Parallel Genetic Algorithm Fitness Function Team for Eigenstructure Assignment
via LQR Designs

Jodo V. da Fonseca Neto
Universidade Federal do Maranhido
Av. dos Portugueses s/n
Sdo Luis - Ma - Brazil 65.080-040
jviana@dmcsi.fee.unicamp.br

Abstract- The development of a strategy based on a fit-
ness function team exploration for a parallel genetic algo-
rithm and its application te eigenstructure assignment via
LQOR design of a dynamical systems are this works main
contributions. A multiobjective optimization based strat-
egy and a decision making framework are formulated in
terms of schema theorem and multi-armed bandit prob-
lem. An aircraft state space model is used to illustrate the
algorithm performance, whose purpose is to find a state
feedback controller that leads to a specified eigenstruc-
ture assignment.

1 Introduction

The dynamic systems responses are strongly connected to
the system’s eigenstructures and if the control system de-
signer has suitable and efficient tools that can make an eigen-
structure assignment (EA) according to design specifications,
system’s performance can be improved via state feedback
laws. A large effort has been spent by researchers to develop
methodologies and technics for EA, such as: deterministic
methods (Sobel and Shapiro, 1985a) and (Sobel and Shapiro,
1985b) and intelligent exploration of the solution space by
genetic algorithms methods, (Liu and Patton, 1996), (Davis
and Clark, 1995) and (Clark and Davis, 1997).

To satisfy design specifications, @ and R weighting ma-
trices determination for the linear quadratic regulator (LQR)
design, that can satisfy the design specifications, is the bot-
tleneck for this form of EA problem solution. To overcome
this difficulty, a strategy based on a fitness function team and
inspired on multiobjective optimization, (Fonseca and Flem-
ing, 19984a) and (Fonseca and Fleming, 1998b), parallel ge-
netic algorithms, (Koza, 1992), (Holland, 1975) and (Golde-
berg, 1989), and decision making framework, (Chankong and
Haimes, 1983), is developed to find out these matrices and to
benefit from the qualities of LOR methodology.

The solution space is searched by several fitness functions,
that can be classified as hard and soft. The soft functions are
based on inequalities and the hard ones are based on equali-
ties cost functions.

This work is organized as follows. Section (2) presents
the multiobjective formulation development. In section (3)
the fitness function team concept is established and its fea-
tures are discussed. Section (4) presents the decisions mak-

0-7803-5536-9/99/$10.00 ©1999 IEEE

Celso P. Bottura
Universidade Estadual de Campinas
LCSI/DMCSI/FEEC - C.Postal 6101

Campinas - SP - Brazil 13.083-970
cpb@turing.unicamp.br

ing framework development, that contains search strategies
formulations and together with the genetic algorithm opti-
mizers produces the parallel multiobjective genetic algorithm
(PMOGA). Section (5) shows genetic algorithm optimizer
modeling to target the eigenstructure assignment via LOR de-
sign. Section (6) comments on parallel implementation char-
acteristics. Section (7) shows PMOGA performance obtained
from a dynamic system simulation on a workstation network.
Finally, the conclusions are presented in section (8).

2 Problem Formulation

Briefly, the eigenstructure assignment via the classic linear
quadratic optimization problem is formulated as a multiob-
jective optimization problem, where the weighting) and R
matrices are independent variables, and further details can be
seen at (Bottura and Fonseca Neto, 1999). The aim is to cal-
culate state feedback controller gains that lead to a specified
design eingenstructure via the LOR problem solution. How-
ever, due to the great number of trials that have to be done to
find the @ and R matrices, which must satisfy design specifi-
cations and maintain the LQR asymptotic guaranteed stability
margins, genetic algorithms are utilized to search these ma-
trices. Given a linear time invariant system:

= Ar + Bu 1)
y=Cz

the control vector is given by :

u=—K(Q,R)x)

where K is the gain matrix (m x n),) is the positive semi-
definite state weighting matrix, R is the positive semi-definite
control weighting matrix. _

The controller gains K (@, R) are given by the Algebraic
Riccati Equation (ARE) solution’s for the LQR problem,
where the control law w is found, equation (2), when the mini-
mization of the quadratic performance cost, equation (3), sub-
ject to restriction (1) is performed.

J= / " 6T Qw + uT Ruldt 3)
[1]

1035

The eigenstructure assignment problem, from this point of
view, consists on the gain matrix K (@), R) determination that
imposes the desired closed-loop system:

& =(A- BK(Q,R))z @

The closed-loop system spectrum range of (4) must satisfy
the design specifications and the left and right eigenvectors
must satisfy eigenvalue sensitivity restrictions. The multiob-
jective optimization problem (MOP) formulation, that allows
the determination of a controller K(Q, R) through applica-
tion of genetic algorithms search technics to solve the eigen-
structure problem, is obtained by joining the LOR problem
solution and the eigenstructure restrictions (closed-loop sys-
tem and eigenvalue sensitivity spectrum bounds). The MOP
formulation in a normalized form is:

min ; 5i(@, R) ®)

s.t.
sz(Q,R) S 1 i= 1’ R (6)
/\ei S AC’l(Q?Pl) S Adi 1= 1> ey (7)

where 5;(Q,R) = (IQL?’g’RZR?‘Q?éR> 2) /e; is the nor-

malized eigenvalues sensitivity and the i-th design speci-
fication ¢; > 0; ||Li(Q, R)||2 e ||R:i(Q, R)||2 are the 2-
norm of the left and right eigenvectors, respectively, and
< Li(Q,R)Ri(Q, R) > is the eigenvectors dot product. A.;
and Ag4; are the left and the right i-ths eigenvalues bounds,
respectively, for the i-th desired eigenvalue A.;.

3 Fitness Function Team

The fitness function team is defined as a fitness function set,
FFieam = ({ f1, [f2,---, f fn), that is used to select genetic
algorithms (GA) individuals that will assemble permanent
populations generations. The cost function, to choose perma-
nent population, and a previous selection criterion, to choose
suitable candidates from a transient population that comes
from one GA search iteration, define each ff;, j = 1,...,n,
structure.

Functions of the set can compete between each other to ex-
plore the whole search space or can be allocated to explore se-
lected regions; these search space regions can be established
by niche induction methods. The individuals selections forms
are the main differences between the F' Fi.,,, elements. The
restrictions quantity, type and the cost function nature make
some of these elements to be considered harder than others.

Five types of fitness functions structures were developed
in this research. However, only two cost functions constitute
the F'Fy.,m core; one of them has its origin in the inequalities
method that is the eigenvalues sensitivity cost function (5),
called Js, and the other is cost function (8) used by (Davis
and Clark, 1995) and developed by (Liebst and Huckabone,

1992), called eigenstructure assignment equality and called
JE.

Z f)\i()\ei"/\ci)*(/\ei—/\ci)+(6ei—6ci)‘Fvi(ﬁed“ﬁci) (8)

i=1

where A.; i-th specified eigenvalue, A.; i-th desired eigen-
value, f; i-th eigenvalue weighting, ¥; i-th specified eigen-
vector, ¥,; i-th desired eigenvector, F,; i-th eigenvector
weighting diagonal matrix.

The cost functions and the previous selection criterion,
that are the eigenvalues sensitivity restrictions (s;R), rela-
tion (6), and eigenvalues range restrictions (A;;R), relation
(7), combination furnish fitness functions structures. For in-
stance: ff; is formed by cost function, equation (5), the
eigenvalues sensitivity restrictions that are used based on
Pareto’s optimality criterion (POC) and eigenvalues range re-
strictions. The f fa uses the same cost function and restric-
tions, but it doesn’t follows POC . An individual’s incorpo-
ration in new populations, when previous selections based on
Pareto’s optimality criterion is not used, will be accepted if
each individual’s s; is smaller than the greatest individual’s
s; of the current population. This criterion is referenced as
individual greater s; criterion (IGs;C). Table (1) shows the
FFieam structure developed and implemented in this work.

fh | ffe | ffs | ffa | ffs
Cost function J S J S J E J E J E
Previous Selection SiR S,‘R S,‘R SiR
Criterion Ac,;R)\c,;R AciR)‘ciR AciR
POC | 1Gs;C | POC | IGs;C

Table 1: F' Fieqm basic structure

4 Decision Making Unity

The decision making unity (DMU) is a logical framework,
where strategies formulations occur, that will guide the ge-
netic algorithm optimizer in the direction of an intelligent
search. The chosen decisions are based on fitness cost func-
tions (5) and (8), Pareto’s optimality criterion, schema theory
and multi-armed bandit paradigm. The following paragraphs
describe DMU strategies, considering a parallel genetic algo-
rithm on a distributed environment.

The logical framework is explained in three levels. First
in a high level, using Figure (1a) that represents DMU’s and
MOGA’s interactions on the distributed environment. The
second level, using Figure (1b), that represents DMU action
strategies and the point of interaction with the GA-optimizer.
The third level, using Figure (2), is the lowest one and shows
how the databases are accessed, how the @ or R feasible
fitness schema (FFschema) or non-feasible fitness schema
(NFFschema) type is defined and how crossover operation is
performed when the strategies are triggered.

1036

GAc

Pop Pop

DMU

Coordinator

Distributed

Population

i
'
1
'
'
1
'
'
'
i
1
'
'
'
'
'
'
' Initial Transient
'
)
¢
t
'
'
'
'
'
'
'
'
'
'
]
'

PMOGA

'
Permanent Pop MOGA, '
)
GAy DMU,)
'
Transient Pop :
Permanent Pop MOGA, '
t
GA DMU,
Transient Pop H
[——
MOGA,
Permanent Pop \
GAx DMU, ,
i
Transient Pop :
__________ T .

a) Parallel MOGA - DMU and GA-optimizer interactions.

GA-optimizer

DMU

Triggering rules

Begin search cycle
: Begin genetic operations
: Reproduction
Mutation

Guest

Premature convergence
Random choice

Fixed generations

i | Crossover <

End genetic operations

Fitness cost function calculations

End search cycle

FFschema database

’ = ’

Roullete wheel

Roullete wheel

b) MOGA - DMU strategies and GA-optimizer crossover operation interactions.

Figure 1: PMOGA interactions on a distributed environment

1037

The DMU’s and GA’s optimizers are the multito-
bjective genetic algorithm (MOGA) basic elements
and each basic element pair constitute a MOGA. The
MOGA set is called parallel MOGA, PMOGA =
(MOGA,, MOGA;,MOGA;,...,MOGA,), in a dis-
tributed environment, where M OG A, is the coordinator and
the MOGA,, i = 1,n, are the coordinateds.

Firstly, the DMU’s are fed by an initial population (ran-
domly generated), Figure (1a); this population after an evalu-
ation by the DMU coordinator (DM U¢) is sent immediately
to the distributed GA-optimizers, OPTIp = (GA,,GA,,
..., GAy), where each GA; makes one search and gener-
ates a transient population to feed their own DM U; that be-
longs to the distributed DMUp set, DMUp = (DMUj,
DMUs,, ...,DMU,). Each DMU; takes decisions to guide
the search, assembles a new population and sends it to his
G A;-optimizer. These processes go on until any stopping cri-
terion is reached.

Each DMU has his own decision strategy. For instance,
D MU, has individuals (solution points) selection criterion to
assemble populations based on POC and fitness cost function
(5) is used to check its performance. The DMU, doesn’t
have individual selection based on POC and its efficiency is
verified with the fitness function used by DM Uj.

If one of the DMU'’s, that belongs to DM Up set, detects
that any of the stopping criteria (convergence or maximum
iterations) is satisfied, the current population is sent to the
DMUc¢. The distributed MOGA'’s populations are sent to
the DM Ug in an asynchronous communication mode. Af-
ter receiving all distributed populations and having finished
his own search, the DM U assembles a new population with
distributed environment best individuals and evolves this pop-
ulation.

The schema theorem (STheorem) and the multi-armed
bandit paradigm (MParadigm) are incorporated in all DMU'’’s.
The schema theorem can be used to avoid schemata prolif-
eration and to increase population variety. The MParadigm
is used to extract strength potentialities that can exist on the
weakest ones. Two basic elements build the DMU frame-
work. One of them is a selection criteria that defines the
manner and how many individuals are inserted into the per-
manent population. The second element manages the schema
theorem and multi-armed strategies; these strategies actions
are based on three triggering rules: the first one acts on pop-
ulation or best individual premature convergence detection,
the second one acts based on small probability of occurrence,
the third one acts in a deterministic manner and periodically
between generations life and death.

The DMU STheorem and MParadigm strategies, Figure
(1b), are based on random choices, implemented as roullete
wheel, (Goldeberg, 1989), of individuals and decisions, trig-
gering rules and two databases of QR individuals that are
assembled during the search cycle. One database, FFschema
database, is assembled with the best individuals, i.e., the ones
that have presented the best fitness function values during the

search. The second database, NFFschema, is assembled with
the worst individuals. Both databases are assembled during
the search cycle.

These strategies act together with crossover (X-over) op-
eration, Figure (1b), in the sense that X-over executes the de-
fined strategy. Every time, before the X-over operation is per-
formed, DMU checks three events occurrence; these events
are referred as triggering rules. If one of the events has oc-
curred a random choice is made to define the individual type,
FFschema or NFFschema, that will be combined with a ran-
dom chosen individual of the permanent population. After the
individual type definition, the next step is a randomly picking
up of one individual on the respective database. The last step
is to send the chosen individual to be combined in the GA-
optimizer.

Roulette wheel |

______________________ \
FFschema database :

QR individual alleles and fitness

QR individual alleles and fitness

n| QR individual alleles and fitness

Parent from the schema

| R-schema alleles | Q-schema alleles}

Parent from the permanent population
I Q-alleles }

I R-alleles

| mixed allelesy I Q-schema alleles l

of fspringz

I mixed allelesy ! Q-schema alleles]

]
|
1
|
[
[
I
)
!
of fspring, :
t
1
1
[
1
[
]
[

Crossover operation

G)

GA-optimizer

Figure 2: The schema individual choice and crossover opera-
tion

1038

After the random definition of FFschema or NFFschema
strategy, Figure (1b), two random choices are made, Figure
(2). Supposing that the defined strategy was FFschema, one
@ R individual is picked up from the FFschema database ran-
domly, which one is chosen with a biased roulette wheel. Af-
ter that, the roulette wheel is used, once again, to define a
Q@ or a R schema type for the ¢ R-individual; in this case
it was a @ type. As a result of this two choices, a QR-
individual schema is presented to the GA-optimizer and the
schema type is Q-alleles. The chosen individual is sent to the
GA-optimizer and the results of the crossover schema opera-
tion are two offsprings with the same @-alleles and two dif-
ferent mixed R-alleles that are obtained combining schema
individual’s R-alleles and permanent population individual’s
R-alleles.

5 Genetic optimizer

The matrices Q and R genetic modeling, genetic operations
and fitness function team (calculations and ordering) are the
GA optimizer basic elements presented in this section. The
matrices modeling and genetic operations are all numerically
performed on a decimal basis.

5.1 Matrices Q and R Genetic Modeling

The @ and R matrices model developed in (Bottura and Fon-
seca Neto, 1999) is used, with the change that chromosomes
alleles are not represented by using 0’s (zeros) and 1’s (one’s)
strings, but they are represented by decimal numbers. Each
matrix) and R is represented by one chromosome and ma-
trices Q and R pairs are called QR-individuals and a set of
OR pairs comprises a population. No genetic operations be-
tween Q and R alleles are allowed, as they belong to different
species.

5.2 Genetic Operations

Two sequential steps constitutes the genetic operations, that
are: chromosome operations and evaluations of individuals
generated from those operations. The first step, chromosomic
operations are reproduction, crossover, mutation and guest.
The second step, fitness function calculation and ordering
provide informations to the decision unity; subsection (5.3)
presents these operations algorithms.

The reproduction operation doesn’t need to be evaluated
because this operation just verifies those individuals that have
the worst fitness which are removed and replaced by a clone
of the population strongest individuals. The reproduction oc-
currence probability is 10%.

The algorithm for crossover operations is single-point
(SPX) crossover; chromosome combinations are made be-
tween alleles only and combination degree is adjusted accord-
ing to population age. The crossover operations happen with
probability of 60%.

Two decimal mutation algorithms were designed, one of

them is global and the other is local; they were inspired on
(Marrison and Stengel, 1997). The local mutation is an in-
dividual multiplicative change and the global mutation is an
individual incremental change; this increment is calculated
from the fitness function value for the strongest and the weak-
est population’s individuals. The mutation occurrence proba-
bility amongst all operations is 15% and between global and
local is 50% for each one.

The guest operator inserts new individuals that do not have
any relationship with the current population. This operator
purpose is to untrack some populations of saturation levels
and to allow a better exploration of the search space. The
guest occurrence probability is 5%.

5.3 Fitness function structure

In this approach the fitness function provides information to
DMU’s. The fitness function has the aim to perform cost
functions calculations and to sort individuals based on some
criteria.

Before the population’s individuals evaluation starts, some
parameters of these functions are initialized with the ini-
tial population’s individuals and these parameters are de-
termined before this population’s distribution. The initial-
ized parameters are: normalized performance function vector,
Acyrrent = (81,81, -y Sn)current, Normalized performance
function sum, E yrrent, €igenstructure assignment equality,
Jeurrent, and controller, K.y, rent, to each individual.

The fitness functions select candidates for future popula-
tions; they are tagged as current values and are stored in a
transient population vector. The new individuals quantity that
will be part of the permanent population are randomly cho-
sen. The basic rule for individuals insertion in the permanent
population is: if some individuals of the transient generation
are better than any best current individuals, according to the
DMU strategy, they will assume current positions. Thus, the
fitness functions algorithm k-th iterative step is:

1. Normalized performance functions vector calculation:
e Forff;,i=1,..,4
Ak = (51 (K), 52(K*), ysn(KY) ©)

where s;(K*) = SuKh)

e

=12,..,n
2. Cost functions calculations:
(a) Normalized performance cost function sum:

e For ffj,j=1and2

E* =) si(K*), i=1,2,..,n (10
=1

(b) Eigenstructure assignment equality cost function:
e For ff;,7=3,..,5
J*¥ = J(K*) (11)

1039

3. Restrictions bounds ordering:
o All ordering criteria consider eigenvalues limits:
Xei SXi(KF) < Agi, i=1,.,n (12)
(a) Maximum s;(K*) ordering:
e Forffj,j=1and3
(al) rrjlg,cx{si(Kk)} < max{s;}current,

i=1,2,..,n (13)

or
e Forff;,j=1
(a2) H}l{a’;X{Ak} = max{Acurrent}
and Ek < Ecurrent (14)
e Forffi.j=3

(a3) max{Ak} = ma‘x{Acurr‘ent}
and Jk < qurrent (15)

(b) s;(K*) Pareto’s optimality ordering:
o For ff;,j=2and4

(b1) 8;(K*)} < AL rrents 1 =1,2,..,m
(16)
or
o For ffj,j=2
(b2) Ak = f:urrent
and E*F < Epurrent, 1=1,2,...,n (17)

e Forff;,j=4

(b3) Ak = iurrent
and Jk < qurrenty i= 1:2,-"," (18)

(c) Eigenvalues bounds ordering:
e Forff;,j=5
v]k < qurrent (19)

6 MOGA distributed parallelization

The parallel multiobjective genetic algorithm (PMOGA) was
developed and implemented based on an integration between
decision making units, section (4), and GA-optimizers, sec-
tion (5), dedicated to the eigenstructure assignment via linear
quadratic regulator problem. The parallel genetic model used
is based on independent runs parallelization, (Koza, 1992),
where each network processor evolves the same initial popu-
lation and the programming paradigm used is based on SPMD

(single-procedure multiple-data), where each network pro-
cessor runs the same program. The characteristic of running
the same program on several network processors makes the
SPMD paradigm well suitable for the MOGA-LQR imple-
mentation, because each processor solves the same problem,
but each one gives a different search solution treatment for the
same initial population. This paradigm macroelements are:
the coordinator, that makes communication among proces-
sors and one LQR search, and several coordinates, that make
only LOR problems serial processing. There are only two
communication forms; the first, communication from only
one processor to all processors, before the LQR problem so-
lution, and the second, communication from all processors to
only one processor, after the LOR problems solution.

The algorithm termination happens when restrictions or
cost functions can not be improved any more or the speci-
fied eigenstructure can not be reached or the random search
process reaches its iterations maximum limit.

7 Results

A state space variable model was used to study the PMOGA
performance. The system represents a Lockheed aircraft,
L1011 Tristar type. The A, B and C matrices of equation
(1) set and the design specifications are given in (Bottura and
Fonseca Neto, 1999), and they were obtained from (Davis and
Clark, 1995) and (Sobel and Shapiro, 19855).

Two kinds of results are analyzed. The first con-
cerns DMUs s strategies and the GA-optimizers search perfor-
mances; these results are presented using graphics of popula-
tions and individuals profiles for fitness evolution and pop-
ulations profile. The second result type shows controllers
performances when implemented on the state space model,
equation(1), and a impulse signal is applied to its input.

7.1 Simulations

A Sparc-SUN network was the computation environment
used for simulations. The results presented came from five
tasks; each task has his own fitness function, where one of
the tasks (coordinator) creates the initial population and dis-
tribute it among the other tasks (coordinateds). The perma-
nent population is built up of 10 individuals (controllers), i.e.,
for each new generation only 10 individuals survive to the
conditions imposed by the fitness functions. The transient
population size depends on genetic operation type that is ran-
dom; the crossover operation inserts 14 individuals into the
population, the mutation inserts 5, reproduction inserts 2 and
guest 2; hence, the transient population might have 24 or 15
or 12 individuals.

Figures (3-5) present the algorithm behaviour for 100 par-
allel genetic search trials to find feasible @ R-individuals.
Figures (3) and (4) are analyzed together, for fitness func-
tion f f; every time that there is a reduction on s;(K) there
is too a reduction on the cost function, because its nature is
Pareto’s dependent; however this phenomena does not happen

1040

with the other four. It can be seen that all five search found
out a feasible eigenvector solution point. Figure (5) shows
final population profile and the best individuals are chosen to
assemble a new population, where a search refinement based
on Pareto is made.

Tasks 1 and 2 Tasks 3, 4 and 5
® fs——
4 ffa =~ 1 20} fla -
Sl B S 2 U

T2 poa s 80K
Population 0

T 20 po 801G
2 Population %

Figure 3: Populations x F'Fteam cost function behaviour
for the best individual.

asksland 2 Tasks 3.4 and 5
095 - 1 095 ==
09 H 09 :
4 ' u '
° | 8 Y
2§ . 33 !
) ! @« H
08 R 08 S
075 1 075}
[fa—— ffa—
ff—~ ffs —
o Population 80 ! o Population ' !

Figure 4: Populations x f fi, f f2, f f3, f fs maximum s*.

Tasks land 2
26} 45}
241 ff2 -
22f
3s
2f ffh—
& 8]
o L]
<fF T «§
14 © 2
12 15t
1 s
o8f osf
3 3 0

Individuals Individuals

Figure 5: Final population individuals profile x ff, ffa,

ff3 and f f4 maximum s*.

Figure (6-8) shows the designed controllers performances
compared with the basic controller. As can be seen the con-
trollers designed by the proposed methodology present good
performance to impulse signals.

Figures (9) and (10) present the sequential refinement
search evolution results. It can be seen that the best indi-
vidual and the population profile were improved, Figure (9).
The sequential controller also presents a good performance in
terms of the impulse response, Figure (10).

Task 1- f f1 controller

o
[
s
=3
[

|

State Variables
o
~
State Variables
-3
1]
}
>
L L

X4 -
04 X3 —— g 04 X3 — -
X5 - Xs -
Xe : X
06 6 g 06 | 6
0 . 30 4 10 - 30 4
! Time Time

Figure 6: Impulse response for the basic controller and f f;
controller.

Task 2 - f f controller Task 3 - f fa controller

o2f g 02
£y iy <

PR i SS=s @ Ofis
(3 P/ g
N A
502 1 02
; x. - : X
Sl X5 - - % as Xo—~
& Xs —. 3 X5 —

06 Xe: o6l Xe

10 Time 30 0 10 Time 30 a0

Figure 7: Impulse response for f fo controller and f f3 con-
troller.

Task S - controller

K o

Task 4 - f f4 controller

°
o
"
-3
[

)
o
° €

State Variables
S
o
}
-
|
State Variables
-3
S

04 X3 — - 04 X3 — -
X5 — X5 —.
Xe: X6 :
06 6 E 06 8
" " o %0
10 Time 0 10 Time 3

Figure 8: Impulse response for f fy controller and f f5 con-
troller.

Sequential Task - f fo Sequential Task - f fo

0.778
0776 1
07741

L]

\ 1 3
-RE

o

0.766
0.764 |
0762

355

35

Js

34

’ Population

Population

Figure 9: Sequential task - population x f fs cost function

and maximum s¥.

1041

Sequential Task - f fa Sequential Task - f fo
(513
Lost j
1 g ° weste
gk
“ k 1
] 02
PR3 5 X4 -
® 204 Xs — -
0385 9, §5 -
6 -
osf 06
> Individuals ° T Time »

Figure 10: Sequential task - final population individuals pro-
file x ff, maximum s* and impulse response for f fo con-
troller.

8 Conclusion

The parallel genetic algorithm together with a fitness func-
tions team, DMU based on schema theorem and multi-armed
bandit paradigm, small population and guest operator has
shown to be an efficient tool for controller design when the
entire system eigenstructure performance has to be assigned.
The PMOGA found a good quality solution and a small
amount of time was spent to find the required EA. However, a
much better performance would be obtained if the DMU had
knowledge of the relevant system’s behaviour for variables
that must be controlled, because to get a feasible solution the
designer has to make manual adjustments on) R-individual
numerical size and on the multiplicative crossover operations
parameter that varies with population’s age. So an intelligent
DMU should be the next step to get PMOGA improvements.
The coarse grained communication among processors and
the genetic parallel model based on independent runs made
the SPMD programming paradigm very suitable for solving
the EA problem via LOR design, because the computing so-
lution is formulated based on parallel and independent LQR
design solutions. Besides that, the distributed solution can be
easily expandable for a greater number of different kinds of
fitness functions structures among network processors.

Bibliography

Bottura, C. P. and J.V. Fonseca Neto (1999). Parallel eigen-
structure assignment via lqr design and genetic algo-
rithms. 1999 American Control Conference, accepted

paper.

Chankong, Vira and Yacov Y. Haimes (1983). Multiobjective
Decsion Making: Theory and Methdology. Vol. 8 of 8.
Elsevier Science Publishing Co, Inc. P.O. Box 211, 1000
AE Amsterdam, Netherlands.

Clark, T. and R. Davis (1997). Robust eigenstructure assign-
ment using the genetic algorithm and constrained state
feedback. IMechE 211(Part-I), 53-61.

Davis, R. and T. Clark (1995). Parallel implementation of a
genetic alghorithm. Control Eng. Practice 3(1), 11-19.

Fonseca, C.M. and P.J. Fleming (1998a). Multiobjective op-
timization and multiple constraint handling with evolu-
tionary algorithms-part i: A unified formulation. IEEE
Transactions on Systems, Man and Cybernetics-Part A:
Systems and Humans 28(1), 26-37.

Fonseca, C.M. and P.J. Fleming (19985). Multiobjective op-
timization and multiple constraint handling with evolu-
tionary algorithms-part ii: Application example. IEEE

Transactions on Systems, Man and Cybernetics-Part A:
Systems and Humans 28(1), 38—48.

Goldeberg, David E. (1989). Genetic Algorithms in Search,
Optimization ,and Machine Learning. Addison Wesley
Publishing Company. Ann Arbor-Michigan-USA.

Holland, J.H. (1975). Adaptation in Natural and Artificial
Systems. University of Michigan Press . Ann Arbor-
Michigan-USA.

Koza, John R. (1992). Genetic Programmming : On the Pro-
gramming of Computers by Means of Natural Selection.
The MIT Press. Cambridge, Massachusetts - USA.

Liebst, B.S. and T.C. Huckabone (1992). An algorithm for
robust eigenstructure assignment using linear quadratic
regulator. AIAA Guidance Navigation and Control conf
pp. 896-909.

Liu, G.P. and R.J. Patton (1996). Robust control design us-
ing eigenstructure assignment and multiobjective op-
timization. International Journal of Systems Science
27(9), 871-879.

Marrison, C.I and R.F Stengel (1997). Robust Control System
Design Using Random Search and Genetic Algorithms.
IEEE Tranaction on Automatic Control 42(6), 835-839.

Sobel, K. M. and E. Y. Shapiro (1985a). Eigenstructure as-
signment : A tutorial part I Theory. In: Proceedings
of American Control Conference 5**. Vol. 1. Saint-
Nazaire, USA. pp. 456—460.

Sobel, K. M. and E. Y. Shapiro (1985b). Eigenstructure as-
signment : A tutorial part I Applications. In: Proceed-
ings of American Control Conference 5t*. Vol. 1. Saint-
Nazaire, USA. pp. 461-462.

1042

