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Abstract

This paper introduces a Multi-Objective
Algorithm (MOA) based upon the Parti-
cle Swarm Optimisation (PSO) heuristic.
It utilises an order put upon members of
non-dominated sets by the recent domi-
nated tree data structure to facilitate the
choosing of a ‘best’ global individual for
each member of the swarm, in order to
direct their velocities. The method is val-
idated using several test functions, and
is shown to be significantly better than
two existing MOAs. The benefit of per-
turbing the flight of particles is also high-
lighted, with its application demonstrated
with respect to the new PSO method, and
another recently developed PSO method
from the literature.

1 Introduction

Frequently a number of competing objectives
have to be traded against one another whilst
seeking a viable solution to a given problem, of-
ten without any a priori knowledge of exactly
how the objectives interact with one another.
For instance, in product design a firm may wish
to maximise the performance of an appliance
whilst also trying to minimise its production
cost. These two objectives cannot typically be
met by a single solution, so, by adjusting the
various design parameters, the firm may seek
to discover what possible combinations of these
two objectives are available, given a set of con-
straints (for instance legal requirements and size
limits of the product).

The curve (for two objectives) or surface
(more than two objectives) that describes the
optimal trade-off possibilities between objectives
is known as the Pareto front. A feasible solu-
tion lying on the Pareto front cannot improve
any objective without degrading at least one
of the others, and, given the constraints of the
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model, no solutions exist beyond the true Pareto
front. The goal, therefore, of multi-objective al-
gorithms is to locate the Pareto front of these
non-dominated solutions.

Multi-Objective Evolutionary Algorithms
(MOEASs) represent a popular approach to con-
fronting these types of problem by using evolu-
tionary search techniques. The use of Evolution-
ary Algorithms (EAs) as the tool of choice is due
to such problems being typically complex, with
both a large number of parameters to be ad-
justed, and several objectives to be optimised.
In addition, EAs, which maintain a population
of solutions, are able to explore several parts of
the Pareto front simultaneously.

Both Genetic Algorithms (GAs) and Evolu-
tionary Strategies (ESs) have been utilised in
a number of MOEAs (for instance [2, 12, 14]
and [8]) leading to the unified model proposed
by Laumanns et al. [10]. However, until re-
cently [1, 6, 11], the (relatively) new technique
of Particle Swarm Optimisation (PSO) [7, 13]
had not been applied to the multi-objective do-
main. Given the promising results reported in
the uni-objective optimisation domain, the ap-
plication of PSO to the multi-objective domain
is a natural progression. In this paper we argue
that current attempts at multi-objective PSO do
not fully transfer the PSO heuristic to the multi-
objective domain. We therefore introduce a new
method that utilises the recent dominated trees
data structure [3, 4] to enable the selection of
an appropriate Pareto archive member to act as
the global ‘best’ for any given particle, and also
maintains a local set of ‘best’ solutions for each
swarm member. We then demonstrate that this
approach is significantly better than the method
used in [1], and an Evolutionary Strategy (ES)
derived from the unified model [10], which is
based upon an existing MOEA [8]. In addition,
we demonstrate that the inclusion of a turbu-
lence variable within multi-objective PSO algo-
rithms significantly increases performance.

The paper takes the following structure: in



Section 2 Pareto optimality is reviewed; in Sec-
tion 3 PSO is briefly described, as are two
current applications in the literature of multi-
objective PSO. In Section 4 one of the data
structures introduced in [4], dominated trees, is
described, in preparation for the key role it plays
in the multi-objective PSO method introduced
in section 5.

A set of experiments to quantify the per-
formance of this new multi-objective PSO al-
gorithm, in comparison to an ES method and
an existing multi-objective PSO are described in
Section 6. The results of these experiments are
situated in Section 7, followed by a discussion in
Section 8.

2 Pareto optimality

Most recent work on MOEAs hinges on the no-
tions of non-dominance and Pareto optimality,
which are now briefly reviewed.

The multi-objective optimisation problem
seeks to simultaneously extremise D objectives:

yi = fi(x),

where each objective y is a function of a vector
x of N parameters or decision variables. The
parameters may also be subject to the J con-
straints:

i=1,...,D (1)

ej(x) >0, j=1,...,J (2)

Without loss of generality it is assumed that the
objectives are to be minimised, so that the op-
timisation problem may be expressed as:

Minimise y = f(x) = (f1(x),---, fp(x))  (3)
subject to e(x) = (e1(x),...,es(x)) >0 (4)

where x = (z1,...,zn) and y = (y1,---,YD)-

When faced with only a single objective an
optimal solution is one which minimises the ob-
jective given the model constraints. However,
when there is more than one objective to be
minimised it is clear that solutions may exist
for which performance on one objective cannot
be improved without sacrificing performance on
at least one other. Such solutions are said to be
Pareto optimal and the set of all Pareto optimal
solutions are said to form the Pareto front, P.

The notion of dominance may be used to
make Pareto optimality clearer. A decision vec-
tor u is said to strictly dominate another v (de-
noted u < v) iff

fi(w) < fi(v) Vi=1,...,D and
fi(u) < f;(v) for some i.

()

Less stringently, u weakly dominates v (denoted
u=v)iff

fi(u) < fi(v)

A set of M decision vectors W is said to be a
non-dominated set (an estimated Pareto front
£) if no member of the set is dominated by any
other member:

Vi=1,...,D. (6)

Wi AW, Vi,j=1,..., M. (7)

3 PSO and multi-objective PSO

The PSO heuristic was first proposed by
Kennedy and Eberhart [7] for the optimisation
of continuous non-linear functions. Like GAs
and ESs it was inspired by nature, however in-
stead of evolutionary processes, it was the abil-
ity of birds to flock which acted as the algo-
rithm’s initial inspiration. A fixed population
of solutions is used, where each solution (or par-
ticle) is represented by a point in N-dimensional
space. The ith particle is commonly represented
[1, ].]., ].3] as Xz = (.’L’i,]_,.. -wi,N)7 and its per-
formance evaluated on the given problem and
stored. Each particle maintains knowledge of
its best previous evaluated position, represented
as P, = (pia,---pi,n), and also has knowledge
of the single global best solution found so far,
in the traditional uni-objective application in-
dexed by g. The rate of position change of a
particle then depends upon its previous local
best position and the global best, and its pre-
vious velocity. For particle 7 this velocity is
Vi = (vi1,...vin). The general algorithm for
the adjustment of these velocities is:

vij = woij + i1 (Pij — Tij) + car2(Pg,j — Tig)
(8)

Tij = Zij + XVij, j=1,...,N. (9)

Where w,c¢y,c2,x > 0. w is the inertia of a
particle, ¢; and ¢, are constraints on the velocity
toward global and local best, x is a constraint on
the overall shift in position and r1,75 ~ U(0,1).
In [7], the final model presented has w and x set
at 1 and ¢; and c» are set at 2.

In order to facilitate a multi-objective ap-
proach to PSO a set of non-dominated solu-
tions (the best individuals found so far using the
search process) must replace the single global
best individual in the standard uni-objective
PSO case, in addition, there may be no sin-
gle local best individual for each member of
the swarm. Choosing both which global and



which local individual to direct a swarm mem-
ber’s flight therefore is not trivial in the multi-
objective domain. Currently three studies have
attempted it.

In Hu and Eberhart [6] a considerable de-
gree of a priori knowledge of the test function
properties is used by their D = 2 multi-objecive
PSO. Instead of a single gbest a local Ilbest is
found for each swarm member, selected from the
‘closest’ two swarm members to an individual.
The concept of closeness is calculated in terms
of only one of the evaluated objective dimen-
sions, with the selection of the local optima of
the two based upon the other objective. The se-
lection of which objective to fix first and which
to optimise second is based on the knowledge of
the test function design — the relatively simple
objective function being fixed. A single pbest
is maintained for each swarm member, which
is only replaced when a new solution is found
which is lower on all objectives (identical to the
‘conservative’ preservation of efficiency selection
rule described by Hanne in [5]). Their model was
used on a number of test functions from the lit-
erature, however no comparison was made with
any other models, or the true Pareto fronts for
the problems.

Parsopoulos and Vrahatis [11] introduce two
methods that use a weighted aggregate approach
and another that is loosely based on Schaffer’s
MOEA [12]. These were compared on a num-
ber of two dimensional problems. The weighted
aggregate algorithms needed to be run K times
to produce K estimated Pareto optimal points
(meaning each run had a single global best). Al-
though [11] states that this approach has a low
computational cost, the need for a separate run
for each solution found does not necessarily sup-
port this. Their final method - the Vector Eval-
uated Particle Swarm Optimiser (VEPSO), uses
one swarm for each objective. The best parti-
cle of the second swarm was used to determine
the velocities of the first swarm (act as its global
best), and vice-versa. Comparison between the
algorithms was qualitative (based on visual in-
spection of the found fronts), and no comparison
was made to competitive methods in the MOEA
domain. (In addition the current VEPSO model
is also only designed for D = 2 problems.)

Coello and Lechuga [1] in comparison pro-
pose a method which is inspired by more re-
cent developments in the MOEA literature. Two
repositories are maintained in addition to the
search population. One of the global best indi-
viduals found so far by the search process, Z,
and one containing a single local best for each

member of the swarm (as in standard PSO). A
truncated archive is used to store the (global)
elite individuals. This archive uses the method
from [8] to separate the objective function space
into a number of hypercubes (an adaptive grid),
with the most densely populated hypercubes
truncated if the archive exceeds its membership
threshold. The archive also facilitates the selec-
tion of a global best for any particular individ-
ual in [1]. A fitness is given to each hypercube
that contains archive members, equal to divid-
ing 10 by the number of resident particles. Thus
a more densely populated hypercube is given a
lower score, an illustration of which is given in
Figure 1.
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Figure 1: 2D Illustration of grid based selection
scheme used in [1], with the ‘fitness’ of populated
hypercubes highlighted.

Selection of a global best for a particle is
then based on roulette wheel selection of a hy-
percube first (according to its score), and then
uniformly choosing a member of that hypercube.
This method therefore biases selection toward
under-represented areas of the estimated Pareto
front (unlike the original method developed in
[8]). Only one local best solution is maintained
for each swarm member however; if a particle
X; is evaluated and found to be mutually non-
dominating with P;, one of the two is randomly
selected to be the new P;.

The multi-objective PSO method in [1] was
compared with two highly regarded MOEAs, the
Pareto Archived Evolutionary Strategy (PAES)
[8] and the Non-Dominated Sorting Genetic Al-
gorithm II [2], with promising results. On the
two dimensional test functions used their multi-
objective PSO either outperforms or is not sig-
nificantly different to the competing algorithms
(using the M measure [14]).

However, even though the multi-objective
PSO introduced in [1] maintains an archive of
global best solutions, this study will argue that
there is a better way to select from this archive



than simple density based selection. That is, to
base it upon which archive member the swarm
individual is closest to. First a new data struc-
ture called the dominated tree, introduced in [4],
will be briefly described, as this data structure
facilitates the rapid selection of an appropri-
ate archive member for this new multi-objective
PSO method.

4 Dominated trees

Recent studies have highlighted the theoretic
inefficiency caused by representing a non-
dominated set with a limited number of solu-
tions [5, 9]. This in turn led Fieldsend et al.
[4] and Everson et al. [3] to empirically demon-
strate the inefficiency caused by truncation of
estimated Pareto archives in MOEAs, and de-
velop a number of data structures to facilitate
the maintenance of unconstrained archives. In
this section we shall briefly describe the proper-
ties of one of these, the dominated tree. Formal
algorithms and proofs of all the data structures
can be found in [4], as well as descriptions on
how to use them for unconstrained archive main-
tenance.

The dominated tree consists of a list of L =
[|Z]/ D] composite points ordered by the weakly-
dominates relation, <:

T={cL=<...<cy <1} (10)

Usually, the stronger condition, ¢; < c; iff i >
j, will hold. The coordinates of each composite
point are defined by (up to) D elements of Z,
the constituent points of a composite point. An
example of a dominated tree in two dimensions
is shown in Figure 2.
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o Individual residing in elite archive.
O Composite point.

Figure 2: A 2D dominated tree.

First we regard members of the frontal set

and individual(s) from the search population as
points y in D-dimensional space. Denote by Y;
the constituent points of ¢;, namely the D-tuple
defining the coordinates of c;; so that if

Vi = (yW,y®, . . yP) (11)

then the dth coordinate of the composite point
is the dth coordinate of y(?: ¢; = y,(id). Domi-
nated trees are constructed to have the property
such that if ¢; < y then all the constituent points
of ¢; (at least) weakly dominate y:

If c; <y then y(d) <y ‘v’y(d) eY: (12)

It follows from (12) that if ¢; < c; then the
constituent points of c; also weakly dominate
Cj.

Construction of a dominated tree from |Z|
points Z = {ym}‘,flz1 proceeds as follows. The
first composite point ¢; is constructed by find-
ing the individual y,, with maximum first coor-
dinate; this value forms the first coordinate of
the composite point:

€11 = max (yim,1) (13)
This individual y,, is now associated with c;
and removed from Z. Likewise the second co-
ordinate of ¢; is given by the maximum sec-
ond coordinate of the points remaining in Z:
1,2 = maxXy, cz\7 (Ym,2)- This procedure is re-
peated to construct ¢, and subsequent compos-
ite points until all elements of Z are associated
with the tree. In general the dth coordinate of
the ith composite point is given by:

max (Ym.,d) (14)

Ci,d =
Yym€Z\T

Note that in construction of the final composite
point (that is, the composite point that dom-
inates all other composite points) the |Z| ele-
ments of Z may have been used before all the D
coordinates of the final composite point ¢, have
been defined. The last remaining point in Z is
reused to define the remaining coordinates (as
shown in Figure 2).

It is clear from the construction of 7 that it
possesses properties (10) and (12). Since (except
possibly for the dominating composite point) D
elements of Z are used in the construction of
each composite point, the number of composite
points in T is L = [|Z|/D].

5 The new model

Unlike [1, 6, 11], in this study the selection of
the global best for an individual in the swarm



is based upon its closeness (in objective space)
to an individual in the non-dominated set. Each
swarm member is therefore concerned with im-
proving a particular region of £. This is achieved
using the ordering of individuals caused by the
composite point data structure discussed in Sec-
tion 4. For any member of the swarm, X;,
the first non-dominated composite point, ¢/, of
the dominated tree is sought (i.e. where ¢/ ¥
s < ¢#71), this takes O (Ig (M + 1)) domination
comparisons to find (where M is the number of
composite points). The global best for an indi-
vidual X; is that archive member of the compos-
ite point ¢/ contributing the vertex which is less
than or equal to the corresponding objective in
X;. An illustration of this is provided in Figure
3.

Objective 2

Objective 1
o Individua residing in elite archive.
O Composite point.
x Individual residing in swarm.

Figure 3: Selection of global ‘bests’ for each
swarm member.

In the case of a composite point ¢/ with more
than one vertex less than or equal to the corre-
sponding objectives of an individual X; (as is il-
lustrated in Figure 3 between composite point
¢2 and individual a) one of the vertex that
meets the condition is selected at random to pro-
vide the global best (denoted in Algorithm 1 as
Ziy = (2(3i),1,- - - 2(i),n)) for the individual X;.
The parenthesis around 4 in Z;) in Algorithm
1 denote the individual selected from the set as
the nearest to the ith member of X. They do
not infer the ith individual of Z.

A set of local best individuals found is also
maintained for each swarm member, instead of
the single best for each member kept by [1, 6, 11]
(which are prone to oscillation [3, 4, 5, 9]). The
selection of a local best for an individual from
the hyperset L (the set all of the local best
sets) is slightly different to that used in global

Algorithm 1 Composite point based Multi-
Objective PSO.

Generation counter ¢t := 0. Initialise the
swarm population X!, and update the
non-dominated population Z! with non-
dominated members of X?.

Initialise the local nondominated hyperset
L' with members of P*, L} := P*.
Initialise the velocity set Vi, V! :=0Vi =

1,...,]X]|.
1: t:=t+1.
2: Calculate new velocity of each parti-
o t—1 t—1 t—1
ce. vf; = wv ' +ar (I —2;') +

eara (zfi—)}j —a:;?j) Vi=1,..,|X|,Vj =
1,...,N, where r1,rs ~ U (0,1).

3:  Accelerate the swarm members along their
new trajectories, Xt := Xt~1 4 xV*t.

4: Update nondominated global store Z! (see
[4]), and local hyperset L*.

5: If termination rules are not met, go to 1.

selection. Due to the relatively small num-
ber of estimated Pareto solution stored locally
as opposed to globally, they are stored in lin-
ear lists, with uniform selection of local best
L; = (Lia,... lin). After initialisation of the
two repositories (Z and L), the algorithm fol-
lows a standard swarm behaviour (as described
in Equations 8 and 9).

5.1 Turbulence

During the early development of PSO [7], a
stochastic variable called ‘craziness’ was used,
such that Equation 8 read;

Vij = Uzj +rs, (15)

where vﬁ ; is the velocity of the jth parameter of
the nearest neighbour to X; and r3 is the random
craziness variable. As this early PSO developed
and changed into the more familiar algorithms
described in Section 3, this craziness parame-
ter was dropped. In this study however we shall
empirically validate the re-introduction of an ex-
tra stochastic variable within PSO (specifically
in the multi-objective domain). In keeping with
the overall design of the PSO, we refer to this
term as turbulence (equivalent to perturbation
in ES), as it reflects the change in a particle’s
flight which is out of its control. Where turbu-
lence is used Equation 8 is replaced with

Vij i = woij + 11 (Pij — Ti,j)

16
+eara(py,j — i) + 73 (16)



6 Experiments

The experiments in this study are designed to
evaluate the new algorithm developed in this
paper to existing models on a number of test
functions previously described in the literature.
In addition they are also designed to evaluate
the benefit or otherwise of turbulence to multi-
objective PSO models.

6.1 Comparative models

The first comparative model is based on the
ES(1+1) PAES model of [8] with an unlimited
archive. However, instead of grid based selec-
tion, the Partitioned Quasi Random Selection
(PQRS) method of [4] is used. Both methods
attempt to provide unbiased selection from the
estimated front, PQRS is simply preferred in
this case as grid knowledge need not be main-
tained and the method is easily integrated into
the dominated and non-dominated tree frame-
work. At each generation in PQRS one objec-
tive dimension is selected and partitioned into
@ — 1 bins of equal width (with an extra bin con-
taining the best individual in that dimension).
To select a representative from the archive first
one bin (or the best solution) is selected uni-
formly to ensure that there is no bias toward
dense areas of the front, and then an individ-
ual is uniformly selected from the bin. This is
easily implemented by maintaining D balanced
binary trees of the archive individuals in each
objective dimension. Selection then follows ran-
domly generating a number that lies in a chosen
bin’s range and selecting the nearest tree mem-
ber. A more detailed description can be found
in [4]. The second model is based on Coello and
Lechunga’s multi-objective PSO [1] with an un-
limited archive and selection from PQRS. This
second model uses the biased roulette wheel se-
lection from [1] for bin selection.

6.2 Comparison measure

Results were compared using a method similar
to the V measure from [4] and the performance
measure used in [10]. V" is a measure of the
multi-objective error volume that is dominated
by the true Pareto front but not the estimated
Pareto front. Loosely V7 is the fraction of the
volume of a hypercube containing P (Hp) that
is strictly dominated by P but is not dominated
by members of £. The V¥ measure is easily es-
timated by Monte Carlo sampling of Hp and
counting the fraction of samples that are domi-

nated exclusively by P and dividing by the num-
ber of samples dominated by P. The hypercube
bounds are determined by the P range of f; and
the P range of f2 + 3.0. This allows direct com-
parison of the V¥ measure across all models.
The lower the V” the lower the hypercube vol-
ume exclusively dominated by the true Pareto
front, and the nearer the estimated front to the
true front. 250000 samples were taken for Monte
Carlo estimates, and P was represented by 250
randomly drawn members of P.

6.3 Test Functions

The test functions introduced in [14] are used
here. The two dimensional objective functions
take the form:

Minimise T (x) = (f1(z1),f2 (X)),
where f2(x) =g(z2...,2N)

-h (fl ('7"1) 79("1:27 - 7$N)) )
and x =(Z1,.--,ZN)-

A description of the four test functions used can
be found in Table 1.

# Function
fi(z1) = 21,
1 g, o) =149 (SN, o) /(0 —1),
hifi,g9)=1-+/fi/g.
fi(z1) = 21,
2 glon,.yon) =149 (20 ) /(n—1),
h(f1,9) =1—(f1/9)".
fi(z1) = 21,
3 g($2a"'a$N) =1+9 <25:2$n> /(n_ 1):
h(fi,g9) =1—+/fi/g—(f1/g)sin(10nf1).
fi(z1) = 21,
g(z2,...,zN) =
14+10(n — 1) 2N, (22 — 10 cos(d7zn)),

h(flag) =1- Vfl/g'

Table 1: Test functions from [14] used in this
study.

4

For test functions 1-3, N = 30, z; € [0,1]
and for test function 4 N = 10, z; € [0,1],
Z2,..., TN € [-5,5].

6.4 Algorithm implementation

The implementation of all the models use float-
ing point representation of parameters in the
decision vectors. In order to compare the new
multi-objective PSO technique, each MOA was
executed 25 times on each test problem, and the
resultant non-dominated solutions saved at the
end of each run. For each simulation the ES
was run for 4000 generations with a mutation



rate of 0.2 and the PSO models were run for
200 generations with swarms of size 20. The
turbulence (perturbation) variable for all mod-
els was ~ N(0,0.1R), where R is the absolute
range of the model parameter. In each of the
25 different runs the algorithms were initialised
from identical decision vector populations of size
20, with the non-dominated individuals resid-
ing in these populations forming the initial elite
archives. Initialisation of decision vectors was
from Uniform distributions, over the range of the
chromosome parameters for the particular test
function. The experiments were repeated with
and without turbulence, with ¢; = co = x =1
and with w set at 0.4 (as used in [1]) and 0.8.
Turbulence probability was fixed at 0.2. Q = 20.

7 Results

Table 2 shows the results of these experiments.
The use of turbulence is seen to significantly
increase the performance of both the multi-
objective PSO algorithms across the test func-
tions, as does the use of a higher w value. In
addition the new multi-objective PSO algorithm
can be seen to be significantly better than the
ES method and the competing multi-objective
PSO method when using turbulence and a high
w on the first three test functions. The new
multi-objective PSO also tends to be better than
the competing multi-objective PSO even when
no turbulence is used and with lower w values
(sub-optimal parameter settings).

The fourth test function however, with mul-
timodality (21° local Pareto-optimal fronts [14])
causes great problems for both multi-objective
PSO algorithms, with none of the estimated
fronts from these models anywhere near the true
Pareto front'. This is due to the function de-
sign, where to pass through local Pareto fronts,
a swarm member may have to fly in a direction
opposite to its local and global best (in param-
eter space).

8 Discussion

A new method for selecting the best global and
local individuals for multi-objective PSO swarm
members has been proposed in this study. This
new approach is based on a concept of close-
ness to members of the global set, and maintain-
ing a set of local best solutions for each swarm
member. It has been shown to be significantly
better than the methods used in a recent al-
ternative multi-objective PSO and an existing

V> (%)

| # [ w,T ES | PP | P
0.4 15.0 55.0 32.83

No 13) | 6.7) | (8.0

0.8 15.0 20.1 3.7

1 | No 1.3) | (76) | (3.8)
0.4 15.0 3.0 3.6

Yes (1.3) (0.5) (0.7)

0.8 15.0 1.2 0.7

Yes (1.3) (0.3) (0.1)

04 12.0 65.6 60.9

No 1.2) | (7.8) | (8.5)

0.8 12.0 27.8 31.2

2 No 1.2) | (5.1) | (10.2)
0.4 12.0 6.7 5.8

Yes (1.2) (0.8) (0.9)

0.8 12.0 4-4 1.6

Yes (1.2) (1.1) (0.5)

0.4 8.2 32.2 12.1

No (1.0 (3.3) (2.2)

0.8 8.2 17.3 3.1

3 No (1.0) (4.9) (2.6)
04 8.2 2.8 3.1

Yes (1.0 (0.9) (0.6)

0.8 8.2 1.3 0.7

Yes (1.0) (0.5) (0.2)

0.4 68.1 100 100

No | (16.5) | (0.0) | (0.0)

0.8 68.1 100 100

4 | No | (165) | (0.0) | (0.0)
0.4 68.1 100 100

Yes (16.5) (0.0) (0.0)

0.8 68.1 100 100

Yes (16.5) (0.0) (0.0)

Table 2: Algorithm results. ES refers to the
multi-objecive ES(1+1) model, P’ refers to the
multi-objective PSO model based on [1] and P”
refers to the multi-objective PSO method de-
veloped in this study. Means highlighted in
bold are significantly better than both compet-
ing models (using the Wilcoxon Signed Ranks
Test at the 5% level, 2.5% in each tail). Means
in italics are significantly better than one other
competing model. # is the test function num-
ber, w the inertia and T refers to whether tur-
bulence is present.

1. It is interesting to note that, although not dis-
cussed in the original study, during its presentation
this problem was also noted by Coello on results not
reported in [1].



MOEA. Tt has also been demonstrated that the
use of a stochastic turbulence variable can be a
significant aid to general multi-objective PSO.
However this approach does have deficiencies.
Clearly if there is little or no relationship be-
tween ‘closeness’ in objective space and ‘close-
ness’ in parameter space multi-objective PSO
methods (and PSO methods in general) may ex-
perience problems.

In addition multi-objective PSO (and MOEA
methods as a whole) needs additional validation
on multi-objective problems of D > 2 dimen-
sions. As the number of objective dimensions D
increases the global best individual returned by
the new selection method may not be the nearest
- indeed it may only it be the (D — 1)th nearest.

Current research interests of the authors in-
clude the validation of the methods introduced
here on high D test problems, and the compari-
son of PSO to ES and GA approaches to multi-
objective Neural Network training.
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