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ABSTRACT 

In order to properly operate an autonomous vehicle navigation system, it is important that the 

vehicle and sensor models of an autonomous vehicle are defined by an accurate parameter set.  

This paper presents a technique for identifying parameters of an autonomous vehicle using 

multi-objective optimisation, which enables the identification process without introducing additional 

parameters.  A multi-objective optimisation method has been further proposed to solve the 

optimisation problem defined for the identification efficiently and promisingly.  Results of 

numerical examples first show that the proposed optimisation method can work well for various 

multi-objective optimisation problems.  Then, the proposed identification technique has been 

applied to the actual parameter identification of the autonomous vehicle developed by the authors, 

and an appropriate parameter set has been obtained.   

Keywords: Autonomous vehicle navigation system, parameter identification, multi-objective 

optimisation 
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1 INTRODUCTION 

The past few years have seen an increasing interest on the development of autonomous vehicles 

for outdoor applications [1-3].  A suitable vehicle navigation system that provides the knowledge 

of vehicle position and trajectory and subsequently controls the vehicle along a desired path is an 

essential requirement for successful deployment of autonomous vehicles.  Basic navigation system 

of an autonomous vehicle consists of sensors that extract information from the vehicle drive train, 

such as wheel and steering encoders, or an inertial measurement unit that measures the angular 

velocities and the accelerations of the vehicle in three orthogonal axes.  These sensors that measure 

the vehicle state internally are usually known as dead-reckoning sensors.  Information from 

dead-reckoning sensors is used together with a kinematic model to predict the motion of the vehicle.  

Errors that inevitably accumulate due to the integration present in the prediction step can be reset 

using absolute sensors that directly measure the vehicle location with respect to its environment in 

an external sense, for example, using lasers that observe beacons present in the environment [4] or 

the Global Positioning System (GPS) in the case of outdoor vehicles.  As absolute information is 

usually not available at high enough rates to be useful for control purposes, it is important that the 

dead-reckoning sensors provide accurate information in between such updates.   

One of the main sources of error in the location predicted by the dead reckoning is due to the 

incorrect kinematic parameters and the calibration factors used in the kinematic model.  Significant 

work has been done in identifying the sources of dead-reckoning error and devising benchmarks for 

measuring such errors in indoor robots accordingly [5].  In most of the previous work, the encoders 
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attached to the wheels and steering are calibrated using only specific manoeuvres such as moving 

along straight lines and circular paths [6] and correlating the distance travelled as measured by the 

encoders and an external measuring device, typically a tape measure, whereas the kinematic 

parameters are simply based on the original design.  These parameters associated with the 

kinematic model and sensors are thus measured or computed when the vehicle is designed or 

commissioned.  With the notable exception in the on-line estimation of the tyre radius [1], which 

can change significantly as the load on the vehicle is changed, the parameters are then used as 

constants within the navigation algorithms.  As the characteristics of electro-mechanical systems, 

however, change with time gradually, the ability to periodically recompute these parameters to 

check their validity can be of significant benefit.   

The goal of the paper is to develop a technique for the computation of the kinematic parameters 

and calibration constants using data gathered during the normal operation of an autonomous vehicle. 

This would make it possible to check whether the parameters used in the navigation algorithms are 

accurate and make any necessary changes without resorting to specific test manoeuvres or 

modifications to sensor configurations.  Such a parameter identification problem is formulated as a 

minimisation of the difference between the locations of the vehicle computed using the kinematic 

equations and using an absolute position-sensing device.  Basically, the information from the dead 

reckoning sensors are used in the prediction while a Global Positioning System (GPS) receiver is 

used as an absolute sensor, and the criteria to be minimised are the position and orientation of the 

vehicle, which are used to describe its location.   

Any of the conventional optimisation strategies [7-10] can be utilised in the search for the set of 

parameters by formulating an objective function that minimises a weighted sum of the residuals in 

position and orientation.  However, the solution obtained is obviously dependent on the weighting 
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factors used, and, as the magnitudes of the residues are measured in different units, it is not possible 

to determine the appropriate weighting factors except through trial and error.   

The objective of this paper is to describe a novel strategy for solving optimisation problems that 

have multiple objectives and demonstrate the effectiveness of this technique by using it to solve the 

parameter identification problem for autonomous vehicles.  In order to solve this class of problems 

efficiently and promisingly, multi-objective continuous evolutionary algorithms (MCEAs), extended 

from continuous evolutionary algorithms (CEAs) [11,12], have been further proposed.  The use of 

the multi-objective optimisation technique allows the parameter set to be found without introducing 

any additional weighting factors [13-15].  As the multi-objective method also finds the solution 

space rather than a single solution, parametric studies can be done while searching for a solution.   

This paper is organised as follows.  Section 2 provides the background material on 

autonomous vehicles and describes the experimental set up used for obtaining the data.  The 

parameter estimation problem for autonomous vehicles is formulated as a multi-objective 

optimisation problem in section 3.   Section 4 describes the multi-objective optimisation method 

proposed to solve this class of problems efficiently and promisingly.  Numerical examples in 

section 5 first demonstrate the applicability of the proposed optimisation method using example 

problems, and then the solution to the problem of parameter identification in autonomous vehicles is 

provided in section 6.  Conclusions are summarised in section 7.   

2 AUTONOMOUS VEHICLES 

2.1 Experimental Setup 
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Figure 1 shows a vehicle used as a test bed for research into the navigation of autonomous 

vehicles.  This is a rear wheel driven vehicle that is steered using an Ackerman type steering 

linkage driving the front wheels.  Four sensors are mounted on the vehicle.  As dead-reckoning 

sensors, an encoder, fitted to the rear left wheel, gives a measure of the vehicles speed, and a linear 

variable differential transformer (LVDT) on the steering rack provides a measurement proportional 

to the steering angle.  The encoder and the LVDT are read at a rate of 20 Hz.  Carrier Phase 

Differential GPS unit with a rated accuracy of 0.02 m in position and 0.02 m/s in velocity when at 

least six satellites are in view is used to measure the absolute position of the vehicle at a sample rate 

of 4 Hz.  An inertial measurement unit comprising of three orthogonal gyroscopes and three 

accelerometers are also mounted on the vehicle.  In the work described in this paper, only one of 

these gyroscopes is used to measure the angular velocity of the vehicle about a vertical axis.  The 

inertial measurement unit provides information at a sample rate of 125 Hz.   

 

2.2 Vehicle models 

The kinematic model of a vehicle moving in the horizontal plane is shown in Fig. 2.  Location 

of the vehicle is given by state variables [ , , ], where  and  are the coordinates of the 

centre of the rear-axle and  is the orientation of the vehicle body as shown.  The inputs that are 

used to control the vehicle are the velocity at the centre of the rear axle  and the average steering 

angle .  The equations of motion for this vehicle at any time instant  is given by:   

x y φ x y

φ

v

kγ

)(cos)()( kkvkx φ⋅=  (1a) 

)(sin)()( kkvky φ⋅=  (1b) 
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)(tan)()( k
l
kvk γφ =  

(1c) 

where  is the vehicle wheel base.   l

 

2.3 Sensor models 

2.3.1 Steering encoder 

The steering encoder measures the displacement of the steering rack , which is 

linearly proportional to the steering angle.  The steering angle  can be expressed as 

)(* kENCγ

)(kγ

21 )(*)( ckck ENC +⋅= γγ , (2) 

where  and  are the gain and the offset of the encoder. 1c 2c

 

2.3.2 Wheel encoder 

The wheel encoder provides the angular position of the left rear wheel of the vehicle.  

Difference between successive position measurements can be used to determine the velocity of the 

left rear wheel.  The velocity of the vehicle  is related to the velocity measured by the 

encoder  through the following kinematic transformation.   

)(kv

)(* kvENC

bkkvckv ENC ⋅+⋅= )(*)()( 3 φ , (3) 

where  is the gain of the encoder.  Note that the substitution of equation (3) into equation (1c) 

introduces another velocity term .  Assembling the velocity terms, resultant velocity  is 

described as  

3c

)(kv )(kv

)(tan
)(*)( 3

kbl
kvclkv ENC

γ⋅−
⋅⋅

= .   
(4) 
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2.3.3 GPS 

The GPS sensor to mounted on the vehicle directly provides the absolute position 

[ , ) ] at which the sensor is mounted.  The vehicle location is related to the 

measurement obtained from the GPS sensor through the following equations.  

) (* kyGPS(* kxGPS

( )θφ +⋅−= )(*cos)(*)(* krkxkx GPS ,  (5a) 

( )θφ +⋅+= )(*sin)(*)(* krkyky GPS .   (5b) 

where  and  are the location of the GPS unit, in polar coordinates, with respect to the local 

coordinate frame on the vehicle as shown in Fig. 3.   

r θ

 

2.3.4 Inertial measurement unit 

The rate of change of orientation of the vehicle  is related to the reading of the 

gyroscope by 

)(* kφ

)(* kINSφ

*)(*)(* OFFINS kk φφφ += ,  (6) 

where the initial offset  is the average value of the gyroscope measurements obtained a 

priori when the vehicle is stationary:   

*OFFφ

s
is

i INS
OFF

∑ == 1
)(*

*
φ

φ .  
(7) 

 

2.4 Simulation and measurement of the vehicle state 

The sensors described in the last section can be used to both simulate and measure the state of 

the vehicle at any instant.  In the simulation, the state of the vehicle [ , , ] at )1( +kx )1( +ky )1( +kφ
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time instant  is iteratively computed from the state of the vehicle [ , , ) ] as shown 

in Fig. 4, so that data to be prepared a priori are control inputs [ v , ) ] with respect to all time 

( =1,2,..., ) and initial state of the vehicle [ , , ].  With the navigation data 

[ , ) ] from the sensors, the control inputs are derived from equations (2) and (3) at 

any time instant , and the initial position of the vehicle can also be obtained using equation (5) 

from measurements by setting [ , , ]=[ , , ].  The state of the vehicle 

at any time instant can be conclusively computed as far as initial orientation  is specified.   
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The location of the vehicle [ , , ) ] can also be computed from sensory 

measurments at all times.  Since the data obtainable from the gyroscope is the rate of change of the 

vehicle orientation , the orientation of the vehicle  can be computed by iteratively 

deriving  from , given its initial state .  As shown in equation (5), the 

position is also governed by  in addition to the measurements from GPS.  The location of 

the vehicle at all times is thus determined by obtaining measurements from the GPS and the 

gyroscope by using the equation.   

k

)(* k

(*φ

φ

 

2.5 Prediction of the vehicle state 

Figure 5 shows a pictorial view of the process used for estimating the location of an 

autonomous vehicle.  Information obtained from internal sensors is used together with a kinematic 

model of the vehicle to obtain an estimate of the vehicle state.  Due to noise present in the sensors 

as well as the inaccuracies of the vehicle model, error in this estimate gradually increases.  Thus, 

information from external sensors is periodically measured, and errors accumulated during each 

period are incorporated into the state estimate using a Kalman filter based estimator to correct errors 
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and obtain a more accurate state estimate.  Note that this information may not be available for 

extended periods of time depending on the environment in which the vehicle operates.  GPS 

signals are often prone to blackout near buildings and other structure that obstruct or reflect radio 

signals.  In such situations, the vehicle navigation purely relies on the estimates obtained from the 

internal sensors and the vehicle model.  Therefore, the availability of an accurate vehicle model 

with accurate kinematic parameters is extremely valuable for the proper functioning of an 

autonomous vehicle navigation system.    

3 PARAMETER IDENTIFICATION OF AUTONOMOUS VEHICLES 

3.1 Problem formulation 

By observing the autonomous vehicles in the last section, the parameter identification problem 

of concern can be characterised as follows:   

 Parameters to be identified are =[ , , , , , , , ]∈ .   Tx 1c 2c 3c l b *)0(φ r θ nR

 Errors in position and orientation of the vehicle must be minimised to identify the 

parameters.  

 For the Kalman filter based estimator, the predictor model is only needed to be accurate 

over each short time period between the receit of external sensor readings.   

Identifying appropriate parameters depends upon the formulation of objective function.  So as 

to handle more than one criterion, a single-objective function is most commonly generated by 

summing them each with a weighting factor as this enables conventional calculus-based 

optimisation methods to derive a solution.  The significant problem of this formulation is however 
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that the solution depends upon the weighting factors chosen as the derivation of a single solution 

does not yield further discussion.  

The only way for finding solutions that do not depend upon the weighting factors is to remove 

them from the formulation, and we hereby propose a multi-objective formulation.   

[ ]
x

xxxf min)(),()( →= norientatioposition
T ff , (8) 

where, to be accurate over each short time period, objective functions  are given by  2:)( RRn →xf

( )
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p fn

i

k

j
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and 

)'(*)'( ff kixkix ⋅=⋅ , , ,  )'(*)'( ff kiykiy ⋅=⋅ pni ,...,1= (10a) 

)'(*)( ff kiki ⋅=⋅ φφ , .   pni ,...,1= (10b) 

where  is the number of iterations for each period which is used for further autonomous 

navigation, and  is the number of partitions in the vehicle operation.  The total number of 

iterations is given by .  The question first and foremost is what can be the solutions of 

this multi-objective optimisation problem, and the next subsection will present the Pareto-optimality 

accordingly.   

'fk

pn

pff nkk '=

 

3.2 Problem solution 

While the single-objective optimisation tries to look for a single solution, multi-objective 
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optimisation needs to derive a solution space, and this space is the natural solution to be obtained for 

the weight-independent parameter identification formulated as a multi-objective optimisation 

problem.  Any point in the space satisfies Pareto-optimality [16], which was introduced in the field 

of economics a century ago, so the goal of the multi-objective optimisation problem is converted to 

finding a set of Pareto-optimal solutions as equivalently as possible to the solution space.   

Consider a problem where we have  objective functions,  :   m RRf n
k →: , mk ,...,1=

[ ]
x

xxxf min)(),...,()( 1 →= m
T ff .   (11) 

A decision vector  is said to be Pareto-optimal if and only if there is no vector  for 

which  dominates , i.e., there is no vector  such that  

n
u R∈x

( nvv ,...,1=

n
v R∈x

vx) )v )(= xfv ( nu uu ,...,)( 1== xfu

},...,1{,},...,1{, niuvniuv iiii ∈∃<∧∈∀≤ .   (12) 

The great advantage of the proposed formulation is that we have multiple solutions without any 

weighting factor, unlike the weighted scalar optimisation that results in only a single solution with a 

specified weighting factor.  The final solution is thus selected by analysing Pareto-optimal 

solutions through various parametric studies, i.e., investigating the distribution of solutions both in 

function and parameter spaces, and comparing solutions.   

The optimisation method to find well-distributed Pareto-optimal solutions in an efficient and 

robust way will be presented in Section 4, and the next subsection deals with how to select a final 

solution from the Pareto-optimal set.   

 

3.3 Determination of a solution 

Figure 6 shows the proposed process of the selection of a single solution from a parameter 

identification problem where objective functions  and  are minimised to identify three 1f 2f
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parameters .  First, the user possibly picks up a characteristic Pareto-optimal solution in 

function space by considering the distribution of the Pareto-optimal solutions and the importance of 

each objective function or by using any technique.  The user may use a function space additionally 

defined to see other decision criteria such as L-curve [17,18].   

],,[ 321 xxx

)1

* ( * )i iϕx x

1 2( * ) ...= =x x

If the function measure is of no significance, the user can choose a solution by viewing it in the 

solution space of each two-dimensional parameter space and using his knowledge on parameter 

space.  The number of graphs with three parameters is thus three and that with  parameters will 

be 

n

(
2
1

−nn .  If the number of parameters is considerably large, the visual decision-making is no 

longer possible, and the final solution must be selected automatically.  In this case, one prominent 

way is to select the solution residing in the centre of solution space since this solution is robust.  

The authors here propose a technique where the closest solution to the centre-of-gravity is chosen as 

the solution.  Let the Pareto-optimal solutions finally obtained be x , .  If each 

solution is evaluated in a scalar manner, i.e., , the centre-of-gravity is in general given by 

*i 1i = ,..., r

( * )iϕ x

1

1

*
( * )

r

i
r

ii
ϕ

=

=

= ∑
∑

x
x

( * ) ( * )rϕ ϕ ϕ= x

.  As the Pareto-optimal solutions must be evaluated equally, we 

can consider all the Pareto-optimal solutions possess the same scalar value, i.e., 

.  No matter what the value is, the centre-of-gravity results in the 

form:  

1
*

*
r

ii

r
== ∑ x

x , 
(13) 

The effectiveness of the centre-of-gravity method cannot be proved theoretically, but it is highly 

acceptable, as it has been commonly used in fuzzy logic to find a solution from the solution space 
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described by fuzzy sets.  If one still wants to choose it with human knowledge, the selection may 

be achieved by computational decision-making strategies such as expert systems and fuzzy logic.  

We shall not discuss this further as it is out of scope of the paper.  The appropriateness of the 

solution chosen is investigated by comparing it with other solutions.  If the solution is not the 

expected one, the user selects a different Pareto-optimal solution, and the same process is repeated 

until the desired solution is obtained.   

In order to show another advantage of the use of a multi-objective optimisation method, Figures 

7 and 8 compare the process for deriving the solution of a multi-objective optimisation problem.  It 

is clearly seen that the optimisation process in the weighted scalar optimisation is within the loop 

and thus has to be repeated with a different set of weighting factors whereas the multi-objective 

optimisation requires only one execution.  This means that multi-objective optimisation is much 

superior to the weighted scalar optimisation in efficiency, provided that one execution in terms of 

the multi-objective optimisation results in a similar Pareto-optimal set after a number of weighted 

scalar optimisations each with different weighting factors.   

4 MULTI-OBJECTIVE OPTIMISATION 

4.1 Fundamentals 

As a method to find a well-distributed Pareto-optimal set robustly and efficiently, MCEA 

proposed here is basically represented by the following four characteristics; the method:   

Searches with multiple points such that it can find multiple Pareto-optimal solutions,  • 

• Adopts probabilistic direct search algorithms based on evolutionary computation for 
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robustness,  

Implements the continuous representation of the points, continuous search formulation and 

continuous evaluation for efficiency,  

• 

• Stores all Pareto-optimal solutions historically generated to grasp the whole solution space.   

Figure 9 shows the fundamental structure of the proposed method.  First, a population of 

individuals, each represented by a continuous vector, is initially (generation =0) generated at 

random, i.e., 

t

λ
λ )(},...,{ 1

nttt RP ∈= xx , (14) 

where  represent the population size of parental individuals [11].  Each vector thus represents a 

search point, which corresponds to the phenomenological representation of individual.   

λ

 

4.2 Reproduction 

The definition of the recombination and mutation becomes the probabilistic distribution of the 

phenomenological measures accordingly.  In the recombination, parental individuals breed 

offspring individuals by combining part of the information from the parental individuals, thereby 

creating new points inheriting some information from the old points.  The recombination operation 

is then defined as  





−+=
+−=

βαβ

βαα

µµ
µµ

xxx
xxx

)1('
)1('

, 
(15) 

where parameter  may be defined by the normal distribution with mean 0 and standard deviation 

:   

µ

σ

),0( 2σµ N=  (16) 
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or simply a uniform distribution:   

),(rand maxmin µµµ = .   (17) 

The mutation can also be achieved simply by implementing 

),(rand" maxmin xxx = .   (18) 

with a small possibility [19].  Note that the mutation may not be not necessary for parameter  

with normal distribution since it can allow individuals to alter largely with a small probability, when 

the coefficient  is large.   

µ

µ

 

4.3 Evaluation, Ranking and selection 

As the Pareto-optimal set satisfying equation (12) is to be found as solutions, the ranking 

process of individuals is composed of an elimination rule.  In the rule, the calculation of objective 

function at all the points , =1,..., , is first conducted, and the Pareto-optimal set is ranked 

No. 1.  The points with rank No. 1 are then eliminated, and Pareto-optimal set in the population is 

ranked No. 2.  All the subsequent ranks are generated stepwise in the same fashion until all the 

points are ranked [20].  The points in rank No. , , are defined as  

)( if x i λ

k )(kG

{ }( ) | rank( ) , {1,..., }i iG k k i λ= = ∀ ∈x x   (19) 

for further convenience, and the ranking process of the individuals is summarised in Fig. 10.  The 

ranked points are illustrated in Fig. 11.   

The evaluation of fitness of each individual starts with finding the best and worst value of each 

objective function among the population:   

{ }best min ( ) | {1,..., }j j if f i λ= ∀ ∈x , (20) 
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{ }worst max ( ) | {1,..., }j j if f i λ= ∀ ∈x .   (21) 

If we temporarily define the fitness as  

jj

ijj
ij ff

ff

bestworst

worst )(
)('

−

−
=Φ

x
x , 

(22) 

we can get the normalised conditions:   

1)('0 ≤Φ≤ ij x , (23) 

and this allows us to treat the fitness of each function with the same scale.  The fitness of points 

with the same rank has to be the same, and the true fitness of each objective function is thus defined 

as:   

{ })(|)('max)()( )( kGiiji
kG

jij ∈Φ=Φ≡Φ xxxx .   (24) 

The fitness of each individual can be conclusively calculated as:   

∑
=

Φ=Φ
m

j
iji

1
)()( xx , 

(25) 

which has the range 

mi ≤Φ≤ )(0 x .  (26) 

The selection operator favourably selects individuals of higher fitness to produce more often 

than those of lower fitness.  As  is satisfied by this equation, the proportional selection 

[20], which is reported to be faster in convergence than the other popular selection of the ranking 

selection [21], can be directly used in the proposed algorithm.  In this selection, the reproduction 

probabilities of individuals are given by their relative fitness:   

0)( ≥Φ ix

∑ =
Φ

Φ
= λ

1
)(

)()(
j j

i
isP

x
xx .   

(27) 

These evolutionary operations form one generation of the evolutionary process, which corresponds 
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to one iteration in the algorithm, and the iteration is repeated until a given terminal criterion is 

satisfied.   

 

4.4 Historical storage of Pareto-optimal sets 

So as to grasp the configuration of the whole solution space, the resultant Pareto-optimal 

solutions are stored outside the loop of the evolutionary operations.  The whole Pareto-optimal 

solutions obtained in the first generation are saved in this storage.  From the second generation, the 

newly created Pareto-optimal solutions in the loop are compared to the stored Pareto-optimal 

solutions, and the new set of Pareto-optimal solutions is saved in the storage.  This strategy allows 

the Pareto-optimal solutions created in the past to be kept as solutions and yield a good chance to 

increase the number of solutions, thus making the solution space easier to see.  The storage of the 

solution independent of the current population also may contribute to the good distribution of the 

resultant solutions.   

 

4.5 Comparison with other methods 

The proposed method has been characterised by the multi-objective formulation, continuous 

evolutionary search formulation and the historical storage for the robust and efficient search of 

well-distributed Pareto-optimal solutions.  Some conclusions in the superiority of the proposed 

method can be easily deduced from the past research, but numerical investigations are necessary for 

the others.   

In the search algorithms, two major EAs, genetic algorithms (GAs) [22] and evolution strategies 

(ESs) [23], originally uses binary search with proportional/ranking selection and continuous search 
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with ranking selection, respectively.  In the previous reports [24-26], those with the binary points 

and the ranking selection search more robustly than those with continuous points and the 

proportional selection at the expense of fast convergence, and vice versa.  CEAs proposed by the 

authors [11], incorporating continuous representation of points and proportional selection, therefore 

demonstrated its convergence approximately ten times faster than that of GAs and ESs [12].  

MCEAs, taking over them from CEAs should also be faster than the multi-objective versions of 

GAs and EAs without loss of generality, and this shall not be further mentioned in the following 

numerical examples.   

The evaluation of fitness for multi-objective optimisation is a completely new approach 

proposed in the paper.  The ability of the approach to find appropriate Pareto-optimal solutions 

thus needs to be demonstrated and will be presented in the next section.  The effectiveness of 

historical storage in the increase of the number of solutions is very likely but not certain so will also 

be investigated to make sure that the proposed method is better than other multi-objective 

optimisation methods in performance.   

5 APPROPRIATENESS OF PROPOSED TECHNIQUE 

5.1 Parameter identification with a simple numerical problem 

In order to confirm its appropriateness for finding Pareto-optimal solutions and the increase of 

solutions over generations visually, MCEA was first used to identify parameters by minimising 

simple objective functions where the exact set of solutions is known.  Let the function be given by  
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ixf
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(28) 

∑
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n
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ii zxf

1

22
2 )()( zxx ,  

(29) 

where =2, =[0.2,0.4] , and the set of parameter x  is subject to bound 

 with =[-5,-5] and =[5,5].  The exact Pareto-optimal solution for this 

problem can be determined analytically and is given by 

n

x ≤

Tz 2R∈ 2R∈

maxmin xx ≤ T
minx T

maxx

{ }]1,0[,| ∈== rrX zxx ,  (30) 

and we can thus investigate the performance of MCEA with the exact solution.  Values of major 

parameters for MCEA used to solve the problem are listed in Table 1.   

Figure 12 shows the computed Pareto-optimal set in  space at 5021 ff − th, 500th and 2500th 

generations respectively together with the exact solution.  The figure first implies that the good 

approximate solutions have been already obtained after 50 generations.  It is then easily seen that 

computed solutions at larger generations are closer to the exact line, and this indicates that the 

proposed method converges appropriately to the exact solution.  In addition, the number of 

computed solutions increases with respect to the number of generations as shown in Fig. 13, and the 

increase of solutions contributes to the understanding of the shape of the solution space more 

precisely.  Figure 14 shows the resultant Pareto-optimal solutions at 50, 500 and 2500th generations 

in .  One can easily see that the solutions are settling down to the exact solution with the 

increase of the number of generations also in parameter space.   

21 xx −

 

5.2 Parameter identification with a complex numerical problem 

With the understanding of the appropriate and efficient performance of MCEA for identification 

19 



with simple objective functions, the identification with more complex objective functions consisting 

of a number of parameters, which is a more realistic parameter identification problem, has been 

investigated.  In this example, the number of parameters to be identified is five ( n =5) where the 

parameter space has a bound with =[-5,-5,-5,-5,-5] and =[5,5,5,5,5], and the first objective 

function has an additional term to equation (28):   

T
minx T

maxx

∑
=

−+=
5

1

2
1 )cos(1050)(

i
ixf ωxx .   

(31) 

The cosine term clearly makes the function multimodal with a number of local minima and the 

function was used as a good example for a multimodal continuous function [27].  The second 

objective function is equation (29) with =[0.3,0.4,0.5,0.6,0.7], and MCEA parameters listed in 

Table 1 was again used to solve the problem.   

Tz

Figure 15 shows the resultant Pareto-optimal solutions in function space at 50th, 500th and 

2500th generations.  It is again seen that the distribution of the Pareto-optimal solutions is 

becoming smoother and better as the number of generations increases, indicating that MCEA is 

searching appropriately.  The coarse distribution of solutions with small  is yielded by its 

complexity.  The number of solutions also increased over generations; 18 at 50

1f

th generation, 37 at 

500th generation and 53 at 2500th generation.  The Pareto-optimal solutions at 50th, 500th and 2500th 

generations in parameter spaces  and  are shown in Figs. 16(a) and (b).  In 

parameter space , three groups of solution are seen at 50

41 xx − 42 xx −

41 xx − th generation.  After the number of 

groups is reduced to two at 500th generation, a new solution is found near [1,1] at 2500th generation.  

Meanwhile, three groups of solution are seen at 50th generation in parameter space  where 

one group consists of only one solution, and they result in two of them at 2500

42 xx −

th generation.  The 
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existence of some groups is due to the multimodality of objective function , and finding them 

demonstrates that MCEA is robust.   

1f

6 APPLICATION TO PARAMETER IDENTIFICATION OF 

AUTONOMOUS VEHICLE 

With the understanding that MCEA can be used promisingly and efficiently for multi-objective 

optimisation problem with numerical examples in the last section, the proposed technique was 

applied for identifying a parameter set of the autonomous vehicle developed by the authors.  The 

vehicle tracked the path in a flat parking area for 100 seconds as shown in Fig. 17(a) as GPS sensor 

data, and the gyroscope sensor, steering encoder and velocity encoder readings are shown in Fig. 

17(b)-(d).  Note that  and  coordinate data are collected independently with respect to time 

in GPS sensor data.  The information from these sensors was sub-sampled at 4 Hz to obtain a 

synchronous sequence of data for the use in the optimisation algorithm.  Table 2 lists the 

parameters used for simulation and optimisation to execute identification, and the search space of 

parameters to be identified is listed in Table 3.  The search space was chosen to include the original 

calibration data of each parameter at the centre of the space, and the range was determined based on 

its reliability.   

x y

Figure 18 shows the Pareto-optimal solutions in function space after 100 generations.  It is first 

easily found that the orientation is much smaller than the position in objective function value but 

that the solutions are well distributed showing a smooth convex-shaped curve in such a different 

scale.  Next, Pareto-optimal solutions in parameter space are depicted in Fig. 19.  Although the 
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parameter scales are also different from each other, the solutions in each graph show a characteristic 

distribution, from upper-left to lower-right for Fig. 19(a)-(c) and from lower-left to upper-right for 

Fig. 19(d).  A final solution can be determined after checking solution spaces.   

Due to the constant distribution of solutions along a smooth convex curve in function space, a 

characteristic point cannot be chosen easily with this result, so that the final solution may be found 

in the parameter space in sanction with the proposed procedure.  Because of the high 

dimensionality of the parameter space, we chose the final solution by the centre-of-gravity method, 

and the solution is listed in Table 4.  The solutions each having the minimum position and 

orientation errors are also shown in the table for comparison.  Since rather monotonic distributions 

of solutions in parameter space are obtained for this example, the solution chosen by the 

centre-of-gravity method is well within the solution space.   

The simulation result using the parameter set chosen, used to calculate the objective function 

values, is shown in Fig. 20 with the GPS data denoted as ‘experiment’.  The simulated path shows 

some accumulated errors, but it is well along the GPS data, indicating clearly indicates that an 

appropriate parameter set is identified.  The errors may be caused by the slip of the vehicle and 

other inaccuracies of the model rather than its parameters themselves.  Since there is no way to 

investigate the errors with the current vehicle set-up, we shall not further discuss in this paper.   

To investigate the appropriateness of this solution to the other Pareto-optimal solutions, the 

above three sets of solutions were used for simulation without correcting the path at every partition.  

In order to see how robust the solution is, the simulation was conducted not only for the first 100 

seconds during which GPS data were used to find the solution but also for the next 100 seconds.  

The simulation results with the three solutions are depicted in Figs. 21-23 respectively.  The 

solution with the minimum position error and the solution chosen correlate well with GPS data in 
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comparison to the solution with the minimum orientation error.  The orientation accuracy must also 

be investigated to find the most appropriate solution, and in order to see the results in more detail, 

the error values are also listed in Table 5.  It is first seen that the worst solutions in position error 

and orientation error in both the first and second 100 seconds are the solutions with the minimum 

orientation error and with the minimum position error, respectively.  Particularly, the orientation 

error by the minimum position error solution and the position error by the minimum orientation 

error solution, both in the second 100 seconds, are significantly large compared to the others.  This 

is certainly caused by the fact that the other objective function is ignored; to get the minimum 

position error solution, for example, the objective function describing the orientation errors is taken 

into account.  Meanwhile, the solution chosen is not worst in any criterion, and it is even better 

than the solution with the minimum position error in the position error of the second 100 seconds.  

This characteristic remained even with different numerical examples.  As the accurate orientation 

of the vehicle at each iteration can contribute to its accurate positioning, this may have increased the 

accuracy of the solution chosen in position.   

7 CONCLUSIONS 

A parameter identification technique for autonomous vehicles and, further, a multi-objective 

optimisation method of MCEA, which can search solutions efficiently and promisingly for this class 

of problems, have been proposed.  The use of multi-objective method allows the whole solution set 

of the problem rather than a single solution to be derived by one optimisation.  The user can 

therefore select a single solution later by investigating the whole solution set in function and 
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parameter spaces.   

The Pareto-optimality of solutions derived by MCEA was confirmed with the minimisation of 

explicit objective functions.  In these examples, the searching capability of MCEA and the 

superiority of the proposed multi-objective technique to the conventional weighted scalar 

optimisation have been demonstrated.  The proposed technique was then applied to parameter 

identification of an autonomous vehicle, and a solution was chosen from the Pareto-optimal 

solutions derived by MCEA.  The solution was compared to the other Pareto-optimal solutions, and 

its appropriateness in accuracy has been demonstrated.  Conclusively, the overall effectiveness of 

the proposed technique for parameter identification of an autonomous vehicle has been confirmed, 

and an appropriate parameter set has been identified for the autonomous vehicle developed by the 

authors.   

For further studies, the parameter set will be applied to estimate the location of the autonomous 

vehicle.  In the parameter identification technique, developing various criteria that investigate the 

appropriateness of a solution is important, as the solution of inverse problems is naturally unknown.  

This is another big step, and the author is currently working on it as the advantage of the 

multi-objective approach has been confirmed in this paper [28,29].   
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Table 1  Optimisation parameters for MCEA 

Parameter Value 

No. of generations 2500 

Population 10 

Mutation rate 0.02 

 

 

Table 2  Parameters for autonomous vehicle parameter identification 

Parameter Value 

No. of generations 100 

Population 50 

Mutation rate 0.10 

Time step 0.05 

No. of partitions 20 

 

 

Table 3  Search space of parameters to be identified 

Parameter l  b  3c  1c  2c  0φ  r  θ  

Minimum 3.10 0.85 4.90×10-4 4.50×10-4 -0.925 1.96 3.65 0.160 
Maximum 3.20 1.05 5.00×10-4 4.60×10-4 -0.900 1.98 3.67 0.190 
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Table 4  Solutions identified 

Parameter l  b  3c  1c  2c  0φ  r  θ  

Chosen 3.152 0.9441 4.955×10-4 4.536×10-4 -0.9149 1.967 3.675 0.1801 
Minimum 
orientation 

errors 
3.160 0.8831 4.946×10-4 4.549×10-4 -0.9154 1.963 3.650 0.1770 

Minimum 
position 
errors 

3.145 0.9641 4.963×10-4 4.513×10-4 0.9203 1.973 3.695 0.1807 

 

 

Table 5  Position and orientation errors 

Position error Orientation error Solution 

1st 100 sec 2nd 100 sec 1st 100 sec 2nd 100 sec 

Chosen 710.66 23,361 1.5656 316.515 
Minimum 

position error 
706.165 37,992 2.5941 2,673.7 

Minimum 
orientation error 

719.83 253,920 1.26297 8.5044 
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Fig. 1  Vehicle and sensors used 
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Fig. 2  State and control of the vehicle 
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Fig. 3  Location and notation of sensors mounted on the vehicle 
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Fig. 4  Flowchart of simulation 
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Fig. 5  Navigation system of an autonomous vehicle 
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Fig. 8  Deriving a solution in weighted scalar optimisation 
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Fig. 12  Pareto-optimal solutions of Example I in function space 
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Fig. 13  Pareto-optimal solutions with respect to generations in Example I 
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Fig. 14  Pareto-optimal solutions of Example I in parameter space 
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Fig. 15  Pareto-optimal solutions of Example II in function space 
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Fig. 16  Pareto-optimal solutions of Example II in parameter space 
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(a) GPS sensor data (b) Gyro sensor data 
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(c) Steering encoder reading (d) Velocity encoder reading 

 

Fig. 17  Measurements of autonomous vehicle  
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Fig. 18  Pareto-optimal solutions of identification in function space 
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Fig. 19  Pareto-optimal solutions of identification in parameter space 
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Fig. 20  Simulation results with parameters chosen 
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(a) 1st 100 seconds 
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 (b) 2nd 100 seconds 

Fig. 21  Non-partitioned simulation results with parameters chosen 
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(a) 1st 100 seconds 
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(b) 2nd 100 seconds 

Fig. 22  Non-partitioned simulation results with minimum position error parameters 
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(a) 1st 100 seconds 
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(b) 2nd 100 seconds 

Fig. 23  Non-partitioned simulation results with minimum orientation error parameters 
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