be
afforded in a practical time is much lower than the number required for convergence of available and
powerful MOEAs. An hybrid evolutionary-deterministic and global-local search is applied on a
movable preference function derived from L�  norm in objective domain. Both convergence and
diversity of solution is tested on several analytical functions.

1. Introduction

Thanks to a decade of research work after the early methods, evolutionary multiobjective
optimization is now a mature computational research area [2]. Several evolutionary
methods are available ensuring full convergence toward the Pareto Optimal Front (POF)
both in terms of precision and diversity of solutions (e.g. SPEA2, NSGAII). These methods
have been widely and deeply tested and compared on many different test functions and
some convergence measuring criteria are available, being specifically developed for
multiobjective optimization problems [3, 4, 5]. Nevertheless the application of such a wide
variety of methods to multiobjective optimization problems arising from industrial design
(we refer to electromagnetic devices shape design [6] and fuzzy controllers design), is still
not fully straightforward due to the computational cost of objective function evaluation
(being often non-linear or coupled FEM in the first case and a long time-domain full-
system simulation in the second case). Three alternative (to available MOEAs) approaches
have been introduced, being specifically devoted to the reduction of objective function
calls. They are useful and meaningful when on one hand the number of objective function
calls that can be afforded from the point of view of an industrially practical computational
cost is much smaller than the threshold number required for convergence of available
powerful MOEAs, but on the other hand the designer nevertheless wants the few affordable
solutions to be convergent towards the POF and to be diverse each other. This means that
solutions are to be distributed all along the POF. The main feature of such approaches can
be summarized as follows:

• Build specific MOEAs for tiny populations.

• Adapt Generalised Response Surfaces Methods (GRSM), a well established technique
for single-objective optimization, to POF approximation.

• Reconsider a particular preference function method with hybrid global-evolutionary
and local-deterministic search in an innovative way.
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Figure 1. Contour lines on objective space of ∞f
~

(first two plots) and f
~

 (second two plots)

preference function for two different Pi locations (�) on a schematic
objective domain search space ÙO

Regarding the first approach, a non-dominated sorting based MOEA for tiny population
(NSESA) was developed and applied to several electromagnetic shape design optimization
problems [7, 8]. Regarding the second approach a preliminary study on POF approximation
from NN Interpolated objective functions (both analytical and real-life) is reported in [9],
but work is still in progress in order to build and study an iterative optimize-update
interpolation procedure being a real extension to multiobjective optimization problems of
GRSM methods that are classical in single-objective optimization [10, 11]. This paper is
devoted to the third approach. After a general description of Multi-objective Optimization
Problems (MOP) defining used terminology in section 1, the strategy is described and
several results on test function are shown.

Figure 2. Pseudo-code of the proposed strategy with iterative choice of centers Pi, ns being the
number of desired solutions
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2. Multi-objective optimization problems and related concepts

In order to define the terminology we'll use throughout the paper we give a concise
formulation of multiobjective optimization problem (MOP) and some related concepts. For
a detailed and rigorous mathematical theory of MOP and for theorems and proofs we refer
to [12] and [13]. The following nonlinear constrained MOP will be considered throughout
the paper assuming, without loss of generality, that all objective are to be minimized:
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Problem 1 give rice to the following subspaces known as design domain and objective
domain search spaces respectively:

Ù : {x ∈ RN s.t. g(x) ≤ 0 and h(x) = 0}

ÙO : {f(x) ∈ RM s.t. x∈Ù}  (2)

ÙO being the image of Ù through function f. In order problem 1 to be non-trivial the
following condition is to be imposed:

∃ xU ∈ Ω s.t. fi (xU) = 
Ω∈x

min fi (x) ∀i = 1 : M  (3)

that is a real contrast among objectives has to exists and no points in - minimize at the same
time all objectives (no cooperative objectives). We consider the following very common,
though non unique, (see Nash optimum definition and its applications in [1]) definition of
solutions (Pareto-optimal solutions) for problem 1:
Def 2.1  x* �  

�
 is Pareto-optimal (PO) if �  x �  

�
 s.t. fi (x)�   fi(x*) � i = 1 : M and

fj (x) < fj (x*) for at least one j �  [1 : M].

Figure 3. POL test case: results in objectives space of a run with 11 centers (ð ),
6 diverse solution (•) over an exhaustive sampling (gray dots)
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As a consequence of definition 2.1 the number of solution for problem 1 is infinite and
we call Pareto-optimal set (POS) and Pareto-optimal front (POF) the following two
subspaces respectively:

})({

}~{ *

POS  s.t.POF

PO is   s.t.POS

O ∈Ω∈=

Ω∈=
** xxf

xx
  (4)

The following two points in the objective domain, giving some very preliminary
information about ΩO and known as Utopia and Distopia point respectively, can be
evaluated:
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As a consequence of statement 3 the inverse image of U does not belong to Ω and U does
no belong to ΩO.

Some primary information on the POF may be obtained from the evaluation of the
following matrix
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when matrix ]
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[M  is computed the Nadir point R can be computed as follows:
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Figure 4. POL test case: results in objectives space of a run with 21 centers (ð ),
13 diverse solution (•) over an exhaustive sampling (gray dots)
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As will be seen in next section the Utopia point computation is essential and preliminary
for implementing the proposed strategy. From a practical point of view we remark that the

computation of M x M matrix ]
~

[M  and thus R and U, only requires M single-objective
optimization.

3. Proposed hybrid strategy

Let us consider the following L � -norm preference function:
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where Ni are normalization values and Pi will be called search centers and ci weights.
Convergence of such a formulation toward the POF is assured by theorems (see [12]) also
in case of non-convex problems. The degrees of freedom in formulation 9 affecting the
location of optimal solution on the POF are weights ci and Pi. As it is well known (see [13])
a good POF approximation requires both good convergence and good diversity of solutions.
From the point of view of diversity, the strategy consist on choosing a suitable distribution
of points Pi in order to have a good equi-spacing of solution on the POF; the values of
weights ci are fixed. In order this preference function to be effective in converging towards
the POF for all possible choices of Pi (internal point of the objective domain search space
ΩO or external), the sign in the L � -distance is to be considered, that is the modulus in 9 is to
be removed. This can be easily understood looking at figure 1 (schematic case) where two

different Pi locations are considered. Contour lines of preference function ∞f
~

 are plotted in

the two upper cases while in the lower two cases preference function ∞f
~

 without modulus

is plotted; as can be seen the L �  norm preference function works only when the center Pi is
outside ΩO; if Pi is internal to ΩO the search algorithm would converge towards Pi and not
towards the POF.

Figure 5. DTZ3 test case: results in the objective space of a run with 21 centers (ð ), 13 diverse
solution (•) over the analytical POF (gray dots) with linear Pi 's choice
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Figure 6. DTZ3 test case: results in the objective space of a run with 17 centers (ð ), 13 diverse
solution (•) over the analytical POF (gray dots) with iterative Pi 's choice

Figure 7. F3Db+ test case: results in the objective space of a run with 19 centers (ð ), 13 diverse
solution (•) over the analytical POF curve (gray dots) with linear Pi 's choice

We thus at the end deal with the following preference function:
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where diversity of solution is obtained by means of centers Pi variation with fixed weights
(defining parallel search directions in objective domain).

An example of a problem where both internal and external Pi are used is shown in
figure 10. As can be seen approximation quality does not depend on the position of centers
and also a convex POF can be approximated with equally spaced solutions.
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Figure 8. F3Db- test case: results in the objective space of a run with 19 centers (ð ), 19 diverse
solution (•) over the analytical POF surface (gray dots) with linear Pi 's choice

3.1 Search algorithm

Let us now consider the task of ensuring convergence to the POF for each solution with a
small number of objective function calls, that is consider an effective search algorithm with
a compromise between convergence properties, local minima avoiding ability and
computational cost in terms of objective function calls. Once the preference function is
built the minimization process is tackled via a minimal cost hybrid evolutionary
deterministic strategy. For the evolutionary part (global search) a (1+1) ES ([14]) is
considered; so doing only one individual evolution is required for each solution. Once the
(1+1) ES is at the early convergence stage, the optimizer is switched to a gradient based
algorithm (GBA) or a simplex Nelder Mead search algorithm (NMA). As switching criteria
the convergence index (distance in design space between solution at iteration t and t+1) of
(1+1) ES is considered together with a minimum dispersion index value. Because of (1+1)
ES is used as a global search it is stopped at the early convergence stage; the final
refinement of solution is left to the deterministic search. An average computational cost
(number of objective function calls) may be evaluated as follows:

cost = (ni + ne) ns              (11)

where ni is the average number of iteration for the global search, ne the average objective
function evaluation for the deterministic local search and ns the number of desired solution.
The starting point for each optimization run, wherever the center Pi is located, is randomly
chosen in the whole design domain search space Ω. The pseudo-code of such a strategy is
shown in figure 2; the main advantage of such a strategy is that the quality of each solution
in terms of convergence properties does not depend on the number of solutions.

3.2 Different strategies for centers Pi choice

The task of choice criteria for Pi is now considered. The most immediate Pi choice strategy
is  a  linear  one  and it may be seen on figure 3,4 or 5,9 for a two-objectives problem and in
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Figure 9. TNK test case: results in the objective space of a run with 10 centers (ð ), 10 diverse
solution (•) over the analytical POF (gray dots) with linear Pis choice

Figure 10. F2D test case: results in the objective space of a run with 11 centers (ð ), 11 diverse
solution (•) over exhaustive sampling (gray dots), with linear Pis choice

figure 7,8 for a three-objectives one. Once the utopia point U, and the matrix M
~

 are
computed the line (2-objective problems) or the triangle (three-objectives problems)
between the extremal point of the POF is considered and an uniformly distributed set of
points is built on it as shown in figure 7,8 or 11,12. For both 2D and 3D cases the following
formulas can be used for computing Pi:
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Figure 11. F3Da test case 3D view: results in the objective space of a run with 13 centers (ð ), 12
diverse solution (•) over POF from exhaustive sampling (gray dots), with linear Pis choice

where M(j; :) is the j-th line of matrix M. Both convergence towards the POF and diversity
of solution are satisfactory when considering the small computational time that is required
for such POF sampling. As can be seen from figures also when dealing with 3-objectives
problems the proposed strategy gives a satisfactorily uniform sampling of the POF both if
the POF is a surface (figure 8) or a curve (figure 7). The strategy works in terms of
diversity of solutions because in most cases the uniform distribution of points Pi on the line
(2D case) or triangle (3D case) between extreme points of the POF leads to a quasiuniform
distribution of solutions. This is particularly true for POL (figure 3,4) and TNK (figure 9);
the drawback comes with DTZ3 (figure 5) where several solutions are overlapping with a
significant loss of diversity and loss of computational effort. In order to overcome this
problem an iterative choice of centers Pi can be considered (see pseudo-code in figure 2).

The procedure is shown schematically in figure 13. Starting from points 1
~

M  and 2
~

M a first
center P1 is considered and a first solution S1 (asterisk) is obtained. After that, centers P2

and P3 are computed as mid points of lines 11
~

SM − and 12
~

SM − . With this new centers
solutions S2 and S3 are obtained. Examples of such a strategy are shown in figure 6 and 13.
In case of three-objectives problems a similar iterative strategy can be considered.

Figure 12. F3Da test case 2D view: results in the objective space of a run with 13 centers (ð ), 12
diverse solution (•) over POF from exhaustive sampling (gray dots), with linear Pis choice
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Figure 13. Schematic view of the proposed iterative choice of centers Pi and Shaffer's 2D test case
with iterative centers choice

When iterative distribution of centers is considered, nodes and solutions gets iteratively
closer, the number of lost solutions is reduced and diversity (at a fixed computational
effort) is increased.

4. Conclusion

A strategy for POF coarse grained but precise approximation in industrial design
optimization problems is proposed. The main advantage of such a strategy is that it can give
convergent and diverse solutions even when classical MOEAs are unaffordable, but
nevertheless the designer's aim is to have few but equally spaced solutions on the POF. The
hybrid minimal cost global-local and evolutionary-deterministic search algorithm seems to
be particularly suited for the proposed strategy. Both two-objective and three-objective
analytical test cases are considered showing the validity of the strategy for convex or non-
convex constrained non-linear problems.

From the applicative point of view, future works will consists in tackling industrial
problems with the proposed strategy both in the field of Electromagnetic devices shape
design and fuzzy controllers; on the other hand from a methodological point of view some
more "intelligent" choice of centers can be developed, iteratively using some information
coming from diversity of solution so far computed.
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Appendix

Test cases equations

Among all R2 ⇒ R2, R2 ⇒ R3 and R3 ⇒ R3 analytical problems that have been considered
throughout the paper to validate the proposed strategy, some of them (POL, TNK, DTZs)
are described in [13]; we give here formulas for the other introduced problems:
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