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Abstract 
We describe an Ant Colony Optimization (ACO) algorithm for solving a single machine 
scheduling problem.  In the operating situation modeled, setup times are sequence dependent and 
the objective is to minimize total tardiness.  This problem has previously been treated by Rubin & 
Ragatz [1995] and by Tan et al. [2000] among others. A new feature using look-ahead information 
in the transition rule of the ACO algorithm shows an improvement in performance.  A comparison 
with other solution approaches indicates that the ACO that we describe is competitive and has a 
certain advantage for larger problems.  

Keywords : scheduling, metaheuristic, ant colony optimization, single machine, total tardiness, 
sequence dependent setups. 

 

1. Introduction 
Industrial production scheduling constitutes a fertile field for both researchers and practitioners 
of operational research.  The interest in this field is generated not only by the problem-solving 
challenge that it offers but also by the practical results that can be achieved.  However, 
researchers such as Maccarthy & Liu [1993] and McKay & Wiers [1999] have remarked on the 
sometimes wide gap between the theoretical problems treated and those met in practice. 

The development of efficient solution procedures for the scheduling of orders in a casting center 
belonging to a Canadian multinational firm is the principal aim of the research reported in this 
paper.  The authors have previously reported [Gravel et al., 2000] [Gravel et al., 2001] details of 
successful work in this metaheuristics area. The aim of this paper is to report on the performance 
of some extensions to the "ant colony optimization" (ACO) algorithm [Dorigo, 1992] which has 
already demonstrated its usefulness in this industrial situation and is presently incorporated in 
software used by the firm. 

In the industrial application, the holding furnaces may require certain draining and cleaning 
operations of varying durations between the casting of two successive orders for different metal 
alloys.  These operations may be seen as the setup operations dealt with in the literature.  We 
seek a schedule for current released orders that takes into account these sequence dependent 
setup times as well as multiple objectives.  We validate the performance of the new elements that 
we have introduced by solving a known problem from the literature, the single machine problem 
with sequence dependent setups.  This allows us to compare our results with those previously 
published [Tan et al., 2000] for various metaheuristics.   

Single machine scheduling is a classic problem that has been well covered in the literature 
[Koulamas, 1997].  This problem offers a lower level of complexity than that of other 
configurations often treated in scheduling publications, such as parallel and serial machines, or 
cellular shops.  It is, however, possible to achieve interesting practical results through the study 
of single machine shops.  For example, some shops may have a bottleneck machine that strongly 
influences performance and which therefore allows the shop to be studied as a single machine 
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[Graves, 1981] [Hax & Candea, 1984].  We have already referred to our own workon an 
application treating complex operations having sequence dependent setup times as a single 
machine shop. 

Various objective functions may be useful in the scheduling of a single machine shop.  Among 
these, we find the minimization of total tardiness, an objective that seeks to improve customer 
service.  Meeting target delivery dates has been declared as the most important scheduling 
objective by Wisner & Siferd [1995] who also found that 58% of production planners actively 
seek to meet delivery dates.  Even in the case of a single machine, minimizing tardiness is a 
difficult objective to attain since there are no simple sequencing rules that apply, save in two 
cases described by Emmons [1969], and in these two cases, the setups are sequence independent.   

In general, the problem of scheduling a single machine with sequence dependent setup times has 
generally been presented with the objective of minimizing the total production time (makespan) 
for the set of released orders [Baker, 1992] [Morton & Pentico, 1993].  In this case, the problem 
may be represented as a traveling salesman problem.  Where the objective is to meet delivery 
dates where setup times are sequence dependent, the literature is not extensive.  One of the 
conclusions of Allahverdi et al. [1999] is that there is a need for further research in this area, and 
in scheduling in general. 

Formally, the problem of scheduling a single machine having sequence dependent setup times 
where the objective is the minimization of total tardiness can be defined as follows [Rubin & 
Ragatz, 1995]: let there be n jobs to produce, all released at time zero, and which must be 
completed without interruption on a single machine.  Each job j has as attributes its production 
duration pj, its delivery date dj, and its setup time sij, which is incurred when job j is undertaken 
following job i in an job sequence Q.   We define Q = {Q(0), Q(1), �, Q(n)} as the job sequence 
where Q(j) is the subscript of the jth job in the sequence and where Q(0) = 0.  The machine is 
continuously available through the planning period and can process only one job at a time.  Once 
a job is started it must be completed without interruption.   The end time of job j is expressed as: 

[ ]∑
=

− +=
j

k
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The tardiness for this same job j is expressed as: 
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The objective to be minimized is the total tardiness T for the set of jobs to be produced and is 
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Previous authors such as Ragatz [1993], Rubin & Ragatz [1995] and Tan & Narasimhan [1997] 
proposed a branch and bound algorithm for this problem as well as a genetic algorithm, a local 
improvement method and a simulated annealing algorithm.   

In this paper we present an ant colony optimization heuristic which has certain advantages for 
this case.   In particular, it allows us to use various elements of information about the problem to 
better direct the search for good solutions. Moreover, the basic algorithm has already 
demonstrated its capacity to perform well in comparison to other metaheuristics in an industrial 
setting [Gravel et al., 2001].  Our objective was to improve on this performance on the one hand 
by including extensions suggested in the literature, and on the other through the use of new 
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elements that use broader information in the transition rule.  The validation of the effectiveness 
of this metaheuristic in solving the single machine scheduling problem described will be 
presented in terms of the solution quality and the computation times.  We compare our results to 
those reported in a recent study by [Tan et al., 2000]. 

A brief review of the single machine scheduling literature is offered in the following section.  

 

2. Literature survey  
The single machine scheduling problem with constant or zero setup times has been well covered 
in the literature.  Koulamas [1994] presents a review of the total tardiness minimization problem 
and points out that many solution approaches are available for the single machine problem.   He 
proposes a classification of the proposed methods as optimal or heuristic. The first class includes 
dynamic programming, branch and bound and hybrids including both.  The author points out that 
dynamic programming algorithms are superior and that the most efficient method was proposed 
by Potts & Van Wassenhove [1982].  The class of heuristic methods can be further broken down 
to sub-classes including constructive algorithms, local search methods and decomposition 
methods.  Results indicate that local search and decomposition approaches are generally more 
effective than construction heuristics. 

Two major theoretical developments must be pointed out concerning the single machine 
scheduling tardiness-minimization problem. Emmons [1969] developed the dominance condition 
and several authors [Lawler, 1977] [Potts & Van Wassenhove, 1982] wrote on subject of the 
decomposition principle.  These contributions allowed the development of optimal solution 
procedures but they also inspired the construction of various heuristics [Della Croce et al., 1998].    

Adding the characteristic of sequence dependent setup times, however, increases the complexity 
of the problem of minimizing total tardiness on a single machine.  This characteristic invalidates 
the dominance principle as well as the decomposition principle [Rubin & Ragatz, 1995].  Du & 
Leung [1990] seem to have been the first to show that this problem is NP-hard. 

The importance of explicitly treating sequence dependent setups in production scheduling has 
been pointed out a number of times in the literature.  In particular Wilbrecht & Prescott [1969] 
state that this is particularly where production equipment is being used close to its capacity 
levels.   Wortman [1992] states that the efficient management of production capacity requires the 
consideration of setup times.  The papers of Panwalkar et al. [1973], Flynn [1987] and Krajewski 
et al. [1987]  also refer to this question. 

From a practical point of view, many industrial situations require the explicit consideration of 
setups and the development of appropriate scheduling tools.  Previous authors have described 
cases highlighting this situation.  Pinedo [1995] describes the situation of a manufacturing plant 
making paper bags where setups are required when the type of bag changes.   The duration of a 
setup depends on the similarity of the bags made in the preceding lot. A similar situation was 
observed in the plastics industry by Das et al. [1995] and Franca et al. [1996]. The printing 
industry also has setups that are sequence dependent because various cleaning operations are 
required when the print colors are changed  [Conway et al., 1967]. The aluminum industry has 
casting operations where setups, mainly affecting the holding furnaces, are required between the 
casting of different alloys [Gravel et al, 2000]. The textile, pharmaceutical, chemical and 
metallurgical industries present other practical examples where sequence dependent setups are 
frequently observed. 
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Despite the copious literature in scheduling, it was only in 1999 that two reviews of problems 
with sequence dependent setups were published [Allahverdi et al., 1999] [Yang & Liao, 1999].   
These authors have proposed different classifications of the field but arrive at similar 
conclusions.  Allahverdi et al. [1999] point out gaps in existing research, including in the 
underlying theoretical underpinnings and in the treatment of multiple objectives. The general 
conclusion of this review is that scheduling where sequence dependent setups are required is a 
fertile area for further research.  Yang & Liao [1999] observe that there are few comparisons of 
the solution methods developed for this problem.  They make the same observation concerning 
the applications of the various methods available in practical situations.  
The literature shows [Allahverdi et al., 1999] that while many industrial applications have 
sequence dependent setups, few papers have treated this characteristic in combination with the 
objective of meeting delivery dates. Few authors have treated the problem described in the 
previous section.  Among these Ragatz [1993] proposed a branch and bound algorithm for the 
exact solution of smaller problems.  A genetic algorithm and a local improvement method were 
proposed by Rubin & Ragatz [1995] while Tan & Narasimhan [1997] tackle this same problem 
through simulated annealing.  Finally Tan et al. [2000] present a comparison of these four 
approaches and conclude, following a statistical analysis, that the local improvement method 
offers better performance than simulated annealing, which is turn better than branch and bound.  
In this comparison, the genetic algorithm had the worst performance. 

The authors propose an ant colony optimization (ACO) algorithm for the solution of the single 
machine scheduling problem with sequence dependent setups. This industrial scheduling 
problem from the aluminum industry consists in the scheduling of a set of released jobs on a 
casting rig and has been formulated as a single machine with sequence dependent setups and 
multiple objectives. We found the basic ACO to be effective in terms of solution quality and that 
it had relatively low computation times [Gravel et al., 2001]. In this paper, we report on the 
addition of extensions to the basic algorithm and on numerical experiments that compare our 
results to those found using other metaheuristics. 

 

3. Ant colony optimization (ACO) 
3.1 The basic algorithm 
This metaheuristic was first introduced in the doctoral thesis of Marco Dorigo [1992] and was 
inspired by the behaviour of real ants [Deneubourg et al., 1983] [Deneubourg & Goss, 1989] 
[Goss et al., 1990].  Ants communicate through pheromone, a deposit that they leave on the 
ground in varying intensities as they move about.  As more ants use the same path, the more 
pheromone is deposited.   Ants tend to follow these pheromone trails and in this manner, they 
communicate with each other as to the location of food sources.  When an obstacle is placed on 
an existing path so as to block it, some ants will go about it by the right side, others by the left 
side.  Those having chosen the shortest path will rejoin the previous pheromone trail more 
quickly. This results in a more rapid buildup of pheromone on the shorter path, and still more 
ants will be attracted to it.  In this way the favored path from a nest to a food source tends to the 
shortest distance no matter what the first path found may have been.  

One of the first applications of the ACO was to the solution of the traveling salesman problem 
(TSP).  A matrix D of the distances dij between pairs (i,j) of cities is known, and the objective is 
to find the shortest tour of all cities.  In the application of the ACO to this problem, each ant is 
seen as an agent with certain characteristics [Dorigo et al., 1991].  First, an ant at city i will 
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choose the next city j to visit taking into account both the distance to each of the available 
choices and of the existing "pheromone" trail.  When the ant then moves from city i to city j, it 
leaves a trail of "pheromone" on edge (i,j). Finally the ant k has a memory that prevents returning 
to those cities already visited.  This memory is referred to as a tabu list, tabuk, and is an ordered 
list of the cities already visited by ant k.  This concept, one should note, is somewhat different 
from that of the same name proposed by Glover [1989; 1990a,b]. 

We now describe details of the choice process.  At time t the ant chooses the next city to visit 
considering a first factor called the trail intensity τij(t).  The intensity contains information as to 
the volume of traffic that previously used edge (i,j).  The greater the level of the trail, the greater 
the probability that it will again be chosen by another ant.  At the initial iteration, the trail 
intensity τij(0) is initialized to a small positive quantity τ0.  The choice of the next city to visit 
depends also on a second factor called the visibility, ηij, which is the quantity 1/dij.  This 
visibility acts as a greedy rule that favors the closest cities in the choice process.   In making the 
choice of the next city to visit, the transition rule ( )tpk

ij , allows a trade-off between the trail 
intensity (edges having had previous heavy traffic) and the visibility (the closest cities).  The 
probability that an ant k will starting from city i will go to city j is given by equation (1) of 
Figure 1.  Coefficients α and β  are parameters that allow control of the trade-off between the 
intensity and the visibility.   

If the total number of ants is m and the number of cities to visit is n, a cycle is completed when 
each ant has completed a tour.  In the basic version of the ACO, the trail intensity is updated at 
the end of a cycle so as to take into account the evaluation of the tours that have been found in 
this cycle.  The evaluation of the tour of ant k is called Lk, and will influence the trail quantity 

k
ijτ∆  that is added to the existing trail on the edges (i,j) of the chosen tour. This quantity is 

proportional to the length of the tour obtained and is calculated as Q/Lk, where Q is a system 
parameter.  The updating of the trail also takes into account a persistence factor ρ (or 
evaporation factor  [1-ρ]).  This factor serves to diminish the intensity of the existing trail over 
time.  Therefore the addition to the trail on those edges used by various ants in the current cycle 
and the evaporation of part of the previous trail determine the trail intensity for the next cycle as 
shown in the following expression: 

 
k

k
ij

k
ijij L

Qtτ         where  (t)    )1(
m

1k
ij =∆∆+⋅=+ ∑

=
τττρ                                            (2) 

3.2 Extensions to the basic algorithm  
Various extensions to the basic algorithm just presented have been proposed, notably by Dorigo 
& Gambardella [1997]. The improvements concern the transition rule, the trail updating rules, 
the use of local improvement rules and the use of a restricted candidate list.  These extensions 
have been included in the algorithm proposed in this article. 

Transition rule 
Gambardella & Dorigo [1997] have suggested a modification to the original transition rule 
described by equation (1).  They suggest that the ant at city i should choose the next city j to visit 
according to the modified rule presented in equation (3) of Figure 1. In this equation, q is a 
random number and q0 is a parameter; both are between 0 and 1.  J represents the value obtained 
by the original transition rule of equation (1).  Parameter q0 determines the relative importance of 
the exploitation of existing information of the network and the exploration of new solutions.   If 
exploitation is chosen, the next city is determined by the highest value in equation (3) and in the 
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case of exploration, the next city is chosen at random using the probabilities computed in (1).  
The transition rule incorporated in equations (1) and (3) is called the "pseudo-random-
proportional rule". 

Global trail update 
In the basic algorithm, the trail is updated at the end of a cycle when all ants have completed a 
tour.  The quantity of pheromone to be added to an edge is therefore proportional to the quality 
of the tour obtained by each ant as shown in equation (2).  In the modified scheme, the 
pheromone trail is updated at the end of a cycle, but only on the edges of the best solution found 
in the cycle  (cycle*).  Equation (4) of Figure 1 is used for the global trail update rather than 
equation (2).  In this equation (4), ρg (0<ρg<1) plays the same role as ρ in the basic algorithm.  
This change allows both for the evaporation of the trail deposited at the end of previous cycles 
and the additions to be made at the current cycle.  The original authors suggest that the 
combination of this global trail update along with the new transition rule will improve 
convergence of the ACO. 

Local updating of the trail 
The global update of the trail rewards the best solution found in the cycle and encourages ants to 
follow this tour in later cycles.  To avoid having too many ants making the same choices and 
thus inviting premature convergence, a local trail update is introduced.  This updating effects a 
temporary reduction in the quantity of pheromone on a given edge so as to discourage the next 
ant from choosing the same edge during the same cycle.  When an ant selects an edge during a 
cycle, a local update is made to the trail on that edge according to equation (5) of Figure 1. In 
this equation, ρl (0< ρl <1) again plays the role of a parameter that determines the amount of the 
reduction of the pheromone level.   In this case ∆τij is equal to τ0 which is the initial trail, a small 
positive quantity.  In this way, the pheromone reduction is small but enough to lower the 
attractiveness of edge (i,j) each time it is used in the cycle.   If a good solution including (i,j) is 
found in the cycle, the global trail update will again increase the pheromone level on (i,j).  The 
exploration of new solutions during a tour is thus encouraged. 

Local improvement rules 
Dorigo & Gambardella [1997] included a local improvement rule in their ACO for the solution 
of the TSP.  The idea is to apply local improvement rules to various solutions to find a local 
optimum for each of them.  The authors suggest use of successive edge-exchange methods and in 
particular the restricted 3-opt method [Johnson & McGeoch, 1997] [Kanellakis & Papadimitriou, 
1980].  This method removes three edges from a tour and reconnects them in the unique way that 
does not reverse the direction of the entire tour.  For example if edges (a,b), (e,f) and (i,j) are 
removed, the tour will be reconnected as (a,f), (e,j) and (i,b), thus preserving the direction of the 
remaining edges. This is particularly useful where asymmetrical TSP's (where dij ≠ dji) are being 
solved.   

Candidate lists 
The use of candidate lists is a common practice in large scale problems [Lawler et al., 1985] 
[Reinelt, 1994].  This approach limits the list of cities that will be considered in the choice of the 
next city to visit.  In the case of the TSP, the candidate list commonly contains the cl closest 
cities to the current city i among those that have not already been visited.  Note that cl is treated 
as a parameter.   
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Figure 1 describes the steps of the basic ACO-TSP as presented by Dorigo & Gambardella 
[1997].  Other works [Colorni et al., 1991] [Dorigo et al., 1991] [Dorigo et al., 1996] [Dorigo & 
Di Caro, 1999]  provides details concerning the operation of the algorithm and choices of the 
parameter values. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: The Ant Colony Optimization (ACO) algorithm for the TSP 

 

The next section presents the ACO that the authors have designed for the solution of the 
scheduling problem with sequence dependent setup times. 

Step 1: [Initialization]
t := 0; NC := 0; 
For each edge (i,j), initialize trail intensity to τ ij(0) := τ0

Step 2: [Starting node]
For each ant k : 

Place ant k on a randomly chosen city and store this information in Tabuk

Step 3: [Build a tour for each ant]
For i from 1 to n:

For k from 1 to m:
Choose the next city j, j ∉ Tabuk, among the cl candidate cities according to:

where J is chosen according to the probability: 

Store the chosen city in Tabuk

Local update of trail for chosen edge (i,j) :

Step 4: [Global update of trail]
Compute length of tour, Lk,for each ant  k
Apply local improvement method for the tours of all ants k and recompute Lk

For each edge (i,j) ∈ Cycle*, update the trail according to: 

t := t + 1 ; NC := NC + 1

Step 5: [Termination conditions]
Memorize the shortest tour found to this point
IF (NC < NCMAX) and (Not stagnation behavior)
THEN empty all Tabuk and go to step #2
ELSE Stop
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4. An algorithm for solving the scheduling problem 
Despite the usefulness of the TSP in modeling the single machine scheduling problem, there are 
important differences between the two situations that require modifications to the algorithm 
presented in section 3.  For the TSP, the problem is to establish a minimal-length tour of the 
"cities".  For the scheduling problem,  we seek to determine the production sequence of a set of 
orders to minimize the total processing time.  The "distances" are the setup times between orders, 
but the objective, the minimization of total tardiness, is of a different nature.   The coding of a 
solution that is used by the ant colony algorithm for the TSP must be adapted to allow efficient 
solution of the scheduling problem.  We will now describe the transpositions and adaptations that 
we have devised, the values attributed to various parameters and of a new element we have 
introduced into the metaheuristic. 

4.1 Components of the algorithm for the scheduling problem 
Initial order 
The last order produced during the previous planning period is taken to be the initial order. It 
determines the nature of the setup required before the first order of the current planning period 
may be produced.  This setup is taken into account when the fitness, Lk, of an order sequence k is 
determined.  The fitness is the total tardiness of the order set with respect to the due-dates of 
each of the orders. 

Distance matrices 
For a TSP, a matrix stores the distances between each pair of "cities" and the objective is to 
minimize the length of a tour.  For the scheduling problem, two "distance" matrices are used to 
represent the two elements that influence the total tardiness: the setup times and the slack times. 

The setup time matrix is of dimension (n+1 x n) where n is the total number of orders that must 
be produced.  This matrix may be directly compared to the distance matrix in the TSP. The last 
order of the previous planning period is represented by an additional row.  The elements of this 
matrix are the relative setup times, ijs : 

     ijs  = sij / Max sij                                (6) 

In order to favour respect of due dates and the minimization of total tardiness, we use a second 
"distance" matrix representing the relative slack if order j is produced following order i.   The 
slack of an order is defined as: 

mij = dj - pj - sij, 

and the second matrix is composed of elements , ijm , calculated as follows: 





 >

=
otherwise.                      0

0  if        Max  / ijij mmm
m

ij
ij                                (7) 

Note that we use the "absolute" slack of order j and not the conditional slack which would 
require knowing the end time of the preceding order, which is not available at the time of the 
formation of the matrix.  This does not affect the choice of the next order to place in the 
sequence because it merely adds a constant quantity to each of the local decision options. 
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We use the relative values for the two matrices of setup times and slack times to facilitate the 
trade-offs that the algorithm will seek to make between these two elements.  The parameters β 
and δ allow control over the behaviour of the algorithm and the weight that is given to one or the 
other of these elements in the makeup of the distance measure used in the algorithm.  During the 
selection of the next order j that is to be produced, a compromise is made between the trail 
intensity and the distance measure for the order.  Equations (1) and (3) of Figure 1 which 
describes the transition rule are modified and now take the following forms for the scheduling 
problem: 
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Local improvement methods 
We have included two local improvement methods in the ACO algorithm.  The first of these two 
methods is the restricted 3-opt method described by Dorigo & Gambardella [1997].  This method 
has the important characteristic of not inverting the complete order sequence, which is important 
where setup times are sequence dependent.  The second method, called RSPI (Random Search 
Pairwise Interchange), proceeds to invert each pair of adjacent orders in turn.  This method was 
used by Rubin & Ragatz [1995] either alone or in conjunction with a metaheuristic to solve the 
single machine, sequence dependent setup times, minimization of total tardiness problem.  The 
results, presented in Tan et al. [2000]  for this problem, indicate that the RSPI offers results that 
are better than those obtained by simulated annealing, branch and bound and the genetic 
algorithm if sufficient computation time is allowed. 

One of these local improvement methods is applied to the path found by each ant.  The choice of 
method is made by a random (fair coin toss) choice.  The restricted 3-opt method, in which one 
cycles only once through the list of adjacent pairs, is applied in order to reduce the computation 
times, which is particularly important if the problem size is large.  

Candidate list 
The use of a candidate list limits the number of choices for the next order to place in the 
sequence.   In the TSP, the candidates chosen are the closest "cities" to the current one.  In the 
scheduling problem treated here, the candidate list is made up of those orders having the smallest 
slack times.  The calculation of the slack for order j, where j∉ Tabu, following order i, is done 
according to the definition of mij in equation (7).  The list of orders { j}  is then sorted in 
increasing order of slack and the first cl of these become the candidate list for order i. 
Parameter values 
In most cases, the values of the parameters in the ACO algorithm follows the suggestions given 
by Dorigo & Gambardella [1997] and in the remaining cases, the values have been determined 
through direct numerical experimentation.  The trail is initialized to the value, τ0  =  (n⋅Lnn)-1 
where n is the size of the problem and Lnn is the result of a solution obtained either randomly or 
through some simple heuristic.  The remaining parameters have been assigned the following 

(1') 

(3') 
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values:  ρg = ρl, = 0.9, m = 10, q0 = 0.9 and cl = 0.3⋅n with a lower bound equal to 10.  Further the 
maximum number of cycles without improvement of the best known solution is fixed at 50.  
Note that the values of α, β and δ have been adjusted empirically according to the problem 
characteristics (processing time variance, tardiness factor, due dates range) and take values 
between 1 and 4.  For example, where the due-dates are such that tardiness factor is high, more 
weight is given to the slack matrix.   

4.2 Including look-ahead information 
While we have included the supplementary improvements suggested by Dorigo & Gambardella 
[1997], we also propose a new element in the transition rule.  Usually, the selection of the next 
order to place in the sequence is the result of a compromise between the trail, information on past 
choices,  and the visibility, information derived from the problem parameters.  In addition, we 
propose the addition of look-ahead information about the potential of the current partial solution.  
The idea that we propose differs in a number of respects from that proposed by Michel & 
Midderdorf [1999] for a different problem.  These authors proposed a look-ahead function which 
works by evaluating the trail intensity resulting from a choice.   

The look-ahead information that we propose estimates the potential quality of a partial solution 
by taking the actual value generated by the current partial solution and adding the consequences 
of one of the candidate choices as well as a lower bound on the remaining uncompleted portion.   
The computation of the lower bound for the uncompleted portion follows the method used in the 
branch and bound computations of Ragatz [1993], and later in Tan et al. [2000]. 

The lower bound on the total tardiness of the partial solution Qh , including the order j presumed 
to be the candidate chosen following order i, is calculated according to the following: 

  '    Q hQ h TTBij +=                                                                           (8) 

Equations (1') and (3') related to the transition rule are again modified by the addition of a new 
term, ijB , which represents the look-ahead information.  As for the two measures of distance, 
relative values are used to obtain a comparable scale of values and the parameter φ controls the 
weight of this information.  The lower bound for a partial solution including the candidate order j 
is therefore divided by the largest bound among the list { j}  of candidates.  The following 
definitions are obtained: 
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and where 
ij

ij
ij Max B

BB =                                                                                    (9) 

The performance of this new element in the ACO algorithm has been studied and is presented in 
section 6 in performance comparisons with and without the look-ahead information.  We show 
that, while there is an increased computational load imposed by the need to compute the look-
ahead information, we obtain an improvement in solution quality. 
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5. Numerical experiments 
A series of numerical experiments allowed us to evaluate the performance of our ACO algorithm 
and to compare it to previous solution methods.  We first compare a version of our ACO method 
without  look-ahead information with a version that incorporates this feature.  We then compare 
our approach to other heuristics previously compared in Tan et al. [2000], including a branch-
and-bound algorithm, a genetic algorithm, a simulated annealing method and the RSPI local 
improvement procedure.   

All tested algorithms used the set of thirty-two test problems devised by Rubin & Ragatz [1995] 
and available on the Internet at (http://mgt.bus.msu.edu/datafiles.htm).  The problem set is 
divided by size into four groups of problems having 15, 25, 35 and 45 orders respectively.  
Moreover, the eight problems of each group were derived from a 2x2x2 experimental plan 
related to three characteristics each of which may be adjusted to one of two levels.  These 
characteristics are the processing time variance (PTV), the tardiness factor (TF) and the due 
dates range (DDR).    The operation times of the orders are normally distributed with an arbitrary 
mean of 100 units and the setup times are uniformly distributed with a mean of 9.5 units. 

Each of the problems was solved twenty times both in the results quoted from the work of Tan et 
al. [2000] and in our ACO algorithm experiments.  We worked on two different computers.  In 
an attempt to reproduce as closely as possible the experimental conditions of these latter authors 
who worked on an Intel Pentium 90-MHz machine, we obtained an Intel Pentium 100-Mhz 
computer. We were, however, unable to compare other machine characteristics such as the 
available RAM, and we realise that our comparisons can only be approximate. 

We completed our experiments by testing our ACO algorithm on a current computer having an 
Intel Pentium III 733-Mhz processor with 256 Meg RAM, running under Windows 2000.  The 
ACO algorithm is coded in the C language.  Note that the algorithms compared in Tan et 
al.[2000] were coded in different languages. 

We created a new series of larger test problems having the same characteristics as the original 
set.  These test problems are divided into four groups having 55, 65, 75, and 85 orders 
respectively.   We present the results obtained using our ACO algorithm on these problems in the 
next section and we will make the problem set available to those wishing to use them in future 
comparative experiments. 

 

6. Computational results 
A first comparison seeks to evaluate the impact on solution quality of the new elements that we 
have introduced into the transition rule.  Table 1 presents the results of two different versions of 
the ACO for the 32-problem set.  Both versions include the modifications to the basic algorithm 
proposed by Dorigo & Gambardella [1997] but only one includes the look-ahead information 
previously described.  Problems were solved 20 times using each algorithm and the table shows 
the percentage difference with respect to the best solution found by the branch-and-bound 
algorithm  for the best ACO solution, the median ACO value and the worst ACO solution.   The 
branch-and-bound results are drawn from Tan et al. [2000].  Those branch-and-bound results that 
are optimal are indicated by an asterisk, and in other cases computation was stopped after a 
maximum of five million nodes were generated.   The first columns of the table show the 
problem characteristics.  For each algorithm, the times shown are the averages of the twenty 
solution runs. 
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From Table 1, we note that, in general, the look-ahead information has allowed an improvement 
in solution quality.  Six exceptions are highlighted (in grey) in the table.  In five of these six 
cases the quality drop is less than 1%.  In the remaining case, problem #705, the median value of 
the gap with the branch-and-bound solution has dropped from 3% to 5.6%.   

There has been an increase in computation times due to the use of look-ahead information.  
Generally, as Table 1 shows, solution times have increased by less than a factor of two, although 
in some instances the increase is higher.  Currently, look-ahead information is computed every 
time the transition rule is used, but we feel that a more selective use of this information would 
allow us to retain the solution quality improvements while imposing a lesser computational 
penalty. 

Table 1 : Experimental ACO results for 32 problems with and without look-ahead information.@ 

 

We analysed our results to determine whether the quality improvements observed have statistical 
significance.  Conover & Iman's [1981] result allows us to use a parametric t-test on the average 
ranking.  The ranking was obtained from the 40 runs of the two algorithm versions for each 
problem.   However, to avoid a too-large number of ties, as is the usual practice, we have 
fourteen problems where 80% or more of the results are identical have been set aside for this test.  
Table 2 presents the results of this statistical test which allows us to draw the conclusion that the 
version of the algorithm that includes look-ahead information offers solutions of better quality.  
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The eighteen problems considered by this test are listed in column 1 of Table 1 in bold 
characters.      

Table 2 : T-TEST for a comparison of two mean rank  for the 18 problems considered: two 
samples with different  variances. The significance level for the test is 5%. 

 

These results have encouraged us to conclude that using look-ahead information contributes 
significantly to improving solution quality and we therefore proceeded to compare this version of 
the ACO algorithm to the genetic, simulated annealing and RSPI local improvement heuristics 
and the branch-and-bound algorithm presented in Tan et al. [2000].  Figure 2(a), which is derived 
from the data of Table 3, shows the percentage difference between the median results of the 
branch-and-bound algorithm and the different heuristics tested in Tan et al. and provides visual 
confirmation of the ranking of these methods.  The ACO algorithm is compared to the RSPI 
heuristic in Figure 2(b).  Tan et al. [2000] presented a statistical analysis showing that the RSPI 
method performed better than the other approaches tried and so it is used in the following 
comparisons with our results. 

 Figure 2: Percentage difference of the median results for different heuristics vs the B&B results. 
(a) Performance of the genetic algorithm (GA), simulated annealing (SA) and the RSPI local 
improvement method. (b) Performance of the RSPI local improvement method and the ant colony 
optimization (ACO) algorithm. 

 

Table 3 presents the details of the results obtained by the heuristics of Tan et al. [2000] and of 
our ACO algorithm experiments.  The form is similar to that of Table 1 and shows the same 
three performance indicators.  

 WITHOUT look-
ahead information 

INCLUDING look-
ahead information 

Mean rank 24.189 16.811 
Variance 137.741 98.591 
Number of cases 380 380 
t value 
2-tailed prob. 

9.356 
0.000 

Pr
ob

40
1

Pr
ob

50
1

Pr
ob

60
1

Pr
ob

70
1 RSPI

SA
GA-50.0

0.0

50.0

100.0

150.0

(a)

Pr
ob

40
1

Pr
ob

50
1

Pr
ob

60
1

Pr
ob

70
1

ACO

RSPI
-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

(b)



Scheduling a single machine with sequence-dependent  …;                                C. Gagné, W.L. Price, M. Gravel 

 14

 
 Table 3 : Comparison of the performance of the ant colony optimization (ACO) algorithm with 
the methods reported in Tan et al. [2000] :branch and bound (B&B), genetic algorithm (GA), 
simulated annealing (SA), and the  RSPI local improvement method.@ 
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 The figures highlighted in gray indicate which of the ACO or RSPI methods is better and where 
performance is rated the same.  We note that the smaller problems having 15 and 25 orders are 
more easily solved by the RSPI.  The ACO algorithm has a better solution in only three such 
cases as compared to 16 for the RSPI.  For the 35-order problem group, performance of the two 
methods is about the same.  For the larger problems, the ACO performs better 12 times 
compared to the RSPI method which is better 6 times.  We are observe that the ACO algorithm 
has a relative advantage for the larger problems.   

The values of the ACO parameters α, β, δ and φ were set to identical values for all problems 
having the same characteristics.   These parameters were adjusted following empirical tests on 
the more realistic larger-sized problems.  The results of a number of tests allow us to conjecture 
that the ACO algorithm could have performed better for the small problems had we specifically 
adjusted the parameters for them.   

A statistical analysis allowed the confirmation of the summary conclusions that may be drawn 
from Figure 2.  Tan et al. [2000] graciously furnished us with their detailed results to allow this 
analysis to be made.  As in the statistical analysis of Table 2, the problems for which the two 
heuristics produced 80% or more identical results were ignored to avoid a preponderance of ties.  
The fourteen problems considered are indicated in column one of Table 3 in bold characters.  
Table 4 shows the statistical analyses on the average rank grouped by problem size.  Because the 
problems of 15 orders showed little variation in results among methods they were not considered 
in this analysis.  The results of the statistical tests appear in Table 4 and part (a) shows  that the 
RSPI method has the better performance for problems of 25 orders,  part (b) indicates that the 
two heuristics offer equal performance and part (c) shows that for the larger problems, the ACO 
algorithm is superior.    In summary, the statistical analysis confirms our earlier remarks. 
 (a) (b) (c) 
 ACO RSPI ACO RSPI ACO RSPI 
Mean rank 23.85 17.15 21.23 19.77 17.28 23.73 
Variance 138.90 95.86 151.78 114.97 125.42 121.99 
Number of cases 40 40 120 120 120 120 
t-value 
2-tailed prob 

2.766 
0.007 

0.984 
0.326 

-4.492 
0.000 

Table 4: T-TEST for a comparison of two mean rank for the 18 problems considered: two 
samples with equal variances. (a) 2 problems of 25 orders, (b) 6 problems of 35 orders and 
(c) 6 problems of 45 orders. The significance level for these tests is 5%. 

 

The number of times that a heuristic is superior to another does not, however, convey the degree 
of difference in performance.  For this reason, the average percentage difference for those cases 
where one method is better than the other has been calculated, using the median results.  The 
RSPI heuristic shows a 2.87% lead over the ACO in cases where it is better, but the ACO has a 
13.89% lead over the RSPI in those cases where the ACO is better.  Figure 2(b) illustrates this 
difference in the amplitude of the differences between the two methods.  We note, therefore,  that 
using the ACO can produce a much better result than the RSPI but it is not likely to be, even in 
the worst case, much worse than the RSPI result.  

Particular cases in the results in Table 3 have been noted: 

- the RSPI has better performance for the 8th problem of each group, that problem 
where PTV is high, TF is moderate and DDR is large; 
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- the largest difference in results is observed for problem #508 between the median and 
the worst case results. 

It is likely that these differences could be lessened were the parameters of the ACO adjusted to 
the characteristics of these specific problems. 

In other problems the ACO algorithm produces much better results: 

- for the first and fifth problems (those with low TF and close DDR) in the 35 and 45 
order problem sets; 

- for the odd numbered 45-order problems of Table 3 (highlighted in gray); 

- for all problems having closely spaced due-dates, the ACO algorithm is better for all 
three performance measures; 

We note that the ACO algorithm uses specific information concerning the setups and the due 
dates in the form of the two distance matrices and it is, no doubt, this information that allows a 
greater measure of success in meeting the due dates.   Finally the second and the sixth problems 
of each group proved easy for both solution methods.  

Table 5 presents further statistical t-test on the mean rank for those problems having the same 
PTF, TF and DDR characteristics.  Again those problems for which 80% of the results are 
identical have been set aside to avoid a preponderance of ties.  The second and sixth problems 
were also set aside since they were easily solved to optimality by both approaches.  Analyses (a), 
(b) and (d) of Table 5 show that the ACO algorithm is superior for the first, third and fifth 
problems of each order-size group.  Analyses (c), (e) and  (f) of Table 5 show the RSPI to 
perform better for the fourth, seventh and eight problems of each group.  In each t-test on mean 
ranking, a variance comparison test was also used before.   
 (a) (b) (c) 
 ACO RSPI ACO RSPI ACO RSPI 
Mean rank 12.73 28.27 13.88 27.13 27.30 13.70 
Variance 83.01 55.61 70.25 113.01 120.88 57.33 
Number of cases 60 60 40 40 40 40 
t-value 
2-tailed prob 

-10.219 
0.000 

-6.190 
0.000 

6.443 
0.000 

 (d) (e) (f) 
 ACO RSPI ACO RSPI ACO RSPI 
Mean rank 13.48 27.53 23.75 17.25 30.00 11.00 
Variance 115.44 55.46 131.71 116.29 53.82 33.53 
Number of cases 40 40 60 60 40 40 
t-value 
2-tailed prob 

-6.797 
0.000 

3.197 
0.002 

12.858 
0.000 

Table 5 (a), (b), (c), (d), (e) and (f) : T-TEST for a comparison of two mean rank for problems 
having same characteristics (the nth problem of each group). Note that the 2nd and the 6th problem 
are not included in this analysis because a lack of variances. The tests (a), (b), (e) and (f) have two 
samples with equal variances and the tests (c) (d) have two samples with unequal variances. The 
significance level for these  tests is 5%. 

 

We have already pointed out that comparisons of solution times are difficult not only because of 
the nature of the computers used but also because of the nature of the algorithms.  Tan et al. 
[2000] have used fixed solution times of 6, 16, 30, and 60 minutes for problems of size 15, 25, 
35 and 45 orders respectively. The ACO algorithm uses quite different stopping criteria.  Despite 



Scheduling a single machine with sequence-dependent  …;                                C. Gagné, W.L. Price, M. Gravel 

 17

these differences and to further our understanding of the results,  we show the average computing 
time required by the ACO algorithm in the final column of Table 3. 

In the measure that the results of the two sets of numerical experiments can be compared, we 
note that the ACO algorithm does not approach the solution times of the RSPI even in the worst 
cases.  For example, the longest solution time for solution of 45 order problems, when run on a 
100MHz Pentium computer, is about 44 minutes as compared to the 60 minutes allowed the 
RSPI.   When run on a current computer, solution time for problems of this size was under two 
minutes as shown in the final column of Table 1. 

Table 6 presents a statistical analysis similar to the previous ones concerning the equality of 
mean ranking for the set of fourteen problems retained.  Neither algorithm was shown to 
dominate the other in this test.   

 ACO RSPI 
Mean rank 19.911 21.089 
Variance 143.616 120.432 
Number of cases 280 280 
t-value 
2-tailed prob 

-1.214 
0.225 

Table 6 : T-TEST on mean ranking for the 14 problems considered: two samples with equal 
variances. The significance level for these tests is 5%. 

 

In summary, our statistical tests show that for the Rubin & Ragatz [1995] problem set the ACO 
algorithm is competitive in solution quality and has shorter computation times than the best 
performing method tried by Tan et al. [2000].  The RSPI seems to perform somewhat better on 
small problems while the ACO algorithm is better for the larger problems.  

Table 7 : Results for larger test  problems (55, 65, 75, 85 orders).@ 
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A new set of larger test problems were generated randomly using a procedure defined by Ragatz 
[1993]. These problems are available through the Internet at 
http://depcom.uqac.uquebec.ca/~c3gagne/.  Each problem of 55, 65, 75, and 85 orders was 
solved 20 times by the ACO algorithm.  Table 7 presents the results in the format of the relevant 
previous tables and adds the mean and standard deviation of the results obtained. We offer these 
results to provide a basis for future comparisons of larger sized problems more typical of real 
order books. 

 

7. Conclusions 
The single machine scheduling problem with sequence dependent setup times for total tardiness 
minimization is NP-hard, but we have found that the Ant Colony Optimization algorithm that we 
have presented is able to efficiently solve problems of a size encountered in industrial situations.  

The modifications and adaptations of the original ACO algorithm that we propose have 
contributed to the performance of this method in the cases studied.  The generalization of the 
concept of distance drawn from the TSP to include two distance matrices, one based on setup 
times and the second on due dates, has proven useful in controlling algorithm performance and 
might be generalized to allow solution of industrial problems with multiple objectives. 

The use of look-ahead information in the selection of the next order during the construction of a 
solution has been shown, with the support of statistical tests, to improve solution quality.  The 
extra computational load does not, in our opinion, lengthen solution times unduly.  In an 
industrial context, the improvements in solution quality will compensate wholly for the longer 
computational times. 

The Ant Colony Optimization algorithm described here has performed competitively with the 
best results obtained by Tan et al. [2000] for other heuristics.  Overall, the solutions obtained by 
the ACO algorithm for larger problems are of equal or better quality and the computational times 
are appreciably lower.   For the smaller problems we did not find this advantage to hold, but such 
problems are, in our experience, less representative of those found in industry.  To better 
represent these larger problems, we make available a further problem set in the hope that it may 
be useful to other authors in future numerical experiments. 

Our results have encourages us to incorporate the ACO algorithm presented in our practical work 
on the scheduling of aluminum casting. 
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