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Abstract 
This paper proposes a novel methodology tailored to design 

embedded systems, taking into account the emerging market 
needs, such as hw/sw partitioning, object-oriented specifications, 
overall design costs and early analysis of design alternatives. 
The proposal tackles the problem by considering UML as the 
starting point for system-level description and uses a 
customization of Function Point analysis and COCOMO to 
provide cost metrics both for hardware and software. Finally, a 
genetic algorithm is used to select the best candidate 
architecture. The paper also reports some results, obtained from 
a case studies, showing the viability of the proposed approach. 

1. Introduction 
Embedded Systems is a common term to represent a wide 

class of devices, submitted to strict requirements in terms of 
performance, architecture flexibility, operating conditions, cost 
and development time. However, the designer's challenge is 
manifest especially whenever the implementation technology is 
not a priori committed and many alternatives should be 
compared to embrace the best one suiting both functional and 
implementation goals. Mixed Hardware-Software architectures 
and concurrent management of all the aspects of the design 
process, nowadays represent the cornerstones of the so-called 
Codesign discipline. 

Within this context, time-to-market pressure is exacerbating 
the requirements, forcing the designers to consider predictive 
models (virtual prototyping) as soon as possible along the design 
flow, possibly built on top of executable specifications aiming at 
capturing the system-level perspective (e.g., C++, VHDL, 
SystemC and UML). 

Design with (for) reuse techniques, can also be adopted to 
achieve valuable shortening of the design turnaround time, 
sometimes in detriment of the final implementation cost. The 
tradeoff is between the potential market loss, due to delayed 
delivering of the product and the bare implementation cost. 
Customization of flexible architectures (platform based design) 
has also been adopted with a certain success for specific 
application fields [1]. However, in many industrial scenarios, like 
that summarized in [2] for the automotive market, the cost model 
pays particular attention to the advanced concept study phase, 
where coarse grain decisions have to be taken, such as: number, 
type and location of the control units (ECUs) composing the 

system, partitioning of the functionality over the existing ECUs 
and, selection of the proper communication schemas among the 
functionality/ECUs. Since embedded systems typically exploit 
Hw/Sw synergy, this phase help to freeze the amount of resources 
(Hw, Sw and communication) and the mapping of the 
functionality. The missing of a significant commitment in 
reducing the cost during this phase in a systematic manner, not 
only based on the designer experience, can result in a critical 
mismatch of the final budget with respect to the forecast. As 
shown in figure 1, the cost of exploring alternatives is affordable 
only during the concept study, whose main value added is the 
identification of the boundaries containing the solutions 
candidate for further detailed investigation. 

A common agreement on the standards for system-level 
representation is still a long way to come, even if it seems to be 
clear the increasing popularity of object oriented (OO) paradigms 
for both hardware and software, especially if design reuse is 
envisioned [3] [1]. We adopted UML (Unified Modeling 
Language) since it is an important standard de-facto, and many 
extensions are going to be added, useful also to capture the 
peculiarities of embedded systems. 
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Figure 1. Evolution of the effort and cost during the 

development time. 

Our goal is to argue the effectiveness of a concept study, by 
providing the designer a methodology to: specify a uncommitted 
system-level behavior, predict through metrics the global cost for 
realizing both hardware and software module and, finally, 
propose an efficient strategy to select a suitable solution within 
the design space, based on a set of constraints such as cost and 
reusability. For space reasons, the focus of this paper will be on 
the partitioning strategy, even if the evaluation metrics will be 
sketched together with proper references for interested readers. 
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The paper is organized as follows. Section 2 describes the 
proposed design flow. Section 3 presents the cost functions used 
for the estimation of both area and cost. Such functions constitute 
the elements used by the partitioning algorithm to determine the 
best hw/sw implementation of the system (section 4). 
Experimental results, considering a design of a Board Computer 
used in the automotive field, are presented in section 5. Finally, 
section 6 reports the conclusions of the presented work. 

2. The Design Flow 
The starting point for developing our tool has been a UML 

description compliant the Rationale Rose 2000 format The 
designer feeds the tool with a UML description (PTL file) of the 
system. Class diagrams are used to provide a general outlook and 
to analyze the properties of single classes, while Sequence 
Diagrams specify the temporal interactions among the object to 
realize the system functionality. Such a textual format is then 
parsed and improved with additional entries for each class 
(module), that are processed by our partitioning tool. This 
additional information reflects the designer needs/constraints plus 
estimates of crucial system properties. In summary, the 
information specified by the designer consist of: module already 
existing, module to be acquired, module to be implemented via 
reuse, timing constraints, weights for the goal function, and, 
driving parameters for the partitioning algorithm.  

The remaining information, that will be estimated, are: cost of 
a generic module (hw /sw), cost of a module with reuse (hw/sw), 
area for Hw-bound modules, equivalent Area for Sw-bound 
modules (memory). The role of the partitioning is to compute a 
vector representing the hw vs sw bounding for each class 
composing the system. This result will be optimal in the sense of 
optimizing the goal function while fulfilling the user constraints 
(like reuse) and avoiding full search of the design space. 

Many authors afforded the problem of system partitioning. A 
first step to map UML specs onto hw/sw architectures has been 
proposed in [4], based on communication refinement; however, 
the problem of considering design alternatives is not the main 
issue. Our proposal is to generate and select the design 
alternatives by using a micro-genetic approach [5] to reduce the 
computation time dramatically, while maintaining a significant 
degree of flexibility in adopting user-oriented goal functions. 

3. Cost estimation 
Probably one of the tricky tasks of any manager is to compute 

reliable forecast of the cost (basically manpower and time to 
market) of a system starting from top level, possibly incomplete 
or not very detailed, specifications. Besides, the presence of 
hardware and software makes harder achieving acceptable 
accuracy. 

Our long-term goal is to propose a unified strategy working at 
system level, to take into account both the implementing cost and 
the cost related to the organization of the activities within a 
design team. For the first stages of the typical design flows (Hw 
and Sw), there exists a significant parallelism with models 
conceived for the software development [6]. In particular we 
considered the COCOMO 2 approach to compute the global 
development effort (Eff), measured in person/month (pm), to 
realize a given system, and the time T (measured in months) to 
develop the project assuming a full time commitment of a 

properly composed group of R designers. For the sake of 
completeness, main concepts of COCOMO 2 are here recalled; 
more details can be found in [7] [8]. 

In general, the cost C will be proportional to the effort 
C = K*Eff, with Eff= A* SB and T = A2 * Eff B2 , so that R = 
Eff/T. The parameters are the project size S (Klines of code, 
KLOC), the coefficient A, A2 considering possible multiplicative 
factors on the effort and the scale factors B, B2 accounting for 
economy/diseconomy originated in developing projects of 
different sizes. It is possible to determine the values of the 
parameters, according to the modality of developing the project, 
which is also influenced by the severity of the design constraints 
and the novelty of the application. The typical values derived 
from a statistical analysis carried out over a significant variety of 
designs [7] [8] are summarized in table 1, ranging from small and 
simple projects (organic) to large size ones (embedded) requiring 
the fulfillment of stringent constraints and thus, a careful control 
of the development process.  

 
Mode A B A2 B2 

Organic 2.4 1.05 2.5 0.38 
Semi-detached 3.0 1.12 2.5 0.35 

Embedded 3.6 1.2 2.5 0.32 

Table 1. Values of the model parameters. 

As it appears evident from the above relations, the keypoint 
influencing the quality of the results is the ability to supply 
values (LOC) for the project size S, both for the hardware and 
software domains. 

Direct determination and use of LOC is a controversial issue 
since its definition is pretty vague; LOC radically depends on the 
programming language and its prediction during the preliminary 
steps of the design produces unacceptable errors. Most of the 
experts, in fact, tend to underestimate (from 50% to 150%) the 
size of the project with catastrophic impacts on the design 
management.  

To cope with these problems, getting harder for the presence 
of Hw and Sw, we use functional metrics, instead of trying to 
guess the project size (see figure 2). 

System
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Figure 2. From uncommitted specification to Global Cost. 

We adopted an analysis path resembling Function Point (FP) 
analysis [9] [10], as an intermediate step towards LOC and cost. 
This strategy provides a measure of the complexity of realizing 
software applications, by considering the required characteristics, 
so that it should be independent of the technology and the 
language used for the implementation. It has been originally 
proposed by Albrecht [10], and considers characteristics like 
External Inputs and Outputs; User interaction; External interfaces 
and Files used by the systems. Each of these items can be 



determined from the requirement/design specification (or 
program code if available) and then individually assessed for 
complexity and credited a weight ranging typically from 3 to 15. 
Currently, there exist some versions of the function point 
analysis, enlarging the scope and solving some weakness, such as 
that of the IFPUG [11], Feature Point version [12] and our 
customization to account for the peculiarity of a final hardware 
implementation based on VHDL (for more details see [6]). 

For our purposes, the computation of FP starting UML 
specification followed the guideline outlined in [13], using Class 
and Sequence Diagrams. The translation of FP into the 
corresponding LOC is based on the conversion factors reported in 
[14], considering statistics derived from the analysis of about 
thousand projects. For instance, 19 lines of VHDL code are 
required to implement one FP of the system specification, while 
for C++ the correspondence is 29 lines per FP and for C this 
value grows up to 128. The top is the assembly language, with an 
average of 320 lines/FP. The accuracy of estimating VHDL LOC 
from FP analysis has been shown [6] to be in the range of 20%. 

Due to their wide diffusion in real projects, we restricted our 
attention only to VHDL, C and C++, but the approach and the 
analysis tool can be easily retargeted. We also considered other 
novel figures of merit, as user-defined directive, depending on 
both the percentage of reuse and the degree of reusability of a 
certain class composing the specification. The percentage of 
reuse, called πR, is an estimate of which parts of a module could 
be conveniently reused, so that πR = 0 is the value for any 
component designed “from scratch”. The degree of reusability 
(δR) is a factor raging in [1.5...4], representing the additional 
effort necessary to make reusable a module (internal end external 
documentation, module parameterization, functional 
decomposition, functional independence, test benches,…) [6]. 

The total implementation cost of a module, whose expression 
is reported in eq.1, comprises the design and material costs, 
where the design cost, in summary, encompasses the design costs 
“for reuse” (WR) and “from scratch” (FS): 

Costimp= Costdes+ Costmat = (CostFS + CostWR)+Costmat
  eq.1 

The first term of the design cost represents the cost of the 
design sections (1- πR) unaffected by reuse while the second term 
accounts for the parts related to reuse. This formula, introducing 
the aforementioned design for reuse factors δR and πR becomes: 

Costdes= CostFS+ CostWR= (1- πR)*K*A*SB+ πR*δR*K*A*SB= 

=((1- πR)+πR*δR)*K*A*SB eq.2 

Such expression is adopted to compute the design cost of a 
class of the system specification, starting from the estimates of 
the project size S (Klines of code, KLOC), from the degree of 
reusability directive and from the percentage of reuse. 

Note that a module with a so good implementation to be 
reusable could probably be actually considered in other future 
projects. However, successive uses of the module require some 
adaptation: the integration factor (ι R), whose value ranges from 
0.2 to 0.7, accounts for such effort to incorporate a module 
designed to be reused in another project. Typically, high levels of 
reusability correspond to a significant effort to make reusable the 
module (high value of δR), namely more information 
(testbenches, internal and external documentation) and 

parameters need to be introduced so that the module functionality 
can be easily retargeted and understood. For these reasons, ι R has 
been considered proportional to 1/δR by a factor εR, (4≥εR≥1) 
where εR =1 means that the integration is performed by the same 
designer of the considered module (or a skilled designer). Such 
coefficient takes into account the designer expertise as well as the 
designer experiences on the considered module: ι R =εR/δR. 
Consequently, any successive reference to a reusable element x as 
a basic component to implement a given functionality y implies 
the following design cost: 

Costdes_y= (1- πR_y)*K*A*S y
B + πR _y*ι R*K*A*Sy

 B=((1- πR_y) +  

+ πR_y*ιR)*K*A*Sy
B eq.3 

where  πR _y*Sy
 B=Sx

 B, Sx
 B=πR *S B and S is project size in eq.2. 

By gathering all of the above formulas and by defining with 
Nuses the number of estimated reuses, the general expression for 
the design cost of the first implementation is: 

Costdes=((1- πR)+(πR*δR+(πR*(εR/δR)*(Nuses-1))/Nuses)*K*A*SB = 
CostCoef*K* A* SB eq.4 

where (πR*δR+πR*(εR/δR)*(Nuses-1))/Nuses is related with the 
Return Of the Investment (ROI) since every successive 
integration of a reusable module inside a new project affects the 
initial cost. Due to space limitation, further considerations about 
other important time dependent factors (time to market, CAD tool 
productivity, money cost, estimated time between reuses, 
functionality decay due to technology evolution, designer 
competence evolution and turn over influence) cannot be 
included in this paper.  

Table 2 reports a compact analysis of such proposal for a first 
order model of the design costs. It depicts the breakeven under 
different environmental conditions, i.e. the number of uses 
making valuable designing for reuse (CostCoef=1). 

 
πR δR εR Nuses  πR δR εR Nuses 
0 - - -      

0,5 1,5 1 2.5  0,5 1,5 3 NS 
1 1,5 1 2.5  1 1,5 3 NS 

0,5 2,75 1 3.7  0,5 2,75 3 NS 
1 2,75 1 3.7  1 2,75 3 NS 

0,5 4 1 5.0  0,5 4 3 13.0 
1 4 1 5.0  1 4 3 13.0 

0,5 1,5 2 NS  0,5 1,5 4 NS 
1 1,5 2 NS  1 1,5 4 NS 

0,5 2,75 2 7.5  0,5 2,75 4 NS 
1 2,75 2 7.5  1 2,75 4 NS 

0,5 4 2 7.0  0,5 4 4 1539.0 
1 4 2 7.0  1 4 4 4047.0 

Table 2. Analysis of the Breakeven conditions, NS stands for 
no-Solution. 

It is worth noting that eq.4 can be easily extended to consider 
the possibility of acquiring IPs externally, from a third-part 
supplier. In this case, the degree of reusability (δR) can be set 
close to 4 (best reusability effort) and the coefficient εR 
(capturing the designer expertise and the designer experience 



with the considered module) has to be grater then 1. Under these 
assumptions, the design cost model becomes: 

Costdes= CostIP*a+((1- πR)+(πR*δR*(1-a) + 

+ πR*(εR/δR)*(Nuses-1))/Nuses)*K*A*SB eq.5 

where a=0 means that the functionality is an internal IP.  
Going back to the material cost, the influence of the selling 

volumes can be represented by decomposing its expression in the 
following way: 

Costmat= Costfixed+Costvariable = Costfixed+Costvar_unit*Volume   eq.6 

Where the fixed cost is independent of the number of products 
developed while the variable cost strictly depends on the selling 
volume. 

As far as the variable cost per unit is concerned, a cost 
function should gather both hardware and software. In the latter 
case, the cost of the processor must be summed with a term 
accounting for program storage, obtained by multiplying the 
equivalent gate cost of a basic memory cell with the software 
size. As an example, in the following it is assumed that the RAM 
cost per gate is equal to the variable cost per gate of the Cell 
Based ASIC (CBIC). Similarly, the material cost for the hardware 
part of the system is computed by multiplying the area estimated 
for the hardware and the hardware variable costs per gate (the 
model for area estimation is presented later). 

By considering the fixed cost, if the solution space is analysed 
comparing different implementations based on the same 
technology, this term does not influences the result; on the 
contrary, costs reported in table 4 could be used. 

 
Processor Number of Gates Costs 

Sparc 100000 80 
V6502 4000 3.2 
VZ80 8000 6.4 

V8-µRISC 3000 2.4 
V8086 18000 14.4 

Turbo86 20000 16 
V186 28000 22.4 

Turbo186 30000 24 
Sparc 100000 80 
V6502 4000 3.2 

Table 3. Processors characteristics 

Technology Cost per gate 
FPGA 0.39 
MGA 0.1 
CBIC 0.08 

  
Technology Fixed Cost 

FPGA 20000 
MGA 80000 
CBIC 150000 

Table 4. Technology costs 

Unfortunately, it is hard to get reliable information related to 
costs from vendors and companies, so that we based the analysis 
on a single but trustworthy source of data [15]. The costs 
reported in table 4 and table 3 are expressed in Euros as of 1997. 
In the case of only the cost is relevant, the goal function (GF) to 

be minimized, for a system composed of k classes, either 
hardware or software, is: 

GFCOST = ∑
i=1

k

(Cost
sw
i *bi*φ + Cost

hw
i *(1-bi))  eq.7 

Where the Costs (hw or sw) are computed according to eq.11, 
bi is a binary value representing the hw (bi=0) or sw (bi=1) bound 
of the i-th class and φ (0<φ≤1) is the software flexibility whose 
effect is to reduce the influence of the cost. This goal function is 
biased toward a fully software implementation, since it is 
typically characterized by lower costs and maximum flexibility 
with respect to hardware. 

Regarding area, a second goal function to be minimized has 
been assembled, following a strategy similar to the previous one, 
i.e. the area is estimated from the LOC computed via FP analysis 
[6]. 

In a fist order approximation, we can assume a linear 
dependence between the area (in terms of equivalent gates) of a 
hardware implementation and its complexity. By analyzing a 
number of existing projects with different complexity and 
application fields, a range of 1-10 equivalent gates (EG) per 
VHDL line of code has been identified (a typical value for 
structural description is around 2 gates/VHDL line). The 
conversion of FP to VHDL LOC has been performed by 
considering the factor suggested in [14], that is 19, so that: 

Area
hw
EG = FP * 19 * f(application, description mode) 

where the application is a combination of FSM, 
CombinationalGenericModule, ROMs, RAMs, 
ArithmeticOperators (single cost functions has been identified for 
each element) and the description mode is Structural, DataFlow 
and Behavioural. The current version of the model has been 
implemented using 2 as the typical value. It has been identified 
by using a set of benchmarks whose VHDL descriptions are a 
mix between Structural and DataFlow and statistically assessed 
by evaluating the FPs and implementing the devices on a 
VirtexII-1000 technology by using Leonardo and Xilinx ISA4.1. 

Concerning the software, the concept of area is less obvious 
and it has been computed by adding up two contributions: the 
memory and the processor. As far as the processor is concern, the 
number of gates have been extracted from the data sheets of the 
considered processors; conversely, the memory occupation has 
been computed referring to assembly LOC and 32 bits 
instructions, as typical for RISC architectures. Note that such 
parameter can be tailored to account for other Instruction Set 
Architecture (ISA) peculiarities. For the Intel processor family, 
the average instruction length has been computed considering a 
number of benchmarks. As an example, in the following we refer 
to a RISC architecture with a fixed instruction size of 32 bits, so 
that the area becomes 9.6=(0.3*32) equivalent gates per assembly 
line, since a 1-bit cell typically requires 0.3 gates, due to the high 
regularity of the memory structures (this value has been estimated 
using a set of data provided by Siemens). 

                                                                 
1 LOC is calculated considering the target language for the hw 

and sw implementation of the classes. Both costs, can involve 
reuse. 



It is worth noting that the area for data storing is not part of 
the model; this approximation has been introduced since the 
influence of small amounts of data can be neglected while 
significant amounts of data require memory for both hardware 
and software; under this assumptions, the data size is an invariant 
with respect to the partitioning problem. 

For the software, the area (evaluated in gates) will thus be: 

Area
sw
EG =  AreaRAM_code+AreaProcessor =  

                  = FP * 320 * 9.6 + AreaProcessor  eq.8 

And the global goal function tailored to consider only area 
becomes: 

GF AREA = ∑
i=1

k

Area 
sw
i  *bi + Area

hw
i  * (1-bi) 

  eq.9 

Dually, this goal function is biased toward a fully hardware 
implementation, since it is typically characterized by lower area 
with respect to software. 

In order to perform the partitioning, area and cost have been 
normalized considering that the maximum values are associated 
with the area of the fully software implementation and the cost of 
the fully hardware implementation while the minimum values are 
associated with the area of the fully hardware implementation and 
the cost of the fully software implementation. Hence, the global 
goal function is: 

GF =  
AreaMAX-GFarea

 AreaMAX- Areamin
 
(1-A)

 *  
CostMAX-GFcost

 CostMAX- Costmin
 
A

   eq.10 

Combinations of both goal functions can be considered to 
better adhere the designer’s needs, as shown in Section 5 
(parameter A). 

4. System partitioning 
The variability of design alternatives allows the user to take 

into account a number of possible characteristics like reusability 
(including the additional effort for making reusable the modules), 
cost and size of both hw and sw, the possibility of using third-
part components (COTS) and so on. Due to the wide extension of 
the design space to be explored, full search or even a simple 
Branch&Bound strategy have been discarded, in favor of more 
computationally effective heuristics, able to discover acceptable 
sub-optimal solutions, e.g. simulated annealing or genetic 
algorithms.  

We selected a strategy based on a variation of Microgenetic 
algorithms, tailored to optimized multi-goal functions [5]. The 
basic difference with respect to classical genetic strategies, is the 
peculiarity of the considered populations, that are restricted and 
the presence of external memory where to record the best 
candidate solutions. A proper replacing strategy of the stored 
solutions with new ones is used to limit the memory 
requirements. The algorithm exploits clustering and exhibit 
elitism, i.e. the capability to span uniformly the entire solution 
space, following not only random paths. 

The operations executed within a micro-cycle are the classical 
ones: generation of the initial population, reproduction, crossover 
and mutation. The initial parameters of the algorithm are the total 

number of iterations and the probability of mutation and 
crossover. The tool implementing the algorithm allows the 
operating modes: single and multi. Single mode executes only 
one elaboration of the partitioning algorithm, whose result are 
stored in a reports, while multi mode produces a (user-defined) 
set of executions (partitionings) from the same input file, so to 
make possible for the user to compare similar results. 

As sketched in previous sections, the partitioning algorithm 
operates at the granularity of classes, since considering 
functionality is too coarse. Finer grain is not considered since it is 
impossible starting from UML schemas: the methods specifiable 
during the phase of concept study are not very accurate. 

The tool analyzes one functionality of the system at a time, 
each involving several classes. This means that, to obtain a 
solution for the overall system, the execution of the tools must be 
invoked multiple times, to process all the existing functionality. 
Finally, the best solutions identified for each functionality are 
gathered to constitute the global solution. The current version of 
the tool implicitly assumes that the functionalities are always 
disjoint, not considering the cost and area of the integration 
additional components. In practice, such overhead can be -in the 
average- neglected or considered as a multiplicative factor 
[7][6][8], not influencing the structure of the methodology and 
the kernel code of the algorithm. Also the management of UML 
schemas adopted by Rational Rose force in this direction: for 
each USE CASE, representing a functionality, the corresponding 
Class and Sequence diagrams are designed. 

5. Experimental Results 
The tool implementing the methodology has been 

implemented in C++, Kdevelop 1.4 (Linux Mandrake 8.0), using 
RCS for configuration management, Rational Rose 2000 and 
ZTC for syntax checking of formal specifications. The code has 
been validated through black-box and white-box testing using 
small and toy benchmarks, as well as by using real-world 
examples. 

In general we can observe that in the case of small class 
diagrams (less than 10 classes) and with more than 1500 
iterations, the results are always those expected. As the number of 
classes increases, the amount of iterations to achieve 100% of 
matching rises up more than linearly. For example, for a 20 
classes schema and considering as goal function the GFcost in 
order to obtain a fully sw solution, more than 5000 iterations are 
required. As an example to point out the practical use of the 
methodology and of the tool, in the following we consider the 
design of a Board Computer used in Automotive. The class 
diagram is composed of six classes, controlling all the car 
functionality: brakes, engine, air conditioning, windows and 
alarms. The computation of the FP, followed the suggestions of 
[13]. Table 5 reports a summary of the obtained results, showing 
for each class, the contributions for each of the five 
characteristics: Internal Logical File (ILF), External Initerface 
File (EIF), External Input (EI), External Inquiry (EQ) and 
External Output (EO), before introducing the adjustment factor, 
as suggested by the FP methodology. 

The generation and evaluation of alternative partitions has 
been performed considering a simple while flexible composite 
goal functions, in order to easily explore the outputs produced by 
varying the importance of area and cost, modifying only one 
parameter “A” ranging in [0..1]: A is the weight for the cost and 



(1-A) that for the area. In this example, equation 10 is the 
considered cost function. 

 
Class name ILF EIF EI EQ EO FP 
Board comp. 1×7 0×5 1×3 3×3 10×4 59 

Brakes 0×7 1×5 0×3 1×3 1×4 16 
Engine 0×7 1×5 2×3 0×3 1×4 15 

Windows 0×7 1×5 2×3 0×3 0×4 11 
Front wind. 0×7 1×5 2×3 0×3 0×4 11 
Air cond. 0×7 1×5 3×3 0×3 0×4 14 

Table 5. FP calculation (summary) for the board computer. 

The border solutions considering A=1 or A=0, represent the 
cases where only cost or area are relevant, respectively. These 
solutions also correspond to fully software or hardware 
implementation. Intermediate value of A, depending of course on 
the user needs, allows to obtain mixed hw/sw architectures 
considering both area and cost goals. For each of elaboration 
performed, corresponding to a different value of A, i.e. a different 
goal function, 100 iterations of the algorithm have been 
considered and five attempts for each values of the parameter A 
(the runtimes are always of few minutes).  

Table 6 reports the optimal hw/sw partition performed by the 
implemented procedure. In particular, each configuration 
corresponds to the minimal value of the proposed goal function 
produced in five runs of the partitioning algorithm. 

Usr 
needs 

A 

Brake 
abs 

Board 
Computer 

Front 
Windows 

 
Windows 

Air 
Cond 

Engine 
Manag 

1.0-0.6 SW SW SW SW SW SW 

0.5 HW SW SW SW SW SW 

0.4 SW SW SW SW SW HW 

0.0 HW HW HW HW HW HW 

Table 6. Final system partitioning with respect to some 
different user needs (A) without reuse. 

As a final analysis, the presence of hardware reuse has been 
considered; for the sake of conciseness table 7 reports only the 
result concerning one component.  
A πR δR ε

R 
Nuse

s 

ABS Board 
Comput 

Front 
Windows 

Windows Air 
Cond 

Engine 
Manag 

0.5 1 1,5 1 6 HW SW SW SW HW SW 

0.5 1 2,75 1 6 HW HW SW SW HW SW 

0.5 1 4 1 7 SW HW SW SW SW SW 

0.5 1 1,5 2 NS HW SW SW SW HW SW 

0.5 1 2,75 2 20 SW HW SW SW SW SW 

0.5 1 4 2 11 SW HW SW SW SW SW 

0.5 1 2,75 3 NS HW SW HW HW HW HW 

0.5 1 4 3 40 HW HW HW HW HW HW 

0.5 1 4 4 NS HW SW HW HW HW HW 

Tabella 7. Final system partitioning with hardware reuse and 
user needs A=0.5. The parameters πR, δR and εR are imposed 
and the Nuses is calculated such that it is convenient the hw 
implementation with reuse of the board computer component. 

The goal has been to identify under which conditions the 
presence of reuse can carry to fully hardware implementations 
(bold text). For example, for a project with a poor documentation 
and a designer without significant experience (δ.R=1.5), that is 

the case of the fourth row, there is no convenience (NS, no 
solution) to introduce a hw implementation with reuse, so that it 
will be sw. 

6. Concluding remarks 
The paper presented a methodology to afford the problem of 

freezing up a suitable hw/sw partitioning for an embedded 
application, starting from a top-level description of the 
architecture, in this case UML, although for different OO 
paradigms the proposal still maintain its applicability. 

The analysis is based on a novel extension of function point 
analysis to cover also the peculiarity of hardware-bound systems in 
a unified manner. Appropriate metrics to predict implementation 
costs and designer goals have been identified, working at a coarse 
grain so to be used during the earlier stages of the design. The 
validity of the methodology and in particular of the proposed 
partitioning strategy based on a suitable customization of the 
genetic algorithms has been assessed considering the design of a 
board controller for automotive application. Other analyses have 
been performed to point out the impact of component reuse within a 
project as well as the presence in the system of pre-designed parts 
coming from third-part suppliers. 

Work is in progress to extend the population of sample projects 
to better tune the parameters of the methodology and the estimates 
of the implementation cost. 
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