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Introduction

Many problems arising in control and systems engineering require the simultaneous
optimisation of multiple, often conflicting, design criteria, such as performance, reliability, and
cost (Fig. 1). Unlike in single-objective optimisation, the global solution to such problems is
seldom a single point, but a family of compromise solutions known as the Pareto-optimal set,
such as illustrated by the trade-off surface in Fig. 1. These solutions are optimal in the sense
that improvement in any objective can only be achieved at the expense of degradation in at
least one of the remaining objectives.

performance

Fig. 1 Trade-off surface depicting competing system performance objectives

Multiobjective Optimisation

Consider the following multiobjective optimisation (MO) problem:

min F(p) (D
pefl

where p=(p1, Dz, ..., Pl 2 defines the set of free variables, p, subject to any constraints and
F(p) = [fi(p). &(p), ..., fu(p)] are the design objectives to be minimised.

Clearly, for this set of functions, F{p), it can be seen that there is no one ideal optimal’
solution, rather a set of Pareto-optimal selutions for which an improvement in one of the
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design objectives will lead to a degradation in one or more of the remaining objectives. In
Fig.2 there are two objectives, fi and f, to be simuitaneously minimised. These objectives are
competing with one another such that there is no single solution. Candidate solution point A
has a lower value of f3, but a higher value of fi, than candidate solution point B. Thus, it is not
possible to state that one point on the trade-off curve shown in Fig. 2 is better or worse than
another. Such solutions are known as Pareto-optimal solutions (alternatively as non-inferior or
non-dominated solutions) to the multiobjective optimisation problem.
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Fig. 2 Pareto-optimal set of solutions for 2-objective problem

Generally, members of the Pareto-optimal solution set are sought through solution of an
appropriately formulated non-linear programming (NP) problem. A number of approaches are
currently employed including the g-constramt, weighted-sum and goal attainment methods
(Hwang and Masud, 1979). However, such approaches require precise expression of a,
usually not well understood, set of weights and goals.

If the trade-off surface between the design objectives is to be better understood, repeated
application of such methods will be necessary. In addition. NP methods cannot handle
multimodality and discontinuities in function space well and can thus only be expected to
produce local solutions.

Genetic algorithms (GAs) are population-based methods, unlike NP schemes which seek to
improve single-point estimates of a solution. This enables the evolution of a Pareto-optimal set
of solutions. Also, because of the stochastic nature of the search mechanism, GAs are capable
of searching the entire solution space with more likelthood of finding the global optimum than
conventional optimisation methods. Indeed, conventional methods usually require the
objective function to be well behaved, whereas the geperational nature of GAs can tolerate
noisy, discontinuous and time-varying function evaluations. Moreover, GAs allow the use of
mixed decision variables (binary, n-ary and real-values) permitting a parameterisation that
matches the nature of the design problem more closely.

Multiobjective Genetic Algorithms (MOGAs)

The multiobjective genetic algorithm approach proposed by Fonseca and Fleming (1993) uses
a rank-based fitness assignment, where the rank of a certain individuak x; at generation 1 is
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related to the number of individuals p«#) in the current population by which it is dominated.
This is given by

rank(x;,t} = p; (). .(2)

All non-dominated individuals are assigned rank 0 and remaining individuals are penalised
according to Equ. (2).

Fitness is assigned by interpolating from the best individual (rank=0) to the worst, and then the
fitness assigned to individuals with the same rank is averaged where the global population
fitness is kept constant. However, such fitness assignment tends to produce premature
convergence due to the fact that all non-dominated (best rank) points are considered equally
fit (Fig. 3). In order to overcome this deficiency, Fonseca and Fleming have used a niche
induction method to promote the distribution of the population over the Pareto-optimal front
m order to maintain diversity. This is achieved by a method of fitness sharing which
encourages the reproduction of isolated individuals and favours diversification.

Figure 3. Pareto-Ranking without preference information.

Preference Information

Preference information is also introduced in the form of a goal vector, which provides a means

of evolving only a specific region of the search space. This allows the decision maker to focus

on a region of the Pareto front by providing external information to the selection algorithm. A

typical set of design trade-offs resulting from a MOGA design exercise is shown in Fig. 4. In

this "parallel co-ordinates representation” of more than two objectives (eight objectives,

fact, for this flight control example) each line in the graph represents a potential solugion to the

design problem, indicating the achieved objective values for that solution. Al sohtions are

both non-dominant and satisfy the prescribed goals as represented by the "x" marks. The

decision-maker (DM) must select a suitable compromise from this set of solutions. D rmzy-
interact with the MOGA as it runs to “tighten" or "slacken" the goals, in order to tarses:a:
specific compromise solution.

Through such a representation, the DM is informed of conflicts, or otherwise, between
objectives. For example, in Fig. 4, solution lines between Objectives 2 and 3 clearly cross one
another, indicating that improvement in one objective can only be achieved at the expense of
the other objective. Other refinements at the disposal of DM include the ability to specify
"hard" constraints for objectives.
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Fig. 6 Parallel Co-ordinates Representation: Design Objective Trade-Offs

Design Examples

MOGAs are, therefore, a powerful decision-making aid for the control system designer. It is
possible to search for many Pareto-optimal solutions concurrently, while concentrating on
relevant regions of the Pareto set. Also, a human decision maker may interactively supply
preference information to the algorithm as it runs. Applications to be described will include
the design of controllers for flight dynamics, gas turbine engines and active magnetic
bearings. Design problem characteristics will include non-linear system descriptions,
incorporation of H-infinity approaches and on-line use of the MOGA tool. Examples of the
use of the method may be found in Fonseca & Fleming {(1998a; 1998b), Dakev er al. (1997),
Chipperfield & Fleming (1996) and Schroder e al. (1998).
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