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Abstract 
Genetic algorithms (GAs) are global, parallel, stochastic search methods, founded on 
Darwinian evolutionary principles. Many variations exist, including genetic programming and 
multiobjective algorithms. During the last decade GAs have been applied in a variety of areas, 
with varying degrees of success within each. A significant contribution has been made within 
control systems engineering. GAs exhibit considerable robustness in problem domains that 
are not conducive to formal, rigorous, classical analysis. They are not limited by typical 
control problem attributes such as ill-behaved objective functions, the existence of 
constraints, and variations in the nature of control variables. GA software tools are available, 
but there is no ‘industry standard’. The computational complexity of the GA has proved to be 
the chief impediment to real-time application of the technique. Hence, the majority of 
applications that use GAs are, by nature, off-line. GAs have been used to optimise both 
structure and parameter values for both controllers and plant models. They have also been 
applied to fault diagnosis, stability analysis, robot path-planning, and combinatorial problems 
(such as scheduling and bin-packing). Hybrid approaches have proved popular, with GAs 
being integrated in fuzzy logic and neural computing schemes. The GA has been used as the 
population-based engine for multiobjective optimisers. Multiple, Pareto-optimal, solutions 
can be represented simultaneously. In such schemes, a decision-maker can lead the direction 
of future search. Interesting future developments are anticipated in on-line applications and 
multiobjective search and decision-making. 



1. Introduction 
The genetic algorithm (GA) has arisen from a desire to model the biological processes of 
natural selection and population genetics, with the original aim of designing autonomous 
learning and decision-making systems [Holland, 1975]. Since its introduction, and subsequent 
popularisation [Goldberg, 1989], the GA has been frequently utilised as an alternative 
optimisation tool to conventional methods. The correctness of the GA as an abstraction of 
natural evolution has been challenged, for example by Channon and Damper [2000], but this 
issue should not be of undue concern to the engineer, who is using the GA for its robust 
search and optimisation properties. 
 
Several analogous algorithms have been proposed in the literature, such as evolution 
strategies (ES) and evolutionary programming (EP). These, together with GAs, have been 
classified under the umbrella group of evolutionary algorithms (EAs) [Spears et al, 1993]. 
 
This article describes how the genetic algorithm methodology can be applied to problems in 
control systems engineering.  The suitability of the GA towards various types of problem is 
discussed, and methods for incorporating the characteristics of control problems, such as 
constraints on actuator performance, are outlined. 
 
The application of GAs to control can broadly be classified into two distinct areas: off-line 
design and on-line optimisation. Off-line applications have proved to be the most popular and 
successful. On-line applications tend to be quite rare because of the difficulties associated 
with using a GA in real-time and directly influencing the operation of the system. GAs have 
been applied to controller design and to system identification. In each case, either the 
parameters or the structure can be optimised, or – potentially – both. Other applications 
include fault diagnosis, stability analysis, sensor-actuator placement, and other combinatorial 
problems. This article considers examples from the literature for each class of problem. 
 
The article concludes by offering future perspectives on the direction of EA research, with 
particular attention to issues of concern to the control engineer. 



2. What are genetic algorithms? 

2.1. Overview 
Genetic algorithms (GAs) are global, parallel, search and optimisation methods, founded on 
Darwinian principles [Darwin, 1859]. They work with a population of potential solutions to a 
problem. Each individual within the population represents a particular solution to the 
problem, generally expressed in some form of genetic code. The population is evolved, over 
generations, to produce better solutions to the problem. A schematic of the algorithm is 
shown in Figure 1. 
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Figure 1: Schematic of a standard genetic algorithm 

 
Each individual within the population is assigned a fitness value, which expresses how good 
the solution is at solving the problem. The fitness value probabilistically determines how 
successful the individual will be at propagating its genes (its code) to subsequent generations. 
Better solutions are assigned higher values of fitness than worse performing solutions. 
 
Evolution is performed using a set of stochastic genetic operators, which manipulate the 
genetic code. Most genetic algorithms include operators that select individuals for 
reproduction, produce new individuals based on those selected, and determine the 
composition of the population at the subsequent generation. Crossover and mutation are two 
well-known operators. 
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Figure 2: Single point crossover 

 
The crossover operator involves the exchange of genetic material between chromosomes 
(parents), in order to create new chromosomes (offspring). Various forms of this operator 
have been developed. The simplest form, single point crossover, is illustrated in Figure 2. 
This operator selects two parents, chooses a random position in the genetic coding, and 
exchanges genetic information to the right of this point, thus creating two new offspring. 
 

0 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0  
Figure 3: Binary mutation operator 



 
The mutation operator, in its simplest form, makes small, random, changes to a chromosome. 
For a binary encoding, this involves swapping gene 1 for gene 0 with small probability 
(typically around one percent) for each bit in the chromosome, as shown in Figure 3. 
 
Once the new generation has been constructed, the processes that result in the subsequent 
generation of the population are begun once more. 
 
The genetic algorithm explores and exploits the search space to find good solutions to the 
problem. It is possible for a GA to support several dissimilar, but equally good, solutions to a 
problem, due to its use of a population. 
 
Despite the simple concepts involved, genetic algorithms can become quite complicated. 
Many variations have been proposed since the first GA was introduced. Rigorous 
mathematical analysis of the GA is difficult and is still incomplete. 
 
Genetic algorithms are robust tools, able to cope with discontinuities and noise in the problem 
landscape. Inclusion of domain-specific heuristics is not a pre-requisite, although it may 
improve the performance of a GA. They have proved useful at tackling problems that cannot 
be solved using conventional means. 

2.2. Landscapes 
The genetic algorithm seeks to maximise the mean fitness of its population, through the 
iterative application of the genetic operators previously described. The fitness value of a 
solution in the GA domain corresponds to a cost value in the problem domain. An explicit 
mapping is made between the two domains. ‘Cost’ is a term commonly associated with 
traditional optimisation problems. It represents a measure of performance: namely, the lower 
the cost, the better the performance. Optimisers seek to minimise cost. Hence, it is evident 
that, by maximising fitness, the GA is effectively minimising cost. Raw performance 
measures must be translated to a cost value. This process is usually straightforward for single 
objective problems, but becomes more complicated in the multiobjective case. 
 
Every possible decision vector has an associated cost value and fitness value. The 
enumeration of all such vectors leads to the cost landscape and fitness landscape for the 
problem. For a problem with two decision variables, the cost and fitness landscapes will each 
be three-dimensional. An example is given in Figure 4. In general, if a problem has n decision 
variables (is n-dimensional), then the corresponding landscapes will be n+1 dimensional. The 
nature of a cost landscape depends on the chosen mapping from the vector of raw 
performance measure to the scalar cost value. The nature of the scalar fitness value 
subsequently depends on the translation from cost to fitness. 



 
Figure 4: A multimodal cost landscape 

 
 

2.3. Diversity 
Many variations on the standard genetic algorithm, as presented by Goldberg [1989], can be 
found in the literature. Modifications have been motivated by a desire to improve the 
performance of the GA, and to adapt it to particular problem domains. It may be more helpful 
or appropriate to regard evolutionary computing as a general problem-solving methodology, 
rather than a specific parameter-less tool. 
 
Virtually every aspect of the GA has been exposed to experimentation. As a note of caution, 
the results of such changes are often inconclusive and are frequently based on limited 
empirical testing. A very brief summary of key developments is presented below: 

•= Population – The size of the population has been of standard concern to both 
theorists and implementers. A population of between twenty and one hundred 
chromosomes is normally sufficient for most applications. The encoding of potential 
solutions to form chromosomes has also been the subject of intense research. Binary, 
or its Gray variant, encoding is the traditional approach, but direct floating-point 
representations of design parameters are becoming increasingly popular 
[Michalewicz, 1996]. 

•= Fitness assignment – Techniques for the conversion of the raw performance of a 
potential solution to a GA fitness value have also received much attention. Fitness is 
often taken as absolute, prior to normalisation using the population average but, 
alternatively, ranking techniques may be used. The main aims are to prevent 
premature convergence (early in the search), and to prevent directionless search late 
in the search. Ranking is, arguably, the most effective method of achieving this. 

•= Selection – The standard roulette wheel selection method is known to produce biased 
results, leading to a phenomenon known as genetic drift. Two central aims in the 
development of alternatives are to eliminate statistical bias and to achieve potential 
parallelism. Other selection methods have been proposed, such as tournaments 
between two individuals (which achieves good parallelism), and stochastic universal 
sampling (which is unbiased) [Baker, 1987]. Note that a trade-off has been shown to 
exist between the two aims cited above. 

•= Genetic manipulation – Genetic operators have been subject to intensive discussion, 
over both the composition and purpose of the various operators. Some researchers 



have abandoned recombination, whilst others regard the effect of mutation as 
minimal. Essentially, recombination tends to direct the search to superior areas of the 
search space, whilst mutation acts to explore new areas of the search space and to 
ensure that genetic material cannot be irretrievably lost. Choice of genetic operators 
must be made together with choice of representation.  

•= Iteration – GAs evolve a population over a number of generations. The exact number 
depends on the speed with which convergence can be achieved, and is dependent on 
the interplay between the GA construction and the type of problem under 
consideration. The composition of each new generation must be chosen. Typically, 
this will include offspring produced as a result of genetic operators acting on old 
individuals, some remnants of the past population, and possibly a few randomly 
generated individuals (see Figure 5). The exact proportion of each tends to vary from 
implementation to implementation, but offspring usually dominate the new 
population. The ratio of offspring to population size is termed the generational gap. It 
may be a static value, or may vary dynamically during the course of a run. Elitism is 
the term given to describe the deliberate introduction of high-achieving (relative to 
the current population) past individuals into the new population.   
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        Figure 5: Typical composition of the new generation  
   

•= New operators – Various new operators have been introduced to address problems 
discovered in application. For example, fitness sharing can be used to encourage 
niching behaviour (sub-population formation at different, comparatively optimal, 
landscape peaks). Mating restriction can be applied in cases where crossover between 
largely different solutions is unlikely to create good offspring (poor offspring are 
commonly described as lethals). 

 
A particular area of interest is the endeavour to incorporate further parallelism within the GA 
methodology in order to improve the efficiency of the algorithm. Three main categories of 
parallel GA (PGA) can be defined, namely global, migration, and diffusion algorithms. 
Global PGAs treat the entire population as a single breeding unit and aim to exploit the 
inherent parallelism of the algorithm. Farmer-worker systems are a typical implementation, in 
which the workers carry out performance evaluations, or conduct genetic operations. In a 
migration-based PGA, the population is distributed amongst semi-isolated groups. From time 
to time, migration of individuals within the groups occurs. Diffusion PGAs are based on a 
local neighbourhood selection mechanism. The population is treated as a single, continuous, 
structure. Breeding is restricted to adjacent individuals. This type of scheme tends to give rise 
to clusters of individuals of similar genetic material and fitness, known as ‘virtual islands’. 
Chipperfield and Fleming [1995] provide a broad overview and comparison of parallel GAs. 
 
GAs have also been utilised as a component of hybrid problem-solving tools, including 
elements such as hill-climbing, simulated annealing, neural networks, Bayesian belief 
networks, and fuzzy logic. 
 
Two key developments that have arisen from the GA are genetic programming (GP) and 
multiobjective evolutionary algorithms (MOEAs). General introductions are provided in the 
following subsections. 



2.3.1. Genetic programming 
Genetic programming represents a major variation on the GA. It was developed by Koza 
[1992], with the original purpose of generating and evaluating entire computer programs. The 
algorithm fundamentally resembles a GA but application of the operators requires special 
care. GP evaluates and manipulates variable length structures, in contrast to the generally 
fixed length chromosomes of a GA. The structures are composed of functions and terminals 
(potential inputs) that are defined in a library, prior to the execution of the GP. The maximum 
depth of any structure is, usually, also pre-defined. 
 

 
Figure 6: Single point crossover for GP using block diagrams 

 
GP uses a parse tree structure that is very similar to the Lisp programming language. 
However, the GP approach admits any problem for which the solution can be represented as a 
structure. Applications have involved manipulation of structures such as neural networks, 
system block diagrams, circuits, and equations. A single point crossover operator for a block 
diagram representation is shown in Figure 6. A simple mutation operator is illustrated in 
Figure 7. This operator swaps, with small probability, a block within a particular solution for 
one from the library of possible blocks. GP embodies an entire field of research in its own 
right. Refer to Swain and Zalzala [1998] for a detailed synopsis of GP trends and applications. 
 

 
Figure 7: Mutation for GP using block diagrams 



2.3.2. Multiobjective evolutionary algorithms 
Real-world problems usually involve the simultaneous consideration of multiple performance 
criteria. These objectives are often non-commensurable and are frequently in conflict with 
one another. Trade-offs exist between some objectives, where advancement in one objective 
will cause deterioration in another. It is very rare for problems to have a single solution; rather 
a family of non-dominated solutions will exist. These Pareto-optimal (PO) solutions are those 
for which no other solution can be found which improves on a particular objective without 
detriment to one or more other objectives. The concept of Pareto optimality is illustrated in 
Figure 8. 
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Figure 8: Pareto optimality 
 
Evolutionary algorithms are a suitable technique for multiobjective optimisation. Due to their 
population-based nature, they are capable of supporting several different solutions 
simultaneously. The robustness of the GA in the face of ill-behaved problem landscapes 
increases the value of their utility. Research into multiobjective evolutionary algorithms is 
still in its infancy, and is likely to prove a highly fruitful line of investigation in the coming 
years. One of the first approaches to utilise the concept of Pareto optimality was Fonseca and 
Fleming’s [1993] multiobjective genetic algorithm (MOGA), which tends to be the favoured 
approach for control engineers. Several excellent surveys of multiobjective evolutionary 
algorithm (MOEA) activity can be found, namely: [Veldhuizen and Lamont, 2000; Coello, 
1999; Deb, 1999; Fonseca and Fleming, 1995]. 
 
In the past, multiobjective problems have been cast as, effectively, single objective problems 
by constructing a utility function describing the relative importance of each objective. For 
example, in linear quadratic regulator design, the competing objectives of error and control 
size have in the past been combined as a weighted-sum of quadratic measures. The utility 
function is defined prior to the optimisation procedure. It requires in-depth information 
concerning the various trade-offs and valuation of each individual. This data is not commonly 
fully available in practice. In contrast, the GA selection operator can be used to identify 
degrees of Pareto optimality, thus enabling objectives to be handled individually. Hence, the 
requirement for a forced combination of objectives and the need for a priori information are 
both avoided. Indeed, this kind of search can help identify the existence and nature of specific 
trade-offs. 
 
The central theme of MOEA research to date has been the search for a problem’s Pareto-front 
(the set of non-dominated solutions). This set can be quite large and, hence, preference 



information may be usefully incorporated in order to direct the search to useful parts of the 
trade-off surface. Incorporation of designer preferences within a MOEA-based tool is a 
crucial area for further research. Fonseca and Fleming [1998] proposed a scheme for the 
progressive articulation of preferences by means of aspiration levels (specified in terms of 
goals and priorities). The authors’ preferability relation can be considered as a unification of 
several popular multiobjective decision strategies. Coello [2000] has undertaken a survey of 
existing approaches to preference handling within MOEAs. 
 
MOEAs can be applied to a wide range of design problems, encompassing many different 
fields. For example, a MOGA has been applied to the optimisation of radiotherapy treatment 
planning [Haas et al, 1997], in which the objectives are to deliver a high dose to the target 
area, whilst sparing the organs at risk, and minimising the dose to other healthy tissue. 
MOEAs have also been applied to engineering design problems such as supersonic wing-
shape optimisation [Obayashi et al, 2000] and automotive engine design [Fujita et al, 1998]. 
Control-related applications are described in Section 4, many of which extend design 
capabilities of GA search methods based on single objectives. 



3. How can GAs be of benefit to control? 
This section outlines the motivation for using GAs in control systems engineering. The 
attractiveness of GAs for use in complex problems is described, together with challenges that 
may limit their application. The case for using conventional approaches instead of GAs is also 
presented. The methods by which standard control problem attributes, such as constraints, can 
be handled by a GA are discussed. Finally, a summary of available GA tools is presented. 

3.1. Suitability 
Many exponents of evolutionary algorithms cite the genre’s generic nature as a major 
advantage. GAs can be applied to a wide-range of problems without significant modification. 
However, the GA is sometimes perceived as a tool that will provide mediocre results in a 
problem domain when compared with domain-specific methods. This criticism is further 
explored in the later sections of this article. It should also be noted that GA parameters 
(population size, mutation probability, and so forth) require tuning for extended benefits of 
the algorithm to be realised. 
 
The evolutionary approach has proved particularly successful in problems that are difficult to 
formalise mathematically, and which are therefore not conducive to analysis. This includes 
systems that are highly non-linear, that are stochastic, and that are poorly understood (control 
of which represents a ‘black art’). Problems involving the aforementioned classes of process 
tend to be difficult to solve satisfactorily using conventional methods. The GA’s lack of 
reliance on domain-specific heuristics makes it a strong contender for application in this area. 
Very little a priori information is required, but this can be incorporated if so desired. 
 
A single control engineering problem can contain a mixture of decision variable formats. This 
can prove significantly problematic for conventional optimisation techniques that require 
variables of a single mathematical type or scientific unit. Since the GA operates on an 
encoding of the parameter set, diverse types of variable can be represented (and subsequently 
manipulated) within a single solution. For example, the decision vector {blue, 18.3o, 1+j, 2π} 
does not pose an intrinsic problem to the GA. 
 
The GA is a robust search and optimisation method. It is well able to cope with ill-behaved 
cost landscapes, exhibiting such properties as multimodality, discontinuity, time-variance, 
randomness, and noise. Each of these properties can cause severe difficulties to traditional 
computational search methods, in addition to the lack of amenity to an analytical solution. 
Furthermore, a GA search is directed and, hence, represents potentially much greater 
efficiency than a totally random or enumerative search. 
 
One particularly promising avenue of GA application is the multiobjective problem. Many 
real-world applications fit into this category, including most engineering design problems. 
The potential of the GA is only starting to be fulfilled in this arena. GAs are also capable of 
supporting multiple, contrasting, solutions to a problem simultaneously. This provides the 
designer with a greater degree of choice and flexibility. 
 
For problems that are well understood, that are approximately linear, and for which trusted 
solutions exist, the GA is unlikely to produce competitive results. If a problem can be solved 
analytically with an acceptable level of assumptions then that approach is probably best. If 
such a solution cannot be found, and other problem-specific techniques are at an embryo 
stage, then the use of a GA could prove to be highly profitable and worthwhile. 
 
Mission-critical and safety-critical applications do not appear, initially, to be favourable 
towards GA usage. There is an element of chance in a genetic algorithm. No guarantee is 
provided that the results will be of sufficient quality for use on-line. When GAs are evaluated 



on benchmark problems, they are commonly tested many (typically twenty to thirty) times 
due to the stochastic nature of the algorithm. There is also the question over how individuals 
will be evaluated if no process model is available (as may well be the case). Some supporting 
theory exists for genetic algorithms, but is unlikely to prove sufficient to win the approval of 
standards agencies. Much care would, clearly, be needed for critical systems. 
 
GAs are very computationally intensive, often requiring massively parallel implementations 
in order to produce results within an acceptable timeframe. Hence, on-line application to real-
time control is largely infeasible at present.  

3.2. Representation 
The typical control problem contains various attributes that a GA must account for in some 
way. These include representation of design parameters, inclusion of constraints, assessment 
of performance, and methods for coping with the likely properties of the fitness landscape. 
 
Each solution to a problem consists of a number of design parameters (decision variables). 
These are encoded as a chromosome, which can then be manipulated by genetic operators. 
Thus, a mapping is required between the actual decision variables (phenotypes) and their 
genetic equivalent (genotypes). Choice of representation is very flexible; indeed any is 
acceptable so long as suitable genetic operators can be developed to support the 
representation. The classic approach is to encode the set of parameters in a concatenated 
binary string. A simple example is shown in Figure 9. 
 

1 0 1 0 1 1 { 5, 3 }
genotypic domain phenotypic domain

 
Figure 9: Mapping between GA chromosome and decision variables 

 
Both discrete and continuous variables can be catered for. A binary, or n-ary, coding can be 
used to represent variables to an arbitrary resolution. It should be noted, however, that the size 
of the search space increases exponentially with chromosome length. Gray encoding is often 
preferred to standard binary since it maintains the closeness of different solutions in both 
genotypic and phenotypic space. In recent years, floating-point representations have become 
popular alternatives to n-ary codings [Michalewicz, 1996]. This development has been 
motivated in the main by users’ comfort with one-gene-one-variable correspondence, but 
float-encoding has several benefits: it is faster to manipulate, it has been shown empirically to 
be more consistent from run to run, it permits much higher precision, and it is intuitively 
closer to the problem space. This final point is particularly beneficial since it enables easier 
incorporation of domain-specific knowledge. It should be noted that the existent theory to 
support the effectiveness of GAs (the so-called schema theorem) is based on binary encoding 
of decision variables [Goldberg, 1989]. 
 
Most engineering problems involve constraints, including the necessity of a stable system, 
and actuator performance limits. Three methods have been proposed to deal with constraints 
within a GA solution. The most efficient approach is to embed the constraints in the genetic 
code, making it impossible to generate infeasible solutions. Unfortunately it may be 
impossible, or far from obvious how, to adopt this method. In this case, penalty functions can 
be incorporated. These assign a very high cost (or, correspondingly, a very low fitness) to 
infeasible solutions. This approach can be rather ungainly but has been sufficiently effective 
in many applications. The third technique, which may become more popular as MOEA 
research expands, is to recast the constraints as objectives to be met and, consequently, solved 
as a multiobjective optimisation problem. 
 
The method by which potential solutions are assessed is a critical component of a GA. If the 
evaluation functions are inappropriate then the GA search is unlikely to progress in an 



acceptable direction. Initially, the raw performance measures (objectives) must be defined. 
This is very much an application-dependent process. The next consideration is the means by 
which the performance data will be obtained; this is often model-based. The raw performance 
must then be translated into a non-negative, scalar, fitness value. The fitness value represents 
the expected number of times that an individual will be selected for reproduction. Many 
engineering problems consist of multiple objectives. For the purposes of the GA, these must 
be combined to form a single value. The weighted-sum approach has proved popular in the 
literature, since it is amenable to a solution by conventional GA methods, but Pareto-based 
techniques are likely to surpass this in the future. 
 
Traditionally, the root-mean-square (RMS) of the error between the desired output and the 
actual output is taken as the cost of a particular solution. This measure is amenable to 
conventional search techniques. No such restrictions apply to the GA, so this limiting 
approach is no longer necessary. Having said this, many GA applications have retained this 
redundant measure, presumably out of force of habit. 
 
Real-time performance is of particular interest to the engineer. GAs are notorious for the 
computational resources they require, although thoughtful implementations can reduce these 
requirements significantly. Parallel computing systems must be exploited for GAs to be used 
in real-time. Processes with long time constants represent the most feasible application. 
 
Many engineering problems have the attribute of multimodality. This can cause premature 
convergence for conventional search techniques. GAs are not immune to this problem, 
although the parallel nature of the search process is a significant boon. Various GA add-ons 
have been developed to counter difficulties associated with multimodal cost landscapes, 
including adaptive genetic search operators, fitness sharing, mating restriction, and random 
injection (random chromosomes inserted into the new generation). 

3.3. Available tools 
There is no ‘industry standard’ GA toolbox available. Furthermore, no major commercial 
computer-aided engineering (CAE) package manufacturers have implemented GAs as part of 
their optimisation suites. However, several toolboxes are available in both the commercial and 
freeware sectors. Internet links to the toolboxes, together with brief summaries of their 
features, are provided in the Appendix. 
 
Several GA toolboxes have been developed for the technical computing package MATLAB. 
GA source code is also available for several programming languages, including C++, Java, 
and FORTRAN. GA tools can further be found for spreadsheets, including Microsoft Excel.  



4. Design Applications 
Genetic algorithms have been most widely and successfully applied to off-line design 
applications. In the field of control systems engineering, these applications include controller 
design, model identification, robust stability analysis, and fault diagnosis. In some instances, 
GAs have been used as the sole means of design. In others, they have been combined with 
existing methods. In further cases, they have been combined with other intelligent or 
metaheuristic techniques. An intelligent system can make appropriate, autonomous, decisions 
and generally incorporates a process of learning (although no firm definition of such a system 
exists). Any technique that discovers new solutions, based upon experience gained from 
previous solutions, can be classified as a metaheuristic method. 

4.1. Controllers 
Genetic algorithms, and other evolutionary algorithms such as genetic programming, have 
been extensively applied to the off-line design of controllers. GAs have been used to obtain 
controller parameters (for various classes of controller), or controller structure, or 
occasionally both. They have also been combined with fuzzy and neural controllers to form 
an intelligent control scheme.   

4.1.1. Parameter optimisation 
In the early 1990s, GAs were first investigated as an alternative means of tuning PID 
(Proportional-Integral-Derivative) controllers. Oliveira et al [1991] used a standard GA to 
determine initial estimates for the values of PID parameters. They applied their methodology 
to a variety of classes of linear time-invariant (LTI) system, encompassing minimum-phase, 
non-minimum phase, and unstable systems. They improved the efficiency of their algorithm 
by identifying ancestral (already-assessed) chromosomes and avoiding re-evaluation of these. 
Wang and Kwok [1992] tailored a GA using inversion and preselection ‘micro-operators’ to 
PID controller tuning. They stressed the benefit of flexibility with regard to cost function 
(there being no requirement for mathematical tractability) and, in particular, alluded to the 
concept of Pareto-optimality (providing the potential to simultaneously address multiple 
objectives, such as transient performance and disturbance rejection). In an independent 
enquiry, Porter and Jones [1992] proposed a GA-based technique as a simple, generic, method 
of tuning digital PID controllers. 
 
More recently, Vlachos et al [1999] applied a GA to the tuning of decentralised PI 
(Proportional-Integral) controllers for multivariable processes. Controller performance was 
defined in terms of time-domain bounds on the closed-loop responses for both reference 
following and loop interactions. This approach afforded good visualisation of the performance 
of potential solutions. 
 
Onnen et al [1997] applied GAs to the determination of an optimal control sequence in 
model-based predictive control (MBPC). Particular attention was paid to MBPC for non-
linear systems with input constraints. Specialised genetic coding and operators were 
developed, with the aim of preventing the generation of infeasible solutions. The resulting 
scheme was applied to a simulated batch-fed fermenter, with favourable results reported 
(compared to the traditional branch-and-bound method) for long control horizons. 
 
A further approach to controller design using GAs is to apply the methodology indirectly. In 
such a scheme, the GA manipulates input parameters to an established controller design 
process, which in turn produces the final controller. The linear quadratic Gaussian (LQG) 
method and the H-infinity control scheme have both been utilised in this manner. 
 



In LQG design, a GA can be used to search for the best values for the weighting factor matrix 
to meet design specifications, since manual selection of the matrix elements is not 
straightforward. For example, Mei and Goodall [2000] considered control strategies for the 
active steering of solid axle railway vehicles using the LQG method. LQG guarantees stability 
and, hence, the design procedure concentrated on obtaining acceptable performance for 
curving and ride quality, between which a trade-off is known to exist. 
 
A similar search approach may be used in conjunction with an H-infinity design procedure. 
Here, a GA can search for pre- and post-plant weighting functions to ensure good closed-loop 
performance, whilst a robust controller is guaranteed as a result of the H-infinity design. Both 
of these indirect or hybrid design approaches (LQG and H-infinity) have been extended to 
simultaneously address multiple design objectives, achieved via the incorporation of a 
multiobjective genetic algorithm (MOGA). In one such example, Dakev et al [1997] applied a 
MOGA to the indirect H-infinity design of an electromagnetic suspension (EMS) control 
system for a maglev vehicle. This is a critical, inherently unstable, system that requires active 
control. Various performance criteria were optimised and compared simultaneously. The 
approach permitted good visualisation of the design trade-offs, such as exists between the air 
gap and the passenger cabin acceleration, underpinned by a robust H-infinity controller for all 
alternative designs. 
 
GAs have also been successfully applied directly in the field of H-infinity control. In this 
approach, the actual controller is designed via a GA. Recognising the difficulty in 
implementing unconstrained H-infinity controllers, in which the order of the controller is 
much higher than that of the plant, Chen and Cheng [1998] proposed a structure specified H-
infinity controller. A GA was used to search for good solutions within the admissible domain 
of controller parameters (obtained via the Routh-Hurwitz stability criterion).  
 
It will be apparent that MOGAs have been used in a variety of parameter optimisation 
problems to great effect. Multiple design objectives may be defined, in both the time- and 
frequency-domains, resulting in a vector objective function. Progressive articulation of 
designer preferences can then be enabled by the use of goals and priorities. In the most 
popular of the MOEA approaches, Pareto ranking is used, together with niche formation 
techniques. In one such study, Fonseca and Fleming [1998] applied a MOGA to the 
optimisation of the low-pressure spool speed governor of a Rolls-Royce Pegasus gas turbine 
engine. The results highlighted the importance of progressive preference articulation and 
interaction with the designer, since only a small proportion of the nondominated set was 
found to be of practical relevance. 

4.1.2. Structure 
Many GA applications simply optimise the parameters of existing controller structures. 
Hence, they are often regarded as a direct replacement for, often tried-and-trusted, existing 
methods, and are used primarily in the face of ill-behaved cost landscapes. In order to harvest 
the full potential of the GA, some researchers have experimented with the manipulation of 
controller structures. 
 
Genetic programming has been utilised for the automatic synthesis of the parameter values 
and the topology of controllers [Koza et al 2000]. A toroidal island model of 66 GP 
algorithms, each with 1000 individuals, has been implemented. This approach is very 
computationally intensive in comparison to most EAs. The system has reportedly duplicated 
existing patents (for PI and PID controllers) and rediscovered old ones (a controller making 
use of the second derivative of the error between the reference signal and the output signal). 
 
Multiobjective evolutionary algorithms have been utilised in the context of controller 
structure optimisation. For example, MOGA has been used to select controller structure and 



suitable parameters for a multivariable control system for a gas turbine engine [Chipperfield 
and Fleming, 1996]. The chromosomes contained structure genes (indexed to four pre-
compensator structures) and real-coded parameters. A Breeder Genetic Algorithm (BGA) 
[Mühlenbein and Schlierkamp-Voosen, 1993] was used as the MOGA search engine to 
simultaneously optimise rise-time, settling-time, overshoot, cross-coupling, and controller 
complexity objectives. The family of Pareto-optimal solutions, which develop over the course 
of a single run, empower the engineer to examine trade-offs between design objectives and 
configurations. 

4.1.3. Application to fuzzy / neural control 
The limitations of conventional controllers for application to complicated, dynamical, systems 
have motivated research into so-called intelligent control systems. The two most popular 
techniques are fuzzy control, in which expert knowledge can be incorporated into the design, 
and neural control, which is most suitable for poorly modelled and non-linear systems. 
Linkens and Nyongesa [1996] present a comprehensive appraisal of both approaches. 
 
Genetic algorithms have been used in attempts to optimise various aspects of intelligent 
controllers. In fuzzy control, a GA can be used to generate the fuzzy rulebase, and to tune the 
associated membership function parameters. In neural control, a GA can function as an 
alternative choice to learning the weight values. GAs have also been mooted as capable of 
optimising the topology of a neural network. Various illustrative examples of the application 
of GAs to intelligent control are presented below. 
 
Ichikawa and Sawa [1992] used a neural network (NN) as a direct replacement for a 
conventional controller. The weights were obtained using a GA approach. Each individual in 
the population represented a weight distribution for the network. The structure and activation 
function were decided a priori. This approach offered the benefit that teaching patterns were 
not required and the objective function was not required to be mathematically well-behaved. 
 
Angeline et al [1994] attempted the simultaneous evolution of neural network structure and 
weights using evolutionary programming (EP). They argued that a GA was not suitable for 
the task because the crossover operator is likely to act in a destructive, rather than the 
typically constructive, manner. Because of the distributed nature of NN processing, 
components from two separate well-performing networks are unlikely to perform well when 
fused together, even for the case when the topologies are similar. EP uses only a mutation 
operator to manipulate chromosomes. Therefore, the integrity of an individual network would 
be maintained. The EP approach also facilitates direct manipulation of the individual 
networks. Angeline et al distinguished between parametric and structural mutation operators, 
and applied more severe mutations to poorly performing individuals. 
 
Work in the area of GAs applied to fuzzy control is broadly split into two categories: tuning 
of the membership functions, and elicitation of the rulebase in addition to tuning. Practitioners 
of the former approach tend to argue that the form of the rules is likely to be known a priori, 
and that most uncertainty lies in the development of the associated membership functions. 
Use of a static rulebase also reduces the necessary level of computational complexity, which 
may be a further reason for the popularity of this approach. 
 
Tzes et al [1998] applied a GA to the off-line tuning of Gaussian membership functions. 
Using a fuzzy clustering technique, they developed a fuzzy model that describes the friction in 
a dc-motor system. The GA was seeded so that the initial genes in the pool lay close to those 
obtained by fuzzy clustering. Improved results were demonstrated over the non-tuned version. 
An asynchronous GA (in which the generations are not synchronised) has been used to 
optimise membership functions in order to facilitate rapid prototyping of fuzzy controllers 
[Kim et al, 1995]. This approach was suited to massively parallel processing and has been 



implemented on a 512 processor CM-5 Connection Machine. The technique was applied to a 
simulated space-based oxygen production system. 
 
Evolutionary methods have also been applied to the generation of control rules in situations 
where a reasonable set of rules is not immediately apparent. Here, the designer may either use 
a pre-specified number of rules or allow these to be free (thereby invoking a GP-type 
approach). Note that the latter technique tends to be particularly computer-intensive. 
Matsuura et al [1996] used a GA to obtain optimal control of sensory evaluation of the saké 
mashing process. The GA learned rules for a fuzzy inference mechanism, which subsequently 
generated the reference trajectory for a PI controller based on the sensory evaluation. GAs 
have also been used in the development of other types of rule bases, such as bang-bang 
control applied to the classic inverted pendulum control problem [Varšek et al, 1993]. 
 
Linkens and Nyongesa [1995] consider both the on-line (see Section 5) and off-line 
application of GAs to fuzzy control. They consider the complete process of fuzzy design, 
including elicitation of control rules and optimisation of membership functions. In addition, 
they provide a comprehensive discussion of GA operators and parameters from the 
perspective of fuzzy control. 

4.2. Identification 
Many control system applications, such as model-based predictive control, require some form 
of mathematical model of the process to be controlled. In some instances, accurate models can 
be derived analytically through consideration of known physical processes. This approach is 
often appropriate for linear, deterministic, time-invariant, single-input single-output systems, 
where sufficient knowledge of the system processes is available. Most real-world systems, 
however, do not fit into this category. In particular, they are often non-linear and poorly 
understood. Black-box modelling, commonly known as system identification, is often the only 
realistic approach available. In this case, input-output data from the system is used to generate 
a mathematical relationship between input and output. 
 
System identification can be decomposed into two, inter-related, problems: 

•= Selection of a suitable model structure, and subsequent 
•= Estimation of model parameters. 

 
Well-developed techniques exist for parameter estimation of linear models and linear-in-the-
parameters non-linear models. Techniques for the selection of structure and for non-linear-in-
the-parameters estimation are still the subject of ongoing research. 
 
The application of GAs to black-box and grey-box model identification has received 
considerable interest since Kristinsson and Dumont’s seminal paper in 1992. They applied 
GAs to the system identification of both continuous- and discrete-time systems. The 
technique employed can be used in on-line as well as off-line applications. The GA was used 
to directly identify poles and zeros, or to obtain the values of physical parameters. The cost 
function used was the error between the estimated and actual output over a window of data, 
which consisted of the current input-output pair and the previous 30 samples. For each sample 
point, the population was evolved for a further three generations. Kristinsson and Dumont 
reported comparable or better results to well-known techniques, but noted the high 
computational expense incurred. 
 
Subsequent evolutionary system identification applications have attempted to optimise model 
parameters, or model structure, or sometimes both simultaneously. 



4.2.1. Model structure 
One of the central problems in system identification is the choice of the input, output, and 
delay terms that are to contribute to the model. GAs provide a simple method for searching 
the structure space for terms that make the most significant contributions to process output. 
 
Nonlinear model term selection for NARMAX (Nonlinear AutoRegressive Moving Average 
eXogenous) models [Leontaritis and Billings, 1985] has been performed using a GA [Fonseca 
et al, 1993]. The problem can be cast as one of subset selection, where each individual in the 
population represents a specific term that might be used in the model. Ten terms is usually 
regarded as an acceptable number to capture the system behaviour. Each gene is associated 
with a particular term in a look-up table. Genetic operators should be carefully chosen to 
eliminate redundancy within an individual. Fonseca et al improved the effectiveness of the 
mutation operator by making the probability of mutation of a gene dependent on the quality of 
the associated term, measured as the variance of the residual of the model when the term is 
discarded. This special mutation operator has been shown, empirically, to improve the search 
speed. The parameters of the models can be estimated using standard least squares methods. 
This approach is possible because NARMAX models are linear-in-the-parameters. In a further 
example, Luh and Wu [1999] used migration-based GAs to identify NARX (Nonlinear 
AutoRegressive eXogenous) models. 
 
Genetic programming has established itself as a popular technique for evolutionary system 
identification. Gray et al [1998] performed non-linear model structure identification using 
GP. They considered two representations: block diagrams (using SIMULINK) and equations 
(differential and integro-differential). A function library was constructed, which included 
basic linear and non-linear functions and also specific a priori knowledge. The necessary 
parameters for each structure can be found using an existing technique. Less orthodox 
methods will be required for more complicated model structures. In the case of Gray et al, 
parameters were found using a combined simulated annealing (SA) / Nelder-simplex method. 
The resulting scheme was applied to diverse systems of varying complexity, including simple 
transfer functions, a coupled water tank, and a helicopter rotor speed controller and engine. 
 
Marenbach et al [1997] developed a general methodology for structure identification using 
GP with a block diagram library. They utilised an evaluation function that incorporated 
measures of both solution accuracy and block diagram complexity. Each block in the library 
was assigned a static value, representing the (subjective) complexity of the block. Typical 
blocks included time delays, switches, loops, and domain-specific elements. The developed 
methodology was applied to a biotechnological fed-batch fermentation process, providing a 
transparent insight into the structure of the process. This transparency could not be achieved 
using NNs, highlighting an oft-cited weakness of the connectionist approach. 
 
Multiobjective NARMAX structure identification can be accomplished using a multiobjective 
genetic programming (MOGP) strategy, built on a MOGA platform [Rodriguez-Vázquez et 
al, 1997]. Seven objectives were optimised simultaneously: the number of model terms, 
model degree, model lag, residual variance, long-term prediction error, the auto-correlation 
function of the residuals, and the cross-correlation between the input and the residuals. These 
latter two objectives were defined as hard constraints. The terminal set consisted of linear 
input and output terms. The function set consisted of, simply, sum and product. These two 
functions are sufficient to construct any NARMAX model. 
 
The key advantage of GP is the ability to incorporate domain-specific knowledge in a 
straightforward fashion. Also, the results can be readily understood and manipulated by the 
designer. However, GP structures can become complicated, and may involve redundant 
pathways. Minimising the complexity of a solution should normally be a specific objective. 
Furthermore, GP can be quite processor intensive, especially for structural identification 



where a parameter estimation procedure must be carried out for each individual structure at 
each generation. Due to the complexity of the structure, traditional (trusted and efficient) 
parameter estimation methods are often impossible to apply. 

4.2.2. Model parameters 
In the cases where the identified model is linear-in-the-parameters, standard least-squares 
techniques can be used to obtain good estimates of the model’s parameters. In circumstances 
where this is not the case, such as for non-linear rational models, other techniques may 
provide superior results. EA-based methodologies have been investigated as potential 
solutions. 
 
Choi et al [2000] used an evolution strategies algorithm to identify the parameters of static 
(Karnopp) and dynamic (LuGre) friction models. The model structures were predefined 
(based on existing results in the literature). The results were used in a friction compensation 
control system, which utilised a sliding-mode controller. 

4.2.3. Simultaneous optimisation of structure and parameters 
Billings and Mao [1998] applied GAs to non-linear rational model identification. Both 
structure and parameter information was encoded in each individual to facilitate simultaneous 
optimisation of both elements. Rational models are not linear-in-the-parameters and, hence, 
the parameters cannot be accurately estimated by standard methods. The model can be 
manipulated to ensure that it is linear-in-the-parameters, but this introduces severe noise 
problems. The authors discovered that their approach found the correct structure and good 
parameter estimations for small systems, but failed to converge for more complicated (real-
world) systems. 

4.3. Fault diagnosis 
Fault diagnosis systems have arisen from the general demand for safer and more reliable 
systems. The tasks of a fault diagnosis system can be split into three areas, namely: 

•= Detection of the presence of a fault, 
•= Isolation of the fault, and 
•= Identification or classification of the fault. 

FDI (fault detection and isolation) is the term commonly given to the monitoring of faults in a 
feedback control system. 
 
One particular facet of this research arena is fault-tolerant control, in which suitable control 
action can be generated in the presence of certain fault conditions. 
 
A popular approach to FDI involves the generation and analysis of residuals. These are 
signals that reflect inconsistencies between nominal and faulty operation. Model-based 
observers are commonly used for residual generation. The competing effects of faults and 
modelling uncertainty (and disturbances) represent the central challenge to this technique. 
Hard or sudden faults will generally have a large effect, larger than the effects due to 
uncertainty, on the diagnostic residual. Hence, simple thresholding can be used to detect a 
fault condition. However, incipient faults may have a lower response than that due to 
uncertainty. In this case, thresholding cannot be applied directly. In summary, a trade-off 
exists between sensitivity of the residual to faults and robustness to modelling uncertainty. 
 
The disturbance decoupling concept has been proposed as a solution to the trade-off, but this 
may not prove sufficient. Other solutions are required in cases where there is a lack of design 
freedom or data is unavailable concerning the distribution of disturbances (a fundamental 
requirement of disturbance decoupling). GAs have been used to optimise the design of model-
based observers for residual generation. 



 
Patton et al [1997] (see also Chen et al [1995]) formulated model-based FDI as a 
multiobjective optimisation problem, in which the task was to maximise the effect of faults on 
the residual, whilst minimising the effect of uncertainty. They formulated an overall cost 
function using the method of inequalities and optimised this using a GA. The approach was 
applied to the detection of sensor faults in a flight control system. Robust observers for fault 
detection have also been designed using a Pareto-based approach, in which the ranking of an 
individual solution is based on the number of solutions by which it is dominated [Kowalczuk 
et al, 1999]. In both these techniques, the use of a GA permitted the straightforward inclusion 
of various performance criteria (including previously-unused frequency-domain information). 
 
GAs have also been applied to FDI methods that are not based on the concept of residuals. 
Marcu et al [1997] formulated the model-based diagnosis of process faults as a feature 
selection and classifier design problem. A multiobjective evolutionary algorithm was used for 
both off-line learning of regions corresponding to known fault and fault-free conditions (using 
component shapes), and for on-line identification of process coefficients (the so-called 
symptom vector). 
 
As an alternative method of fault diagnosis, a GA can be applied to the generalised task of 
determining the correct problem (fault) from a collection of problems given a set of symptoms 
that indicate that a problem exists [Miller et al, 1993]. In this approach, the relative likelihood 
of a diagnosis given observable manifestations was considered. The method relied upon the 
availability of a priori probabilities that a particular disorder caused a particular symptom. 
 
Painton and Campbell [1995] developed a technique for improving overall system reliability 
by considering component-level choices. For each possible component, a failure rate 
distribution and a cost were defined. A GA was used to search the component-choice 
landscape for the most reliable system, in terms of mean time-before-failure (MTBF), within 
a pre-defined cost ceiling. The MTBF distribution was obtained for each population member 
by conducting 200 trial runs (using Latin hypercube sampling). The GA was found to be 
highly preferable to the basic alternative: an exhaustive search. 

4.4. System Analysis 
Genetic algorithms have been utilised in the context of efficient robust control system design 
[Marrison and Stengel, 1997]. In stochastic robustness analysis, the probability that a given 
closed-loop system will exhibit unacceptable performance, in the presence of possible 
parameter variations, is evaluated. A GA can be used to manipulate a population of points in 
design space (each of which corresponds to the design vector of a compensator). Each design 
vector can be evaluated using Monte Carlo Evaluation (MCE). Marrison and Stengel used 
statistical tools to compare two designs and to avoid computing more MCEs than were 
necessary. The comparison of designs involved the determination of a statistically significant 
difference between the two alternatives. This result was suitable for use in the GA’s 
tournament selection algorithm. 
 
Methods for improving the speed of the robust design procedure have been considered 
[Schubert and Stengel, 1998]. This essentially involved the careful choice of a parallel 
computing architecture. A particular problem is the stochastic load imbalance, caused by 
variations in the amount of time needed to compute different MCEs. The problem was solved 
by the incorporation of a dynamic scheduler. 
 
Robust stability analysis of discrete-time systems can be performed by means of an 
evolutionary search for system poles that lie outside the unit circle [Fadali et al 1999]. This 
method tests a sufficient condition for instability in LTI, discrete, uncertain systems with 
nonlinear polynomial structures (dependencies between the various parameters). Note that the 



system can be shown to be unstable, but not stable, using this method. Fadali et al varied the 
population size and mutation probability during a run in an effort to obtain a balance between 
exploration and exploitation. 

4.5. Robotics 
Genetic algorithms have been utilised in robotics for both path planning and the design of 
behavioural controllers. Rana and Zalzala [1997] applied a GA to the collision-free path 
planning of robot arms. Each chromosome consisted of a floating-point vector representation 
of via points (between each end of the path). The actual path was then computed by fitting 
cubic splines to the points. The cost function was a weighted sum of the path length, the 
number of collisions, and the distribution of via points. 
 
Genetic algorithms have also been used to improve the dexterity of robot manipulators 
[Erkmen et al, 2000]. Dexterity can be defined as the capability to manipulate objects in 
crowded, changing, and partially known environments and the ability to recover from failing 
grasps through a re-grasping procedure. The pre-shaping and grasping procedure required for 
robotic manipulators (such as Anthrobot III, which is analogous to the human hand) exhibits a 
search space consisting of unconnected feasible regions, multiple extrema, and non-linear, 
non-convex constraints. A GA was used to minimise a weighted sum of the following criteria: 

•= the positional error of each finger with respect to the final contact points, 
•= the manipulability and stability errors, and 
•= the number of collisions between fingers. 

Re-grasping was achieved by perturbing the converged population associated with the optimal 
pre-shape, leading to convergence in a new area of the search space. 
 
Dorigo and Columbetti [1994] used reinforcement learning to shape a robot to perform 
predefined target behaviour. Learning classifier systems performed the behavioural control. A 
GA was used as a rule discovery algorithm to generate the classifiers. 

4.6. Further control-related combinatorial problems 
Combinatorial problems are those in which an optimum set of choices must be made from a, 
usually significantly large, pool of potential choices. Commonly, analytical solutions do not 
exist, or exist only for simplified, textbook cases. Hence, research has focused on the 
development of computational methods. However, these problems can be computationally 
demanding because the search space tends to explode in size as the number of choices to be 
made increases. GAs have been found to be a competitive approach, in terms of both 
convenience and quality of solution. Notice should be taken here of the No Free Lunch 
Theorem [Wolpert and Macready, 1995]: if an application-specific algorithm is developed, it 
is likely to exhibit superior performance to a GA, but only for that particular application or 
subset of applications. 
 
Many control problems are combinatorial, or have an element thereof, and can be generally 
viewed as a set of decisions, each with its own set of possible choices. Hence, a solution to a 
problem can be defined as a set of decision-choice pairs. The effects of the choices on the 
output may be non-separable, and dependencies may exist between certain decision-choice 
pairs. Various combinatorial problems can be identified in the earlier discussions, including 
selection of model structure, selection of controller structure, and system component 
selection. A further example is that of sensor and actuator placement. 
 
Krishnakumar et al [1994] investigated the simultaneous optimisation of actuator-sensor 
placement and feedback controller gains as a means of providing optimal structural control. 
They aimed to discover several distinctly different solutions to present to the designer, and to 
this end used a GA with phenotypic sharing to promote niche formation. The evaluation 
function was the time-averaged control energy required to minimise the structural response to 



a pre-defined random disturbance. A similar function was used by Zhang et al [2000] in the 
design of piezoelectric vibration control systems for flexible structures. Their float-encoded 
GA was tested on benchmark problems before being applied to a cantilever beam, a 
representative component of many flexible aerospace structures. Sensors and actuators were 
co-located to avoid possible instability arising from dis-location. Favourable results were 
reported compared to the existing quasi-Newton approach. Note that variations in the 
actuators and sensors could include types and quantities, in addition to locations. 
 
Many combinatorial problems exist in the field of manufacturing optimisation. These include 
scheduling problems (job-shop, flow-shop, and dynamic), process planning, cellular 
manufacturing, assembly lines, product design, machine failure and maintenance, and quality 
control. See Dimopoulos and Zalzala [2000] for a broad review of evolutionary algorithms in 
manufacturing optimisation. 



5. On-line applications 
On-line applications present a particular challenge to the GA. Successful applications in this 
field have been somewhat limited to date. The benefits of a GA for on-line control systems 
engineering applications are the same as those discussed for off-line applications. However, 
an on-line GA approach must be used with particular caution. There are several 
considerations to be made. It is important that an appropriate control signal is provided at 
each sample instant. If unconstrained, the actions of the ‘best’ current individual of the GA 
may inflict severe consequences on the process. This is unacceptable is most applications, 
especially in the case of a safety- or mission-critical system. 
 
Given that it may not be possible to apply the values represented by any individual in a GA 
population to the system, it is clear that evaluation of the complete, evolving, population 
cannot be performed on the actual process. The population may be evaluated using a process 
model, assuming that such a model exists, or performance may be inferred from system 
response to actual input signals. Inference may also be used as a mechanism for reducing 
processing requirements by making a number of full evaluations and then computing 
estimates for the remainder of the population based on these results. 
 
In a real-time application there is a limited amount of time for which an optimiser can be 
executed between decision-points. Given current computing power, it is unlikely that a GA 
will execute to convergence within the sampling time limit of a typical control application. 
Hence, only a certain number of generations may be evolved. For systems with long sample 
times, an acceptable level of convergence may well be achieved. 
 
In the case of a controller, an acceptable control signal must be provided at each control-
point. If the GA has evolved for only a few generations then population performance may still 
be poor. A further complication is that the system, seen from the perspective of the optimiser, 
is changing over time. Thus, the evolved control signal at one instant can become totally 
inappropriate at the next. GAs can cope with time-varying landscapes to a certain extent, but a 
fresh run of the algorithm may be required. In this instance, the initial population can be 
seeded with previous ‘good’ solutions. Note that this does not guarantee fast convergence and 
may even lead to premature convergence.   
 
There are three broad approaches to the use of GAs for on-line control [Linkens and 
Nyongesa, 1995]: 

•= Utilise a process model. 
•= Utilise the process directly. 
•= Permit restricted tuning of an existing controller. 

The last approach can be used to ensure stability, when combined with some form of robust 
stability analysis, whilst permitting limited exploration. Local hill-climbing may prove 
superior to a GA if the limits are particularly restrictive. The full search potential of the GA is 
unlikely to be unlocked under these conditions. Refer to Linkens and Nyongesa [1995, 1996] 
for a detailed discussion of the issues behind intelligent systems for real-time control. 
 
Lennon and Passino [1999] applied GAs on-line in a so-called genetic model reference 
adaptive control system. The particular application was ‘base-braking’. This involves 
ensuring that a motor vehicle’s brakes perform consistently as the driver commands. The 
problem includes time-varying operating conditions, which arise because of variations in the 
temperature of the brakes. A GA was used to evolve the gain of an existing lead-lag 
controller. The best individual was chosen to control the plant. Fitness was based on predicted 
future accuracy, by means of a braking process model. The parameters of this model were 
also obtained using GAs. Fixed controllers and plants were incorporated into the population 
as an insurance policy. However, assessment of the scheme was by means of simulation. 



Lennon and Passino raised the issues of constrained processing time and the need for suitable 
inputs for identification purposes. 
 
Genetic algorithms have also been proposed as on-line optimisers for automatic train 
operation (ATO) systems, running on mass rapid transit (MRT) networks with automatic train 
protection (ATP). Chang and Sim [1997] developed a scheme to reduce energy consumption 
by specifying intervals along the journey through which the train would coast (as opposed to 
motor). This is a complex problem, involving three objectives (punctuality, riding comfort, 
and energy consumption) and many variables, including interstation distances, gradient 
profiles, and the current operating conditions (train schedule, passenger load, and track 
voltages). Chang and Sim proposed the use of GAs as an alternative to the current, sub-
optimal, predictive fuzzy control (PFC) scheme. Before the train departs for its destination 
station, a GA evolves a ‘coast control table’, which provides the coasting interval information 
and is referenced by the train at run-time. Variable length chromosomes were used and, 
hence, special genetic operators were required. Simulated performance was shown to be 
superior to PFC over a limited set of test problems. 
 
Few applications have been reported on actual real-time use of GAs for control. In one such 
rarity, a GA has been used to tune the parameters of a PI controller in real-time for the on-line 
regulation of temperature in a heating system [Ahmad et al, 1997]. The stated objectives were 
to achieve the desired temperature as quickly as possible, whilst minimising overshoot. A 
degree of conflict exists between these two requirements and a weighted sum of the square of 
both regulator error and change in control action was taken as the cost function. The weights 
were varied over time, but in a manner that was defined a priori. A single generation of the 
GA was evaluated, using a plant model, between samples. The best solution found for that 
generation was allowed to control the plant. Encouraging results were presented for both 
time-invariant and time-varying environments. In the latter case, a new plant model was also 
identified at each time step. Despite reservations over whether or not the concerns highlighted 
earlier in this discussion have been adequately addressed, this application is one of the few 
where actual (rather than simulated) results have been offered. 
 
GAs have also been utilised for the on-line tuning of controllers, prior to actual on-line usage 
of the system. In this case, the controller parameters remain static once the system is in 
operation. The main advantage of such a scheme is that a process model is not required at the 
design stage. An application that was amenable to such an approach was the tuning of a 
controller of a canned, electrical pump running on active magnetic bearings [Schroder et al, 
2001]. Existing controller design techniques for this application are already in existence, but 
these require an involved design process and the development of accurate models. Hence, 
industry has tended to use conventional PID control, tuned manually on a prototype of the 
plant. Schroder et al utilised a MOGA in the development of a practical, automated, tuning 
procedure that led to both dramatically reduced design times and significant controller 
performance improvements. The MOGA was used to tune parameters for an existing 
controller structure, found through previous practical experience. All individuals were 
evaluated on the actual plant, but a careful procedure was developed to achieve a suitable 
level of safety and efficiency. Severe acceptance tests were also applied to enable the design 
of a safe and robust controller. 
 
There is considerable scope for further applications of the GA to on-line control systems 
engineering. Continued advances in low-cost, high-performance computing will increase the 
viability of on-line GAs towards systems with shorter time constants. In addition to controller 
design, system identification and fault diagnosis are two rich veins of research that have yet to 
be mined. See Kristinsson and Dumont  [1992] for initial research into on-line system 
identification. 



6. Future perspectives 
The future use of GAs in control is tied fundamentally to advances in the general field. Due to 
the largely generic nature of the methodology, developments that arise in control applications 
in one domain are likely to prove beneficial to other domains, such as finance. The reverse is 
also, of course, the case. 
 
The continued progress in computer technology will permit further realisation of the GA 
methodology’s potential. The main frustration with any GA is the large amount of 
computation required to formulate a good solution. The increased availability of low-cost, 
high-performance computing is undoubtedly of great benefit to the GA. Advancements in 
parallel architectures will further aid the GA’s cause. In addition to increasing the 
effectiveness of the technique for off-line applications, computing developments should also 
make new on-line applications feasible for the first time. This latter point may be of particular 
value to adaptive control approaches. 
 
A second key area for future development is the field of multiobjective optimisation in 
general, and decision-support tools in particular. The MOEA embodies an exciting 
opportunity to realise the full potential of the GA concept. Development of population-based, 
high-performance, robust, search techniques is just one facet of this discipline. The 
incorporation of, potentially multiple, decision-makers into the search process is also a crucial 
line of research. Issues involving preference articulation and design-space visualisation are 
still to be resolved. The MOEA is envisioned to form part of a multi-disciplinary, total design 
concept. 
 
At present, MOEA research appears to be entering the period of intensive effort seen with the 
GA in the early 1990s. Development of various, competing, alternatives and the introduction 
of newly devised test suites on which to test them can already be seen. Whilst this is an 
interesting and informative avenue of research, development of search engine-independent 
techniques to aid the designer remain fundamental. 
 
The combination of a GA search and optimisation method with complementary approaches to 
form hybrid algorithms is seen as vital in order to create a fully effective tool. For example, 
the use of a GA with a local hill-climber provides the benefit of a robust, global, search with 
an efficient fine-tuning mechanism. Hybrids involving such algorithms as Bayesian belief 
networks, intelligent agents, and ant foraging are expected to emerge in the literature. Neural 
network, fuzzy logic, and simulated annealing hybrids can already be found. Refer to 
Michalewicz and Fogel [2000] for further details. 
 
When the GA is applied to a real-world problem, the approach is very much bespoke. Whilst 
the fundamentals of the algorithm remain the same, the details vary largely from application 
to application. This should be expected, since due to the No Free Lunch Theorem, if one 
algorithm performs better than another on a particular problem, the latter algorithm is certain 
to be superior on a separate problem. A completely generic algorithm cannot be realised in 
practice. The EA concept is generic, but the implementation is not. 
 
It will be interesting to see if commercial off-the-shelf (COTS) GA packages will become 
available, and successful, in the future. Will the COTS products be entirely software based, or 
will hardware form part of the package? Furthermore, will successful consultancy firms 
emerge, which offer EA methods as a part of a decision-support contract? Convincing 
sceptical traditionalists is a key hurdle that the GA community must leap. This is true of 
proponents of intelligent systems in general. Much scepticism is quite well-placed: the GA 
lacks a strong theoretical foundation, applications are generally small-scale, and the algorithm 
suffers from an image of computational inefficiency. Would a GA solution meet the stringent 



safety and quality standards required of a critical application? These are all fundamental 
issues to be addressed. 
 
In summary, GA applications may divide into two main areas: off-line design-aid tools and 
robust on-line search and improvement algorithms. Research in both these provinces is still 
very much in its infancy. The rate at which the GA is applied to real-world problems is 
predicted to increase still further during the next few years. 
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Appendix – GA software 
C++ 
GAlib is a C++ library of genetic algorithm components, developed by the Massachusetts 
Institute of Technology (MIT). It is available for download from http://lancet.mit.edu/ga/. The 
source code is free for any use, commercial or otherwise, and contains extensive features. 

FORTRAN 
David L. Carroll at the University of Illinois has developed a free FORTRAN GA Driver. It 
can be downloaded from http://www.staff.uiuc.edu/~carroll/ga.html. 

Java 
There are many simple GA demos on the World Wide Web (WWW) that are written as Java 
applets. Some of these may be of interest, but are of very limited use to the designer. 
However, a general GA toolkit, The GA Playground, is available. This can be found at 
http://www.aridolan.com/ga/gaa/gaa.html. 

Microsoft Excel 
Excel is a very popular general-purpose tool for simulations. Various GA implementations 
can be found in spreadsheet form, including the freeware Genetik. This tool is available at 
http://www.softseek.com/Education_and_Science/Math/Equation_Graphing_and_Solving/Re
view_25736_index.html. 

MATLAB 
Several GA toolboxes are available for the technical computing package MATLAB. The GA 
Toolbox, developed at the University of Sheffield, provides a wide-range of GA tools and is 
easily extensible. The toolbox is available for a modest charge: visit 
http://www.shef.ac.uk/uni/projects/gaipp/gatbx.html for further details. GEATbx is a fully 
commercial equivalent, based on the GA Toolbox. See http://www.geatbx.com for more 
information. Note that a MOGA toolbox extension has been developed for the GA Toolbox. 
 
A freeware toolbox, GAOT, has been developed by North Carolina State University. It is quite 
basic, but provides several selection, crossover, and mutation choices. GAOT is available for 
download at http://www.ie.ncsu.edu/mirage/GAToolbox/gaot/. Another freeware 
implementation, written as a single routine by Michael B. Gordy, can be found at 
http://www.systemtechnik.tu-
ilmenau.de/~pohlheim/EA_Matlab/genetic_maximisation_Matlab_M_Gordy.html. 
 
Two Mathworks ‘third party product’ GA toolboxes are also available. FlexTool(GA), 
developed by RKSites.com (formerly known as Flexible Intelligence Group LLC), is a 
modular user-interface driven tool. For further details see http://www.flextool.com. The 
alternative is the Genetic Search Toolbox, developed by Optimal Synthesis Incorporated 
(http://www.optsyn.com). This toolbox features a graphical code writer and has apparently 
been tested at United States government research laboratories. 
 
 
Note that all the above links are valid at the time of writing. 
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