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INTRODUCTION

Finding a controller for a given plant in order to
achieve a number of design objectives is a com-
mon control design problem. As well as closed-
loop plant stability, design objectives often include
measures such as rise time, settling time, overshoot,
asymptotic tracking, decoupling and regulation, gain
and phase margins, small disturbance response and
bounds on frequency response magnitudes.

Theoretical results (1) show that, in the linear time
invariant case, all the objectives mentioned above are
convex with respect to the closed-loop transfer func-
tion. They also show that, once a stabilising con-
troller is found, the design problem can be formu-
lated as a convex multiobjective optimization prob-
lemin Q, a transfer function design parameter, which
is a mapping of all stabilizing controllers. However,
when addressed in the controller parameter domain,
the same design problem is not necessarily convex,
and generally difficult to solve.

Other objectives, such as open-loop controller stabil-
ity and low controller complexity, may not result in
convex optimization problems and, therefore, are not
included in the results mentioned above. Non-linear
systems pose similar difficulties, as their mathemat-
ical treatment is generally more complex.

Genetic algorithms (2, 3) have been shown to be use-
ful in addressing ill-behaved optimization problems,
being able to cope with discontinuities, multimodal-
ity and uncertain function evaluations, and their sin-
gle objective formulation has been extended by the
authors to include multiple objectives. The paper
shows how genetic search can be interactively used
to design controllers of given complexity, in a mul-
tiobjective sense, while learning about the trade-off
between the design objectives.

MULTIOBJECTIVE OPTIMIZATION

The solution of a multiobjective optimization (MO)
problem generally consists of a family of points,
the Pareto-optimal set. Points in this set are such
that improvement in any one objective can only be
achieved at the expense of degradation in at least one
of the remaining objectives. Pareto-optimal points

are also called non-dominated, or non-inferior, solu-
tions to the MO problem.

Methods such as the weighted sum approach, the &-
constraint method and goal programming (4) have
been conventionally used to search for non-inferior
solutions. Consisting of appropriate non-linear pro-
gramming formulations of the multiobjective prob-
lem, all of them produce one solution at a time,
and require a precise expression of usually not well
known weights and/or priorities, prior to the opti-
mization process. If the trade-off between objectives
is to be better understood, repeated application of
such methods is required. Also, discontinuities and
multimodality are not satisfactorily handled by con-
ventional gradient-based optimizers, which can only
be expected to produce local solutions.

Genetic algorithms (GAs), on the other hand, can
search for many non-inferior solutions in parallel,
while being better able to cope with ill-behaved func-
tions. The multiobjective formulation of the genetic
algorithm (5) enables the designer, here the decision
maker (DM), to progressively articulate their prefer-
ences as the optimization proceeds. The intermedi-
ate trade-off information produced by the approach,
though generally sub-optimal, gives the DM useful
insight into the problem before preferences are re-
fined. Computational effort can, in this way, be uti-
lized in the optimization of the final design rather
than other non-dominated, but later discarded, so-
lutions.

OVERVIEW OF MULTIOBJECTIVE GE-
NETIC ALGORITHMS

Multiobjective genetic algorithms (MOGAs) differ
from conventional GAs at the selection level. The
concept of Pareto dominance is used in conjunc-
tion with the designer's preferences to assess indi-
vidual performance, maintaining objectives separate
throughout the optimization process.

Rank-based selection

Individuals are ranked on the basis of how many in-
dividuals in the current population strictly outper-
form them. In a simple Pareto GA, individuals are
compared according to dominance. Combining dom-
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inance with preferences expressed by an external DM
in terms of goals and priorities, a new relational op-
erator (preferable to) can be defined. The on-line
change of preferences allows the search to be effec-
tively guided towards particular regions of the Pareto
optimal surface without constraining it in decision
variable space.

Certain objectives, such as, for example, closed-loop
stability, need to be satisfied before the optimization
of other objectives can take place. This can be seen
as them having priority over the remaining. Priori-
tization of objectives constitutes an extension to the
MOGA formulation proposed in (5) and will be re-
ported in full in a future paper.

Higher priority objectives are optimized in a Pareto
fashion until all of them meet their goals, at which
point the optimization of the conventional objectives
takes place. In this way, any infeasible individual
(e.g., a non-stabilizing controller) is always consid-
ered worse than any feasible one. Also, whenever
only infeasible individuals exist in the population,
the optimization of the high priority objectives pro-
vides the necessary basis for evolution towards feasi-
ble solutions.

Niche induction techniques

The preferred region of the Pareto-optimal surface is
a region of flat fitness for the GA and, therefore, a
phenomenon known as genetic drift may occur. Ge-
netic drift consists of individuals clustering around
certain optimal regions as opposed to others of equiv-
alent fitness for no reason other than stochastic er-
rors associated with the selection process and due to
the population being finite.

The other important aspect of the MOGA is the
use of niche induction techniques (6) to promote and
maintain the uniform sampling of the region of the
trade-off surface relevant to the DM. Fitness sharing,
implemented in the objective domain, penalizes in-
dividuals in more populated regions of the trade-off
surface, in favour of those more isolated. Mating re-
striction reduces the formation of low performers by
promoting the mating of individuals similar to one
another.

THE DESIGN PROBLEM

The problem considered here has been proposed ear-
lier by Barrat and Boyd (7). It consists of designing
a discrete-time regulator for the single-input single-
output plant | 4
—8

2 4+s W
Such a double integrator plant with excess phase pro-
vides a simple but realistic basis for illustrating de-
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Fig. 1: Closed-loop system

sign trade-offs. The discretization of the plant using
a gero-order hold at 10 Hz gives the transfer function

—0.00379 (2 — 1.492) (z + 0.7679)
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The complete regulator system is presented in Fig-
ure 1. The discrete-time outputs u and y are, re-
spectively, the actuator and the plant outputs. The
discrete-time inputs w and v represent actuator and
sensor noise, and are considered to be driven by in-
dependent white noise.

Design objectives

A number of objectives including noise sensitivity
and robustness measures is considered here. A con-
troller of given complexity is sought which represents
a compromise between some or all of the following
objectives.

Closed-loop stability. This is probably the most
basic objective to be satisfied. If no stabilizing con-
troller is known for a particular plant, non-stabilizing
controllers can still be ranked according to how far
from being stabilizing they are, as indicated by, for
example, the maximum of the absolute values of the
poles of the corresponding closed-loop system.

Stabilizing controllers can be found by minimizing
the degree of instability of the closed-loop system un-
til stability is achieved, at which point the remaining
objectives become active. Since closed-loop stability
is an absolute design requirement, it is set up as a
high priority objective.

Output and actuator variance. The trade-off
between steady-state output and actuator variances
due to the presence of process and measurement
noise, if considered in isolation from other objectives,
can be computed analytically from LQG theory. The
approach is to find the minimum of the linear com-
bination of the two variances

7= lim Bl +pul} 3)

for various settings of the parameter p until suitable
values of output and actuator variance are found.

The complexity of the regulators found analytically
is directly related to that of the plant. The need for



simpler controllers has prompted much interest and
work in the area of model reduction. In fact, there is
no analytical solution for controllers with arbitrarily
fixed complexity, the design of which requires the use
of optimization techniques.

Sensitivity to additive loop perturbations.
The M-circle radius, defined as the minimum dis-
tance from the Nyquist plot of the loop gain
PC(exp jwT) to the critical point —1, is a measure
of robustness which combines both gain and phase
margins. I{ relates to the maximum sensitivity of
the system, defined as

1
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in the following way:
M =1/||Sle (6)

Therefore, minimiging the maximum sensitivity,
[ISllco, corresponds to maximizing the M-circle ra-
dius, and thus the stability margin of the system.
Variations in the loop gain may appear as a conse-
quence of variations in the parameters of the system.

Sensitivity to additive plant perturbations.
This second measure of robustness expresses the abil-
ity of the regulator to maintain closed-loop stabil-
ity in the presence of stable additive plant pertur-
bations. Characterizing plant perturbations AP in
terms of the maximum magnitude of their frequency
response, the smallest stable perturbation D which
will destabilize the closed-loop system is known to be
inversely proportional to the maximum magnitude of
the closed-loop transfer function from r to u,

ol

1+PC
Additive plant perturbations may arise from inaccu-
rate modelling of the plant, either due to tolerances
in the parameters or ignored plant dynamics.

1/D = “ 6)

Open-loop controller stability. It is often re-
quired that controllers be open-loop stable. This
constraint can be implemented simply by requiring
the maximum absolute value of the controller poles
to be less than one.

IMPLEMENTATION

The several objectives and all GA routines were writ-
ten as MATLAB M and MEX files. The Genetic Al-
gorithm Toolbox (8) was used to implement the GA,
while the objective functions made extensive use of
the relevant routines in the Control Systems Tool-
box.
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Parameter encoding

The genetic algorithm requires decision variables,
here the controller parameters, to be encoded into a
bit string. Controllers were parameterized in terms
of their roots (poles and seros) and their gain. The
fact that an infinite number of different systems,
represented by possibly very different pole-zero pat-
terns, can exhibit the same input-output behaviour
within arbitrary finite accuracy (9) makes the pole-
gero domain very rich in approximate solutions for
the GA to explore.

Zeros and poles were defined through pairs of Gray
encoded real parameters, respectively the average
and the deviation from the average 8 of each pair of
roots, as suggested by Kristinsson and Dumont (10).
A positive deviation indicates real roots and negative
deviation indicates complex conjugate roots.

A pair of geros and a pair of poles were encoded
as o and [ pairs in the interval between —1 and 1.
Most controllers defined in this way are open-loop
stable and minimum phase. The gain was also Gray
encoded, in the interval between 0 and 100. 16 bits
were used for each parameter, which lead to 80-bit
long chromosomes.

Genetic operators

The MOGA consisted of a standard generational GA
with multiobjective ranking and sharing and mat-
ing restriction implemented in the objective domain.
Linear ranking imposed a fixed selective pressure
o = 2 on the population, adaptively affected by the
sharing mechanism. The population size was 100 in-
dividuals.

The recombination operator used was reduced-
surrogate (11), shuffle (12) crossover, applied with
probability 0.7. This crossover variant ignores the
ordering of the bits in the chromosome while being
just as disruptive as single or double point crossover.
It also produces offspring different from their parents
whenever possible.

Mutation was applied to all individuals after
crossover. The bit mutation rate was set in terms
of the probability of the individuals as a whole not
undergoing mutation. If there was no crossover, this
probability of survival should be at least the inverse
of the selective pressure to enable selection to recover
from the errors introduced by mutation. For length
£ chromosomes,

Po<1-g"1¢ (N
where o is the selective pressure. A probability of
survival, Py, 25% higher than the limit 1/ was found
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Fig. 2: Evolution of the noise sensitivity trade-off.

to perform well. No fine tuning of the operator prob-
abilities was attempted.

Finally, only individuals affected by the genetic op-
erators were re-evaluated, ag proposed by Oliveira et
al (13). This reduced the average number of actual
function evaluations per generation by 20 to 30%.

RESULTS
Noise sensitivity trade-off

Figure 2 shows how the GA evolved a family of
second order controllers for the bi-objective prob-
lem involving noise sensitivity. Closed-loop stabil-
ity was set up as a higher priority objective as dis-
cussed above. The region of the trade-off curve to be
evolved was delimited by setting the goal vector to
Urms = 100 and yrm, = 10.

A partial description of the desired trade-off could be
found after 50 generations. As the search progressed,
this description was improved and extended, cover-
ing most of the region of interest after 100 genera-
tions.

The figure also shows the non-dominated individuals
in the hundredth generation (marked o). Note how
the population is more or less uniformly distributed
along the trade-off surface, which shows the effective-
ness of the niche techniques used. It is also worth
noting that, in this case, second order controllers
comes very close to the best that can be achieved
with any stabilizing controller. LQG regulators for
this plant have order 3.

By changing the goal values, it is possible for the de-
signer to zoom in on a portion of the trade-off curve.
For example, setting urm, = 30 and yrms = 2.6 as the
new goals and running the GA for a further 25 gen-
erations produced the trade-off curve shown in Fig-
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Fig. 3: Noise sensitivity trade-off after change of pref-
erences.
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Fig. 4: Two largely non-competing objectives.

ure 3. Individuals which do not achieve the new goals
are no longer preferred, causing the whole population
to evolve towards the new preferred region, and pro-
viding a more accurate description of the trade-off in
that region.

Trade-offs involving noise sensitivity and ro-
bustness measures

Noise sensitivity can also be traded off against the
sensitivity to additive loop and plant perturbations.
After 50 generations, the graph in Figure 4 could
be produced. The strong direct relationship shown
between actuator variance and the sensitivity to
additive plant perturbations confirms the intuition
that less control action leads to greater robustness.
Learning that these two objectives are, to a great ex-
tent, non-competing is important for the designer, as
it conceptually reduces the complexity of the prob-
lem.

Suppose the designer could decide upon a maximum
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Fig. 5: Maximum sensitivity versus output variance
(4rms < 10 and 1/D < 10).

sensitivity to plant perturbations of 1/D = 10. Also,
suppose that a corresponding actuator variance of 10,
which can be expected from the graph in Figure 4,
is acceptable but should not be exceeded. Increasing
the priority of these two objectives converts the prob-
lem into a problem with two objectives, output vari-
ance and sensitivity to loop perturbations, and three
constraints, closed-loop stability, maximum actuator
variance and maximum sensitivity to plant perturba-
tions. The corresponding trade-off curve is presented
in Figure 5. All controllers found were open-loop sta-
ble.

CONCLUDING REMARKS

Multiobjective Genetic Algorithms were used to find
families of reduced order regulators for a simple
but realistic plant. Design trade-offs were produced
which provide insight into the closed-loop specifica-
tions of the regulated plant achievable with a second
order controller,

The effectiveness of the MOGA becomes apparent
when one considers the number of function evalua-
tions per preferred point found. In the first exam-
ple, out of approximately 7000 actual function eval-
uations (generation 100), 189 (2.7%) were preferred
points, in a search space as large as 1.2 x 1024,

The ability to refine requirements on-line allows the
designer to interact with the optimiszation algorithm,
learning about design trade-offs and concentrating
computational effort in the region of the trade-off
most likely to produce a final design.
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