
A First Step Towards Hw/Sw Partitioning of UML Specifications

W.Fornaciari (1,2), P.Micheli (1), F.Salice (1,2), L.Zampella (1)

(1) Politecnico di Milano, D.E.I., P.zza L.Da Vinci, 32 – 20133 Milano, Italy
{fornacia,salice}@elet.polimi.it

(2) CEFRIEL, Via Fucini, 2 – 20133 Milano, Italy

Abstract
This paper proposes a novel methodology tailored to design

embedded systems, taking into account the emerging market
needs, such as hw/sw partitioning, object-oriented specifications,
overall design costs and early analysis of design alternatives.
The proposal tackles the problem by considering UML as the
starting point for system-level description and uses a
customization of Function Point analysis and COCOMO to
provide cost metrics both for hardware and software. Finally, a
genetic algorithm is used to select the best candidate
architecture. The paper also reports some results, obtained from
a case studies, showing the viability of the proposed approach.

1. Introduction
Embedded Systems is a common term to represent a wide

class of devices, submitted to strict requirements in terms of
performance, architecture flexibility, operating conditions, cost
and development time. However, the designer's challenge is
manifest especially whenever the implementation technology is
not a priori committed and many alternatives should be
compared to embrace the best one suiting both functional and
implementation goals. Mixed Hardware-Software architectures
and concurrent management of all the aspects of the design
process, nowadays represent the cornerstones of the so-called
Codesign discipline.

Within this context, time-to-market pressure is exacerbating
the requirements, forcing the designers to consider predictive
models (virtual prototyping) as soon as possible along the design
flow, possibly built on top of executable specifications aiming at
capturing the system-level perspective (e.g., C++, VHDL,
SystemC and UML).

Design with (for) reuse techniques, can also be adopted to
achieve valuable shortening of the design turnaround time,
sometimes in detriment of the final implementation cost. The
tradeoff is between the potential market loss, due to delayed
delivering of the product and the bare implementation cost.
Customization of flexible architectures (platform based design)
has also been adopted with a certain success for specific
application fields [1]. However, in many industrial scenarios, like
that summarized in [2] for the automotive market, the cost model
pays particular attention to the advanced concept study phase,
where coarse grain decisions have to be taken, such as: number,
type and location of the control units (ECUs) composing the

system, partitioning of the functionality over the existing ECUs
and, selection of the proper communication schemas among the
functionality/ECUs. Since embedded systems typically exploit
Hw/Sw synergy, this phase help to freeze the amount of resources
(Hw, Sw and communication) and the mapping of the
functionality. The missing of a significant commitment in
reducing the cost during this phase in a systematic manner, not
only based on the designer experience, can result in a critical
mismatch of the final budget with respect to the forecast. As
shown in figure 1, the cost of exploring alternatives is affordable
only during the concept study, whose main value added is the
identification of the boundaries containing the solutions
candidate for further detailed investigation.

A common agreement on the standards for system-level
representation is still a long way to come, even if it seems to be
clear the increasing popularity of object oriented (OO) paradigms
for both hardware and software, especially if design reuse is
envisioned [3] [1]. We adopted UML (Unified Modeling
Language) since it is an important standard de-facto, and many
extensions are going to be added, useful also to capture the
peculiarities of embedded systems.

Time
Concept Study Detailed Design

Engineering effort

Cost span of
alternative
designs

Cost span of
alternative
concepts

Total cost

Concept frozen

Figure 1. Evolution of the effort and cost during the

development time.

Our goal is to argue the effectiveness of a concept study, by
providing the designer a methodology to: specify a uncommitted
system-level behavior, predict through metrics the global cost for
realizing both hardware and software module and, finally,
propose an efficient strategy to select a suitable solution within
the design space, based on a set of constraints such as cost and
reusability. For space reasons, the focus of this paper will be on
the partitioning strategy, even if the evaluation metrics will be
sketched together with proper references for interested readers.

1530-1591/03 $17.00 2003 IEEE

The paper is organized as follows. Section 2 describes the
proposed design flow. Section 3 presents the cost functions used
for the estimation of both area and cost. Such functions constitute
the elements used by the partitioning algorithm to determine the
best hw/sw implementation of the system (section 4).
Experimental results, considering a design of a Board Computer
used in the automotive field, are presented in section 5. Finally,
section 6 reports the conclusions of the presented work.

2. The Design Flow
The starting point for developing our tool has been a UML

description compliant the Rationale Rose 2000 format The
designer feeds the tool with a UML description (PTL file) of the
system. Class diagrams are used to provide a general outlook and
to analyze the properties of single classes, while Sequence
Diagrams specify the temporal interactions among the object to
realize the system functionality. Such a textual format is then
parsed and improved with additional entries for each class
(module), that are processed by our partitioning tool. This
additional information reflects the designer needs/constraints plus
estimates of crucial system properties. In summary, the
information specified by the designer consist of: module already
existing, module to be acquired, module to be implemented via
reuse, timing constraints, weights for the goal function, and,
driving parameters for the partitioning algorithm.

The remaining information, that will be estimated, are: cost of
a generic module (hw /sw), cost of a module with reuse (hw/sw),
area for Hw-bound modules, equivalent Area for Sw-bound
modules (memory). The role of the partitioning is to compute a
vector representing the hw vs sw bounding for each class
composing the system. This result will be optimal in the sense of
optimizing the goal function while fulfilling the user constraints
(like reuse) and avoiding full search of the design space.

Many authors afforded the problem of system partitioning. A
first step to map UML specs onto hw/sw architectures has been
proposed in [4], based on communication refinement; however,
the problem of considering design alternatives is not the main
issue. Our proposal is to generate and select the design
alternatives by using a micro-genetic approach [5] to reduce the
computation time dramatically, while maintaining a significant
degree of flexibility in adopting user-oriented goal functions.

3. Cost estimation
Probably one of the tricky tasks of any manager is to compute

reliable forecast of the cost (basically manpower and time to
market) of a system starting from top level, possibly incomplete
or not very detailed, specifications. Besides, the presence of
hardware and software makes harder achieving acceptable
accuracy.

Our long-term goal is to propose a unified strategy working at
system level, to take into account both the implementing cost and
the cost related to the organization of the activities within a
design team. For the first stages of the typical design flows (Hw
and Sw), there exists a significant parallelism with models
conceived for the software development [6]. In particular we
considered the COCOMO 2 approach to compute the global
development effort (Eff), measured in person/month (pm), to
realize a given system, and the time T (measured in months) to
develop the project assuming a full time commitment of a

properly composed group of R designers. For the sake of
completeness, main concepts of COCOMO 2 are here recalled;
more details can be found in [7] [8].

In general, the cost C will be proportional to the effort
C = K*Eff, with Eff= A* SB and T = A2 * Eff B2 , so that R =
Eff/T. The parameters are the project size S (Klines of code,
KLOC), the coefficient A, A2 considering possible multiplicative
factors on the effort and the scale factors B, B2 accounting for
economy/diseconomy originated in developing projects of
different sizes. It is possible to determine the values of the
parameters, according to the modality of developing the project,
which is also influenced by the severity of the design constraints
and the novelty of the application. The typical values derived
from a statistical analysis carried out over a significant variety of
designs [7] [8] are summarized in table 1, ranging from small and
simple projects (organic) to large size ones (embedded) requiring
the fulfillment of stringent constraints and thus, a careful control
of the development process.

Mode A B A2 B2

Organic 2.4 1.05 2.5 0.38
Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.2 2.5 0.32

Table 1. Values of the model parameters.

As it appears evident from the above relations, the keypoint
influencing the quality of the results is the ability to supply
values (LOC) for the project size S, both for the hardware and
software domains.

Direct determination and use of LOC is a controversial issue
since its definition is pretty vague; LOC radically depends on the
programming language and its prediction during the preliminary
steps of the design produces unacceptable errors. Most of the
experts, in fact, tend to underestimate (from 50% to 150%) the
size of the project with catastrophic impacts on the design
management.

To cope with these problems, getting harder for the presence
of Hw and Sw, we use functional metrics, instead of trying to
guess the project size (see figure 2).

System
Specifications

FP Evaluation LOC Evaluation

Effort and time
estimation:
COCOMO

Cost estimation

Figure 2. From uncommitted specification to Global Cost.

We adopted an analysis path resembling Function Point (FP)
analysis [9] [10], as an intermediate step towards LOC and cost.
This strategy provides a measure of the complexity of realizing
software applications, by considering the required characteristics,
so that it should be independent of the technology and the
language used for the implementation. It has been originally
proposed by Albrecht [10], and considers characteristics like
External Inputs and Outputs; User interaction; External interfaces
and Files used by the systems. Each of these items can be

determined from the requirement/design specification (or
program code if available) and then individually assessed for
complexity and credited a weight ranging typically from 3 to 15.
Currently, there exist some versions of the function point
analysis, enlarging the scope and solving some weakness, such as
that of the IFPUG [11], Feature Point version [12] and our
customization to account for the peculiarity of a final hardware
implementation based on VHDL (for more details see [6]).

For our purposes, the computation of FP starting UML
specification followed the guideline outlined in [13], using Class
and Sequence Diagrams. The translation of FP into the
corresponding LOC is based on the conversion factors reported in
[14], considering statistics derived from the analysis of about
thousand projects. For instance, 19 lines of VHDL code are
required to implement one FP of the system specification, while
for C++ the correspondence is 29 lines per FP and for C this
value grows up to 128. The top is the assembly language, with an
average of 320 lines/FP. The accuracy of estimating VHDL LOC
from FP analysis has been shown [6] to be in the range of 20%.

Due to their wide diffusion in real projects, we restricted our
attention only to VHDL, C and C++, but the approach and the
analysis tool can be easily retargeted. We also considered other
novel figures of merit, as user-defined directive, depending on
both the percentage of reuse and the degree of reusability of a
certain class composing the specification. The percentage of
reuse, called πR, is an estimate of which parts of a module could
be conveniently reused, so that πR = 0 is the value for any
component designed “from scratch”. The degree of reusability
(δR) is a factor raging in [1.5...4], representing the additional
effort necessary to make reusable a module (internal end external
documentation, module parameterization, functional
decomposition, functional independence, test benches,…) [6].

The total implementation cost of a module, whose expression
is reported in eq.1, comprises the design and material costs,
where the design cost, in summary, encompasses the design costs
“for reuse” (WR) and “from scratch” (FS):

Costimp= Costdes+ Costmat = (CostFS + CostWR)+Costmat
 eq.1

The first term of the design cost represents the cost of the
design sections (1- πR) unaffected by reuse while the second term
accounts for the parts related to reuse. This formula, introducing
the aforementioned design for reuse factors δR and πR becomes:

Costdes= CostFS+ CostWR= (1- πR)*K*A*SB+ πR*δR*K*A*SB=

=((1- πR)+πR*δR)*K*A*SB eq.2

Such expression is adopted to compute the design cost of a
class of the system specification, starting from the estimates of
the project size S (Klines of code, KLOC), from the degree of
reusability directive and from the percentage of reuse.

Note that a module with a so good implementation to be
reusable could probably be actually considered in other future
projects. However, successive uses of the module require some
adaptation: the integration factor (ι R), whose value ranges from
0.2 to 0.7, accounts for such effort to incorporate a module
designed to be reused in another project. Typically, high levels of
reusability correspond to a significant effort to make reusable the
module (high value of δR), namely more information
(testbenches, internal and external documentation) and

parameters need to be introduced so that the module functionality
can be easily retargeted and understood. For these reasons, ι R has
been considered proportional to 1/δR by a factor εR, (4≥εR≥1)
where εR =1 means that the integration is performed by the same
designer of the considered module (or a skilled designer). Such
coefficient takes into account the designer expertise as well as the
designer experiences on the considered module: ι R =εR/δR.
Consequently, any successive reference to a reusable element x as
a basic component to implement a given functionality y implies
the following design cost:

Costdes_y= (1- πR_y)*K*A*S y
B + πR _y*ι R*K*A*Sy

 B=((1- πR_y) +

+ πR_y*ιR)*K*A*Sy
B eq.3

where πR _y*Sy
 B=Sx

 B, Sx
 B=πR *S B and S is project size in eq.2.

By gathering all of the above formulas and by defining with
Nuses the number of estimated reuses, the general expression for
the design cost of the first implementation is:

Costdes=((1- πR)+(πR*δR+(πR*(εR/δR)*(Nuses-1))/Nuses)*K*A*SB =
CostCoef*K* A* SB eq.4

where (πR*δR+πR*(εR/δR)*(Nuses-1))/Nuses is related with the
Return Of the Investment (ROI) since every successive
integration of a reusable module inside a new project affects the
initial cost. Due to space limitation, further considerations about
other important time dependent factors (time to market, CAD tool
productivity, money cost, estimated time between reuses,
functionality decay due to technology evolution, designer
competence evolution and turn over influence) cannot be
included in this paper.

Table 2 reports a compact analysis of such proposal for a first
order model of the design costs. It depicts the breakeven under
different environmental conditions, i.e. the number of uses
making valuable designing for reuse (CostCoef=1).

πR δR εR Nuses πR δR εR Nuses
0 - - -

0,5 1,5 1 2.5 0,5 1,5 3 NS
1 1,5 1 2.5 1 1,5 3 NS

0,5 2,75 1 3.7 0,5 2,75 3 NS
1 2,75 1 3.7 1 2,75 3 NS

0,5 4 1 5.0 0,5 4 3 13.0
1 4 1 5.0 1 4 3 13.0

0,5 1,5 2 NS 0,5 1,5 4 NS
1 1,5 2 NS 1 1,5 4 NS

0,5 2,75 2 7.5 0,5 2,75 4 NS
1 2,75 2 7.5 1 2,75 4 NS

0,5 4 2 7.0 0,5 4 4 1539.0
1 4 2 7.0 1 4 4 4047.0

Table 2. Analysis of the Breakeven conditions, NS stands for
no-Solution.

It is worth noting that eq.4 can be easily extended to consider
the possibility of acquiring IPs externally, from a third-part
supplier. In this case, the degree of reusability (δR) can be set
close to 4 (best reusability effort) and the coefficient εR
(capturing the designer expertise and the designer experience

with the considered module) has to be grater then 1. Under these
assumptions, the design cost model becomes:

Costdes= CostIP*a+((1- πR)+(πR*δR*(1-a) +

+ πR*(εR/δR)*(Nuses-1))/Nuses)*K*A*SB eq.5

where a=0 means that the functionality is an internal IP.
Going back to the material cost, the influence of the selling

volumes can be represented by decomposing its expression in the
following way:

Costmat= Costfixed+Costvariable = Costfixed+Costvar_unit*Volume eq.6

Where the fixed cost is independent of the number of products
developed while the variable cost strictly depends on the selling
volume.

As far as the variable cost per unit is concerned, a cost
function should gather both hardware and software. In the latter
case, the cost of the processor must be summed with a term
accounting for program storage, obtained by multiplying the
equivalent gate cost of a basic memory cell with the software
size. As an example, in the following it is assumed that the RAM
cost per gate is equal to the variable cost per gate of the Cell
Based ASIC (CBIC). Similarly, the material cost for the hardware
part of the system is computed by multiplying the area estimated
for the hardware and the hardware variable costs per gate (the
model for area estimation is presented later).

By considering the fixed cost, if the solution space is analysed
comparing different implementations based on the same
technology, this term does not influences the result; on the
contrary, costs reported in table 4 could be used.

Processor Number of Gates Costs

Sparc 100000 80
V6502 4000 3.2
VZ80 8000 6.4

V8-µRISC 3000 2.4
V8086 18000 14.4

Turbo86 20000 16
V186 28000 22.4

Turbo186 30000 24
Sparc 100000 80
V6502 4000 3.2

Table 3. Processors characteristics

Technology Cost per gate
FPGA 0.39
MGA 0.1
CBIC 0.08

Technology Fixed Cost

FPGA 20000
MGA 80000
CBIC 150000

Table 4. Technology costs

Unfortunately, it is hard to get reliable information related to
costs from vendors and companies, so that we based the analysis
on a single but trustworthy source of data [15]. The costs
reported in table 4 and table 3 are expressed in Euros as of 1997.
In the case of only the cost is relevant, the goal function (GF) to

be minimized, for a system composed of k classes, either
hardware or software, is:

GFCOST = ∑
i=1

k

(Cost
sw
i *bi*φ + Cost

hw
i *(1-bi)) eq.7

Where the Costs (hw or sw) are computed according to eq.11,
bi is a binary value representing the hw (bi=0) or sw (bi=1) bound
of the i-th class and φ (0<φ≤1) is the software flexibility whose
effect is to reduce the influence of the cost. This goal function is
biased toward a fully software implementation, since it is
typically characterized by lower costs and maximum flexibility
with respect to hardware.

Regarding area, a second goal function to be minimized has
been assembled, following a strategy similar to the previous one,
i.e. the area is estimated from the LOC computed via FP analysis
[6].

In a fist order approximation, we can assume a linear
dependence between the area (in terms of equivalent gates) of a
hardware implementation and its complexity. By analyzing a
number of existing projects with different complexity and
application fields, a range of 1-10 equivalent gates (EG) per
VHDL line of code has been identified (a typical value for
structural description is around 2 gates/VHDL line). The
conversion of FP to VHDL LOC has been performed by
considering the factor suggested in [14], that is 19, so that:

Area
hw
EG = FP * 19 * f(application, description mode)

where the application is a combination of FSM,
CombinationalGenericModule, ROMs, RAMs,
ArithmeticOperators (single cost functions has been identified for
each element) and the description mode is Structural, DataFlow
and Behavioural. The current version of the model has been
implemented using 2 as the typical value. It has been identified
by using a set of benchmarks whose VHDL descriptions are a
mix between Structural and DataFlow and statistically assessed
by evaluating the FPs and implementing the devices on a
VirtexII-1000 technology by using Leonardo and Xilinx ISA4.1.

Concerning the software, the concept of area is less obvious
and it has been computed by adding up two contributions: the
memory and the processor. As far as the processor is concern, the
number of gates have been extracted from the data sheets of the
considered processors; conversely, the memory occupation has
been computed referring to assembly LOC and 32 bits
instructions, as typical for RISC architectures. Note that such
parameter can be tailored to account for other Instruction Set
Architecture (ISA) peculiarities. For the Intel processor family,
the average instruction length has been computed considering a
number of benchmarks. As an example, in the following we refer
to a RISC architecture with a fixed instruction size of 32 bits, so
that the area becomes 9.6=(0.3*32) equivalent gates per assembly
line, since a 1-bit cell typically requires 0.3 gates, due to the high
regularity of the memory structures (this value has been estimated
using a set of data provided by Siemens).

1 LOC is calculated considering the target language for the hw

and sw implementation of the classes. Both costs, can involve
reuse.

It is worth noting that the area for data storing is not part of
the model; this approximation has been introduced since the
influence of small amounts of data can be neglected while
significant amounts of data require memory for both hardware
and software; under this assumptions, the data size is an invariant
with respect to the partitioning problem.

For the software, the area (evaluated in gates) will thus be:

Area
sw
EG = AreaRAM_code+AreaProcessor =

 = FP * 320 * 9.6 + AreaProcessor eq.8

And the global goal function tailored to consider only area
becomes:

GF AREA = ∑
i=1

k

Area
sw
i *bi + Area

hw
i * (1-bi)

 eq.9

Dually, this goal function is biased toward a fully hardware
implementation, since it is typically characterized by lower area
with respect to software.

In order to perform the partitioning, area and cost have been
normalized considering that the maximum values are associated
with the area of the fully software implementation and the cost of
the fully hardware implementation while the minimum values are
associated with the area of the fully hardware implementation and
the cost of the fully software implementation. Hence, the global
goal function is:

GF =
AreaMAX-GFarea

 AreaMAX- Areamin

(1-A)

 *
CostMAX-GFcost

 CostMAX- Costmin

A

 eq.10

Combinations of both goal functions can be considered to
better adhere the designer’s needs, as shown in Section 5
(parameter A).

4. System partitioning
The variability of design alternatives allows the user to take

into account a number of possible characteristics like reusability
(including the additional effort for making reusable the modules),
cost and size of both hw and sw, the possibility of using third-
part components (COTS) and so on. Due to the wide extension of
the design space to be explored, full search or even a simple
Branch&Bound strategy have been discarded, in favor of more
computationally effective heuristics, able to discover acceptable
sub-optimal solutions, e.g. simulated annealing or genetic
algorithms.

We selected a strategy based on a variation of Microgenetic
algorithms, tailored to optimized multi-goal functions [5]. The
basic difference with respect to classical genetic strategies, is the
peculiarity of the considered populations, that are restricted and
the presence of external memory where to record the best
candidate solutions. A proper replacing strategy of the stored
solutions with new ones is used to limit the memory
requirements. The algorithm exploits clustering and exhibit
elitism, i.e. the capability to span uniformly the entire solution
space, following not only random paths.

The operations executed within a micro-cycle are the classical
ones: generation of the initial population, reproduction, crossover
and mutation. The initial parameters of the algorithm are the total

number of iterations and the probability of mutation and
crossover. The tool implementing the algorithm allows the
operating modes: single and multi. Single mode executes only
one elaboration of the partitioning algorithm, whose result are
stored in a reports, while multi mode produces a (user-defined)
set of executions (partitionings) from the same input file, so to
make possible for the user to compare similar results.

As sketched in previous sections, the partitioning algorithm
operates at the granularity of classes, since considering
functionality is too coarse. Finer grain is not considered since it is
impossible starting from UML schemas: the methods specifiable
during the phase of concept study are not very accurate.

The tool analyzes one functionality of the system at a time,
each involving several classes. This means that, to obtain a
solution for the overall system, the execution of the tools must be
invoked multiple times, to process all the existing functionality.
Finally, the best solutions identified for each functionality are
gathered to constitute the global solution. The current version of
the tool implicitly assumes that the functionalities are always
disjoint, not considering the cost and area of the integration
additional components. In practice, such overhead can be -in the
average- neglected or considered as a multiplicative factor
[7][6][8], not influencing the structure of the methodology and
the kernel code of the algorithm. Also the management of UML
schemas adopted by Rational Rose force in this direction: for
each USE CASE, representing a functionality, the corresponding
Class and Sequence diagrams are designed.

5. Experimental Results
The tool implementing the methodology has been

implemented in C++, Kdevelop 1.4 (Linux Mandrake 8.0), using
RCS for configuration management, Rational Rose 2000 and
ZTC for syntax checking of formal specifications. The code has
been validated through black-box and white-box testing using
small and toy benchmarks, as well as by using real-world
examples.

In general we can observe that in the case of small class
diagrams (less than 10 classes) and with more than 1500
iterations, the results are always those expected. As the number of
classes increases, the amount of iterations to achieve 100% of
matching rises up more than linearly. For example, for a 20
classes schema and considering as goal function the GFcost in
order to obtain a fully sw solution, more than 5000 iterations are
required. As an example to point out the practical use of the
methodology and of the tool, in the following we consider the
design of a Board Computer used in Automotive. The class
diagram is composed of six classes, controlling all the car
functionality: brakes, engine, air conditioning, windows and
alarms. The computation of the FP, followed the suggestions of
[13]. Table 5 reports a summary of the obtained results, showing
for each class, the contributions for each of the five
characteristics: Internal Logical File (ILF), External Initerface
File (EIF), External Input (EI), External Inquiry (EQ) and
External Output (EO), before introducing the adjustment factor,
as suggested by the FP methodology.

The generation and evaluation of alternative partitions has
been performed considering a simple while flexible composite
goal functions, in order to easily explore the outputs produced by
varying the importance of area and cost, modifying only one
parameter “A” ranging in [0..1]: A is the weight for the cost and

(1-A) that for the area. In this example, equation 10 is the
considered cost function.

Class name ILF EIF EI EQ EO FP
Board comp. 1×7 0×5 1×3 3×3 10×4 59

Brakes 0×7 1×5 0×3 1×3 1×4 16
Engine 0×7 1×5 2×3 0×3 1×4 15

Windows 0×7 1×5 2×3 0×3 0×4 11
Front wind. 0×7 1×5 2×3 0×3 0×4 11
Air cond. 0×7 1×5 3×3 0×3 0×4 14

Table 5. FP calculation (summary) for the board computer.

The border solutions considering A=1 or A=0, represent the
cases where only cost or area are relevant, respectively. These
solutions also correspond to fully software or hardware
implementation. Intermediate value of A, depending of course on
the user needs, allows to obtain mixed hw/sw architectures
considering both area and cost goals. For each of elaboration
performed, corresponding to a different value of A, i.e. a different
goal function, 100 iterations of the algorithm have been
considered and five attempts for each values of the parameter A
(the runtimes are always of few minutes).

Table 6 reports the optimal hw/sw partition performed by the
implemented procedure. In particular, each configuration
corresponds to the minimal value of the proposed goal function
produced in five runs of the partitioning algorithm.

Usr
needs

A

Brake
abs

Board
Computer

Front
Windows

Windows

Air
Cond

Engine
Manag

1.0-0.6 SW SW SW SW SW SW

0.5 HW SW SW SW SW SW

0.4 SW SW SW SW SW HW

0.0 HW HW HW HW HW HW

Table 6. Final system partitioning with respect to some
different user needs (A) without reuse.

As a final analysis, the presence of hardware reuse has been
considered; for the sake of conciseness table 7 reports only the
result concerning one component.
A πR δR ε

R
Nuse

s

ABS Board
Comput

Front
Windows

Windows Air
Cond

Engine
Manag

0.5 1 1,5 1 6 HW SW SW SW HW SW

0.5 1 2,75 1 6 HW HW SW SW HW SW

0.5 1 4 1 7 SW HW SW SW SW SW

0.5 1 1,5 2 NS HW SW SW SW HW SW

0.5 1 2,75 2 20 SW HW SW SW SW SW

0.5 1 4 2 11 SW HW SW SW SW SW

0.5 1 2,75 3 NS HW SW HW HW HW HW

0.5 1 4 3 40 HW HW HW HW HW HW

0.5 1 4 4 NS HW SW HW HW HW HW

Tabella 7. Final system partitioning with hardware reuse and
user needs A=0.5. The parameters πR, δR and εR are imposed
and the Nuses is calculated such that it is convenient the hw
implementation with reuse of the board computer component.

The goal has been to identify under which conditions the
presence of reuse can carry to fully hardware implementations
(bold text). For example, for a project with a poor documentation
and a designer without significant experience (δ.R=1.5), that is

the case of the fourth row, there is no convenience (NS, no
solution) to introduce a hw implementation with reuse, so that it
will be sw.

6. Concluding remarks
The paper presented a methodology to afford the problem of

freezing up a suitable hw/sw partitioning for an embedded
application, starting from a top-level description of the
architecture, in this case UML, although for different OO
paradigms the proposal still maintain its applicability.

The analysis is based on a novel extension of function point
analysis to cover also the peculiarity of hardware-bound systems in
a unified manner. Appropriate metrics to predict implementation
costs and designer goals have been identified, working at a coarse
grain so to be used during the earlier stages of the design. The
validity of the methodology and in particular of the proposed
partitioning strategy based on a suitable customization of the
genetic algorithms has been assessed considering the design of a
board controller for automotive application. Other analyses have
been performed to point out the impact of component reuse within a
project as well as the presence in the system of pre-designed parts
coming from third-part suppliers.

Work is in progress to extend the population of sample projects
to better tune the parameters of the methodology and the estimates
of the implementation cost.

7. References
[1] A.S.Vincentelli, G.Martin, Platform-Based Design and Software

Design Methodology for Embedded Systems, IEEE Design & Test
of Computers, vol.18, n.6, Nov-Dec '01, pp 23-33.

[2] J. Axelsson, Cost Model for Electronic Architecture Trade Studies,
Proc. Sixth Int. Conf. on Engineering of Complex Computer
Systems, Tokyo, Japan, 2000.

[3] R.Pasko, S.Vernalde, P.Schaumont, Techniques to Evolve a C++
Based System Design language, Proc. of Design Automation and
Test in Europe, DATE 2002,, Paris, France, March 4-8, 2002. pp.
302-309.

[4] G.Martin, L.Lavagno, J.L.Gurein, Embedded UML: a merger of
Real-Time UML and Codesign, 9th Int. Symp. on Hw/Sw Codesign
(CODES '01), Copenhagen, Denmark, April, 2001.

[5] C. A. Coello, G. T. Pulido, A Micro-Genetic Algorithm for
Multiobjective Optimization, Lania-RI-2000-06, Laboratorio
Nacional de Informática Avanzada, 2000.

[6] U. Bondi, W.Fornaciari, E. Magini and F. Salice, Development
Cost and Size Estimation Starting from High-Level, 9th Int. Symp.
on Hw/Sw Codesign (CODES '01), Copenhagen, Denmark, 2001.

[7] COCOMO 2.0 Model Definition manual, ver 1.2, 1997.
[8] Bohem, Software Engineering Economics, Prentice Hall, 1981
[9] Carper Jones, © 1997, Software productivity Research Inc., What

are Function Point? www.spr.com/library/0funcmet.htm.
[10] A.J.Albrecht, Function Point Analysis, Encyclopedia of Software

Engineering, vol. 1, Jhon Wiley & Sons, 1994.
[11] Function Point Counting Practice Manual, Release 4. IFPUG

International Function Points Users Group, http://www.ifpug.org.
[12] C.Jones,, Applied Software Measurements, McGraw-Hill, 1996.
[13] T.Uemura, S.Kusumoto, K.Inoue, Function Point Measurement

Tool for UML Design Specification, Proc. of the Sixth IEEE
International Symposium on Software Metrics, November, 1999.

[14] Carper Jones, © 1997, Software productivity Research Inc.,
Programming Language Table, Release 8.2, March 1996.
http:// www.spr.com/library/0langtbl.htm.

[15] www.dacafe.com/DACafe/EDATools/EDAbooks/ASIC/ASICs.htm.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

