
Publié par :
Published by :
Publicación de la :

Faculté des sciences de l’administration
Université Laval
Québec (Québec) Canada G1K 7P4
Tél. Ph. Tel. : (418) 656-3644
Fax : (418) 656-7047

Édition électronique :
Electronic publishing :
Edición electrónica :

Aline Guimont
Vice-décanat - Recherche et partenariats
Faculté des sciences de l’administration

Disponible sur Internet :
Available on Internet
Disponible por Internet :

http ://www.fsa.ulaval.ca/rd
rd@fsa.ulaval.ca

DOCUMENT DE TRAVAIL 2001-003

SCHEDULING A SINGLE MACHINE WITH SEQUENCE

DEPENDENT SETUP TIME USING ANT COLONY OPTIMIZATION.

Caroline Gagné, Wilson L. Price, Marc Gravel

Version originale :
Original manuscript :
Version original :

ISBN – 2-89524-123-6
ISBN -
ISBN -

Série électronique mise à jour :
One-line publication updated :
Seria electrónica, puesta al dia

04-2001

Scheduling a single machine with sequence dependent
setup times using Ant Colony Optimization

Caroline Gagné (1), Wilson L. Price (2) & Marc Gravel (1)

 (1) Département d’informatique et mathématique,
Université du Québec, Chicoutimi, Québec, G7H 2B1

(2) Faculté des sciences de l’administration, Université
Laval, Québec, Québec, G1K 7P4

Abstract
We describe an Ant Colony Optimization (ACO) algorithm for solving a single machine
scheduling problem. In the operating situation modeled, setup times are sequence dependent and
the objective is to minimize total tardiness. This problem has previously been treated by Rubin &
Ragatz [1995] and by Tan et al. [2000] among others. A new feature using look-ahead information
in the transition rule of the ACO algorithm shows an improvement in performance. A comparison
with other solution approaches indicates that the ACO that we describe is competitive and has a
certain advantage for larger problems.

Keywords : scheduling, metaheuristic, ant colony optimization, single machine, total tardiness,
sequence dependent setups.

1. Introduction
Industrial production scheduling constitutes a fertile field for both researchers and practitioners
of operational research. The interest in this field is generated not only by the problem-solving
challenge that it offers but also by the practical results that can be achieved. However,
researchers such as Maccarthy & Liu [1993] and McKay & Wiers [1999] have remarked on the
sometimes wide gap between the theoretical problems treated and those met in practice.

The development of efficient solution procedures for the scheduling of orders in a casting center
belonging to a Canadian multinational firm is the principal aim of the research reported in this
paper. The authors have previously reported [Gravel et al., 2000] [Gravel et al., 2001] details of
successful work in this metaheuristics area. The aim of this paper is to report on the performance
of some extensions to the "ant colony optimization" (ACO) algorithm [Dorigo, 1992] which has
already demonstrated its usefulness in this industrial situation and is presently incorporated in
software used by the firm.

In the industrial application, the holding furnaces may require certain draining and cleaning
operations of varying durations between the casting of two successive orders for different metal
alloys. These operations may be seen as the setup operations dealt with in the literature. We
seek a schedule for current released orders that takes into account these sequence dependent
setup times as well as multiple objectives. We validate the performance of the new elements that
we have introduced by solving a known problem from the literature, the single machine problem
with sequence dependent setups. This allows us to compare our results with those previously
published [Tan et al., 2000] for various metaheuristics.

Single machine scheduling is a classic problem that has been well covered in the literature
[Koulamas, 1997]. This problem offers a lower level of complexity than that of other
configurations often treated in scheduling publications, such as parallel and serial machines, or
cellular shops. It is, however, possible to achieve interesting practical results through the study
of single machine shops. For example, some shops may have a bottleneck machine that strongly
influences performance and which therefore allows the shop to be studied as a single machine

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 2

[Graves, 1981] [Hax & Candea, 1984]. We have already referred to our own workon an
application treating complex operations having sequence dependent setup times as a single
machine shop.

Various objective functions may be useful in the scheduling of a single machine shop. Among
these, we find the minimization of total tardiness, an objective that seeks to improve customer
service. Meeting target delivery dates has been declared as the most important scheduling
objective by Wisner & Siferd [1995] who also found that 58% of production planners actively
seek to meet delivery dates. Even in the case of a single machine, minimizing tardiness is a
difficult objective to attain since there are no simple sequencing rules that apply, save in two
cases described by Emmons [1969], and in these two cases, the setups are sequence independent.

In general, the problem of scheduling a single machine with sequence dependent setup times has
generally been presented with the objective of minimizing the total production time (makespan)
for the set of released orders [Baker, 1992] [Morton & Pentico, 1993]. In this case, the problem
may be represented as a traveling salesman problem. Where the objective is to meet delivery
dates where setup times are sequence dependent, the literature is not extensive. One of the
conclusions of Allahverdi et al. [1999] is that there is a need for further research in this area, and
in scheduling in general.

Formally, the problem of scheduling a single machine having sequence dependent setup times
where the objective is the minimization of total tardiness can be defined as follows [Rubin &
Ragatz, 1995]: let there be n jobs to produce, all released at time zero, and which must be
completed without interruption on a single machine. Each job j has as attributes its production
duration pj, its delivery date dj, and its setup time sij, which is incurred when job j is undertaken
following job i in an job sequence Q. We define Q = {Q(0), Q(1), �, Q(n)} as the job sequence
where Q(j) is the subscript of the jth job in the sequence and where Q(0) = 0. The machine is
continuously available through the planning period and can process only one job at a time. Once
a job is started it must be completed without interruption. The end time of job j is expressed as:

[]∑
=

− +=
j

k
kQkQkQQ(j) sc

1
)()()1(p .

The tardiness for this same job j is expressed as:

{ }. ,0 max)()()(jQjQjQ dct −=

The objective to be minimized is the total tardiness T for the set of jobs to be produced and is
expressed as:

∑
=

=
n

j
jQQ tT

1
).(

Previous authors such as Ragatz [1993], Rubin & Ragatz [1995] and Tan & Narasimhan [1997]
proposed a branch and bound algorithm for this problem as well as a genetic algorithm, a local
improvement method and a simulated annealing algorithm.

In this paper we present an ant colony optimization heuristic which has certain advantages for
this case. In particular, it allows us to use various elements of information about the problem to
better direct the search for good solutions. Moreover, the basic algorithm has already
demonstrated its capacity to perform well in comparison to other metaheuristics in an industrial
setting [Gravel et al., 2001]. Our objective was to improve on this performance on the one hand
by including extensions suggested in the literature, and on the other through the use of new

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 3

elements that use broader information in the transition rule. The validation of the effectiveness
of this metaheuristic in solving the single machine scheduling problem described will be
presented in terms of the solution quality and the computation times. We compare our results to
those reported in a recent study by [Tan et al., 2000].

A brief review of the single machine scheduling literature is offered in the following section.

2. Literature survey
The single machine scheduling problem with constant or zero setup times has been well covered
in the literature. Koulamas [1994] presents a review of the total tardiness minimization problem
and points out that many solution approaches are available for the single machine problem. He
proposes a classification of the proposed methods as optimal or heuristic. The first class includes
dynamic programming, branch and bound and hybrids including both. The author points out that
dynamic programming algorithms are superior and that the most efficient method was proposed
by Potts & Van Wassenhove [1982]. The class of heuristic methods can be further broken down
to sub-classes including constructive algorithms, local search methods and decomposition
methods. Results indicate that local search and decomposition approaches are generally more
effective than construction heuristics.

Two major theoretical developments must be pointed out concerning the single machine
scheduling tardiness-minimization problem. Emmons [1969] developed the dominance condition
and several authors [Lawler, 1977] [Potts & Van Wassenhove, 1982] wrote on subject of the
decomposition principle. These contributions allowed the development of optimal solution
procedures but they also inspired the construction of various heuristics [Della Croce et al., 1998].

Adding the characteristic of sequence dependent setup times, however, increases the complexity
of the problem of minimizing total tardiness on a single machine. This characteristic invalidates
the dominance principle as well as the decomposition principle [Rubin & Ragatz, 1995]. Du &
Leung [1990] seem to have been the first to show that this problem is NP-hard.

The importance of explicitly treating sequence dependent setups in production scheduling has
been pointed out a number of times in the literature. In particular Wilbrecht & Prescott [1969]
state that this is particularly where production equipment is being used close to its capacity
levels. Wortman [1992] states that the efficient management of production capacity requires the
consideration of setup times. The papers of Panwalkar et al. [1973], Flynn [1987] and Krajewski
et al. [1987] also refer to this question.

From a practical point of view, many industrial situations require the explicit consideration of
setups and the development of appropriate scheduling tools. Previous authors have described
cases highlighting this situation. Pinedo [1995] describes the situation of a manufacturing plant
making paper bags where setups are required when the type of bag changes. The duration of a
setup depends on the similarity of the bags made in the preceding lot. A similar situation was
observed in the plastics industry by Das et al. [1995] and Franca et al. [1996]. The printing
industry also has setups that are sequence dependent because various cleaning operations are
required when the print colors are changed [Conway et al., 1967]. The aluminum industry has
casting operations where setups, mainly affecting the holding furnaces, are required between the
casting of different alloys [Gravel et al, 2000]. The textile, pharmaceutical, chemical and
metallurgical industries present other practical examples where sequence dependent setups are
frequently observed.

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 4

Despite the copious literature in scheduling, it was only in 1999 that two reviews of problems
with sequence dependent setups were published [Allahverdi et al., 1999] [Yang & Liao, 1999].
These authors have proposed different classifications of the field but arrive at similar
conclusions. Allahverdi et al. [1999] point out gaps in existing research, including in the
underlying theoretical underpinnings and in the treatment of multiple objectives. The general
conclusion of this review is that scheduling where sequence dependent setups are required is a
fertile area for further research. Yang & Liao [1999] observe that there are few comparisons of
the solution methods developed for this problem. They make the same observation concerning
the applications of the various methods available in practical situations.
The literature shows [Allahverdi et al., 1999] that while many industrial applications have
sequence dependent setups, few papers have treated this characteristic in combination with the
objective of meeting delivery dates. Few authors have treated the problem described in the
previous section. Among these Ragatz [1993] proposed a branch and bound algorithm for the
exact solution of smaller problems. A genetic algorithm and a local improvement method were
proposed by Rubin & Ragatz [1995] while Tan & Narasimhan [1997] tackle this same problem
through simulated annealing. Finally Tan et al. [2000] present a comparison of these four
approaches and conclude, following a statistical analysis, that the local improvement method
offers better performance than simulated annealing, which is turn better than branch and bound.
In this comparison, the genetic algorithm had the worst performance.

The authors propose an ant colony optimization (ACO) algorithm for the solution of the single
machine scheduling problem with sequence dependent setups. This industrial scheduling
problem from the aluminum industry consists in the scheduling of a set of released jobs on a
casting rig and has been formulated as a single machine with sequence dependent setups and
multiple objectives. We found the basic ACO to be effective in terms of solution quality and that
it had relatively low computation times [Gravel et al., 2001]. In this paper, we report on the
addition of extensions to the basic algorithm and on numerical experiments that compare our
results to those found using other metaheuristics.

3. Ant colony optimization (ACO)
3.1 The basic algorithm
This metaheuristic was first introduced in the doctoral thesis of Marco Dorigo [1992] and was
inspired by the behaviour of real ants [Deneubourg et al., 1983] [Deneubourg & Goss, 1989]
[Goss et al., 1990]. Ants communicate through pheromone, a deposit that they leave on the
ground in varying intensities as they move about. As more ants use the same path, the more
pheromone is deposited. Ants tend to follow these pheromone trails and in this manner, they
communicate with each other as to the location of food sources. When an obstacle is placed on
an existing path so as to block it, some ants will go about it by the right side, others by the left
side. Those having chosen the shortest path will rejoin the previous pheromone trail more
quickly. This results in a more rapid buildup of pheromone on the shorter path, and still more
ants will be attracted to it. In this way the favored path from a nest to a food source tends to the
shortest distance no matter what the first path found may have been.

One of the first applications of the ACO was to the solution of the traveling salesman problem
(TSP). A matrix D of the distances dij between pairs (i,j) of cities is known, and the objective is
to find the shortest tour of all cities. In the application of the ACO to this problem, each ant is
seen as an agent with certain characteristics [Dorigo et al., 1991]. First, an ant at city i will

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 5

choose the next city j to visit taking into account both the distance to each of the available
choices and of the existing "pheromone" trail. When the ant then moves from city i to city j, it
leaves a trail of "pheromone" on edge (i,j). Finally the ant k has a memory that prevents returning
to those cities already visited. This memory is referred to as a tabu list, tabuk, and is an ordered
list of the cities already visited by ant k. This concept, one should note, is somewhat different
from that of the same name proposed by Glover [1989; 1990a,b].

We now describe details of the choice process. At time t the ant chooses the next city to visit
considering a first factor called the trail intensity τij(t). The intensity contains information as to
the volume of traffic that previously used edge (i,j). The greater the level of the trail, the greater
the probability that it will again be chosen by another ant. At the initial iteration, the trail
intensity τij(0) is initialized to a small positive quantity τ0. The choice of the next city to visit
depends also on a second factor called the visibility, ηij, which is the quantity 1/dij. This
visibility acts as a greedy rule that favors the closest cities in the choice process. In making the
choice of the next city to visit, the transition rule ()tpk

ij , allows a trade-off between the trail
intensity (edges having had previous heavy traffic) and the visibility (the closest cities). The
probability that an ant k will starting from city i will go to city j is given by equation (1) of
Figure 1. Coefficients α and β are parameters that allow control of the trade-off between the
intensity and the visibility.

If the total number of ants is m and the number of cities to visit is n, a cycle is completed when
each ant has completed a tour. In the basic version of the ACO, the trail intensity is updated at
the end of a cycle so as to take into account the evaluation of the tours that have been found in
this cycle. The evaluation of the tour of ant k is called Lk, and will influence the trail quantity

k
ijτ∆ that is added to the existing trail on the edges (i,j) of the chosen tour. This quantity is

proportional to the length of the tour obtained and is calculated as Q/Lk, where Q is a system
parameter. The updating of the trail also takes into account a persistence factor ρ (or
evaporation factor [1-ρ]). This factor serves to diminish the intensity of the existing trail over
time. Therefore the addition to the trail on those edges used by various ants in the current cycle
and the evaporation of part of the previous trail determine the trail intensity for the next cycle as
shown in the following expression:

k

k
ij

k
ijij L

Qtτ where (t))1(
m

1k
ij =∆∆+⋅=+ ∑

=
τττρ (2)

3.2 Extensions to the basic algorithm
Various extensions to the basic algorithm just presented have been proposed, notably by Dorigo
& Gambardella [1997]. The improvements concern the transition rule, the trail updating rules,
the use of local improvement rules and the use of a restricted candidate list. These extensions
have been included in the algorithm proposed in this article.

Transition rule
Gambardella & Dorigo [1997] have suggested a modification to the original transition rule
described by equation (1). They suggest that the ant at city i should choose the next city j to visit
according to the modified rule presented in equation (3) of Figure 1. In this equation, q is a
random number and q0 is a parameter; both are between 0 and 1. J represents the value obtained
by the original transition rule of equation (1). Parameter q0 determines the relative importance of
the exploitation of existing information of the network and the exploration of new solutions. If
exploitation is chosen, the next city is determined by the highest value in equation (3) and in the

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 6

case of exploration, the next city is chosen at random using the probabilities computed in (1).
The transition rule incorporated in equations (1) and (3) is called the "pseudo-random-
proportional rule".

Global trail update
In the basic algorithm, the trail is updated at the end of a cycle when all ants have completed a
tour. The quantity of pheromone to be added to an edge is therefore proportional to the quality
of the tour obtained by each ant as shown in equation (2). In the modified scheme, the
pheromone trail is updated at the end of a cycle, but only on the edges of the best solution found
in the cycle (cycle*). Equation (4) of Figure 1 is used for the global trail update rather than
equation (2). In this equation (4), ρg (0<ρg<1) plays the same role as ρ in the basic algorithm.
This change allows both for the evaporation of the trail deposited at the end of previous cycles
and the additions to be made at the current cycle. The original authors suggest that the
combination of this global trail update along with the new transition rule will improve
convergence of the ACO.

Local updating of the trail
The global update of the trail rewards the best solution found in the cycle and encourages ants to
follow this tour in later cycles. To avoid having too many ants making the same choices and
thus inviting premature convergence, a local trail update is introduced. This updating effects a
temporary reduction in the quantity of pheromone on a given edge so as to discourage the next
ant from choosing the same edge during the same cycle. When an ant selects an edge during a
cycle, a local update is made to the trail on that edge according to equation (5) of Figure 1. In
this equation, ρl (0< ρl <1) again plays the role of a parameter that determines the amount of the
reduction of the pheromone level. In this case ∆τij is equal to τ0 which is the initial trail, a small
positive quantity. In this way, the pheromone reduction is small but enough to lower the
attractiveness of edge (i,j) each time it is used in the cycle. If a good solution including (i,j) is
found in the cycle, the global trail update will again increase the pheromone level on (i,j). The
exploration of new solutions during a tour is thus encouraged.

Local improvement rules
Dorigo & Gambardella [1997] included a local improvement rule in their ACO for the solution
of the TSP. The idea is to apply local improvement rules to various solutions to find a local
optimum for each of them. The authors suggest use of successive edge-exchange methods and in
particular the restricted 3-opt method [Johnson & McGeoch, 1997] [Kanellakis & Papadimitriou,
1980]. This method removes three edges from a tour and reconnects them in the unique way that
does not reverse the direction of the entire tour. For example if edges (a,b), (e,f) and (i,j) are
removed, the tour will be reconnected as (a,f), (e,j) and (i,b), thus preserving the direction of the
remaining edges. This is particularly useful where asymmetrical TSP's (where dij ≠ dji) are being
solved.

Candidate lists
The use of candidate lists is a common practice in large scale problems [Lawler et al., 1985]
[Reinelt, 1994]. This approach limits the list of cities that will be considered in the choice of the
next city to visit. In the case of the TSP, the candidate list commonly contains the cl closest
cities to the current city i among those that have not already been visited. Note that cl is treated
as a parameter.

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 7

Figure 1 describes the steps of the basic ACO-TSP as presented by Dorigo & Gambardella
[1997]. Other works [Colorni et al., 1991] [Dorigo et al., 1991] [Dorigo et al., 1996] [Dorigo &
Di Caro, 1999] provides details concerning the operation of the algorithm and choices of the
parameter values.

Figure 1: The Ant Colony Optimization (ACO) algorithm for the TSP

The next section presents the ACO that the authors have designed for the solution of the
scheduling problem with sequence dependent setup times.

Step 1: [Initialization]
t := 0; NC := 0;
For each edge (i,j), initialize trail intensity to τ ij(0) := τ0

Step 2: [Starting node]
For each ant k :

Place ant k on a randomly chosen city and store this information in Tabuk

Step 3: [Build a tour for each ant]
For i from 1 to n:

For k from 1 to m:
Choose the next city j, j ∉ Tabuk, among the cl candidate cities according to:

where J is chosen according to the probability:

Store the chosen city in Tabuk

Local update of trail for chosen edge (i,j) :

Step 4: [Global update of trail]
Compute length of tour, Lk,for each ant k
Apply local improvement method for the tours of all ants k and recompute Lk

For each edge (i,j) ∈ Cycle*, update the trail according to:

t := t + 1 ; NC := NC + 1

Step 5: [Termination conditions]
Memorize the shortest tour found to this point
IF (NC < NCMAX) and (Not stagnation behavior)
THEN empty all Tabuk and go to step #2
ELSE Stop

() [] []
[] []∑

∉
⋅

⋅=

kTabou
ii

ijijk
ij t

ttp

)(
)(

l

ll
βα

βα

ητ
ητ

()
*

 ijij 1 where)-(1)(: 1
cycle

ijij Ltt gg =∆∆⋅+⋅=+ ττρτρτ

(1)

(4)

[] []{ }

>
≤⋅= ∉

0

0

i

q q if
q q if)(max arg kTabou

J
tj i

βα ητ lll (3)

0ij re whe)1()(:)(τττρτρτ =∆∆⋅−+⋅= ijijij tt ll (5)

Step 1: [Initialization]
t := 0; NC := 0;
For each edge (i,j), initialize trail intensity to τ ij(0) := τ0

Step 2: [Starting node]
For each ant k :

Place ant k on a randomly chosen city and store this information in Tabuk

Step 3: [Build a tour for each ant]
For i from 1 to n:

For k from 1 to m:
Choose the next city j, j ∉ Tabuk, among the cl candidate cities according to:

where J is chosen according to the probability:

Store the chosen city in Tabuk

Local update of trail for chosen edge (i,j) :

Step 4: [Global update of trail]
Compute length of tour, Lk,for each ant k
Apply local improvement method for the tours of all ants k and recompute Lk

For each edge (i,j) ∈ Cycle*, update the trail according to:

t := t + 1 ; NC := NC + 1

Step 5: [Termination conditions]
Memorize the shortest tour found to this point
IF (NC < NCMAX) and (Not stagnation behavior)
THEN empty all Tabuk and go to step #2
ELSE Stop

() [] []
[] []∑

∉
⋅

⋅=

kTabou
ii

ijijk
ij t

ttp

)(
)(

l

ll
βα

βα

ητ
ητ

()
*

 ijij 1 where)-(1)(: 1
cycle

ijij Ltt gg =∆∆⋅+⋅=+ ττρτρτ

(1)

(4)

[] []{ }

>
≤⋅= ∉

0

0

i

q q if
q q if)(max arg kTabou

J
tj i

βα ητ lll (3)

0ij re whe)1()(:)(τττρτρτ =∆∆⋅−+⋅= ijijij tt ll (5)

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 8

4. An algorithm for solving the scheduling problem
Despite the usefulness of the TSP in modeling the single machine scheduling problem, there are
important differences between the two situations that require modifications to the algorithm
presented in section 3. For the TSP, the problem is to establish a minimal-length tour of the
"cities". For the scheduling problem, we seek to determine the production sequence of a set of
orders to minimize the total processing time. The "distances" are the setup times between orders,
but the objective, the minimization of total tardiness, is of a different nature. The coding of a
solution that is used by the ant colony algorithm for the TSP must be adapted to allow efficient
solution of the scheduling problem. We will now describe the transpositions and adaptations that
we have devised, the values attributed to various parameters and of a new element we have
introduced into the metaheuristic.

4.1 Components of the algorithm for the scheduling problem
Initial order
The last order produced during the previous planning period is taken to be the initial order. It
determines the nature of the setup required before the first order of the current planning period
may be produced. This setup is taken into account when the fitness, Lk, of an order sequence k is
determined. The fitness is the total tardiness of the order set with respect to the due-dates of
each of the orders.

Distance matrices
For a TSP, a matrix stores the distances between each pair of "cities" and the objective is to
minimize the length of a tour. For the scheduling problem, two "distance" matrices are used to
represent the two elements that influence the total tardiness: the setup times and the slack times.

The setup time matrix is of dimension (n+1 x n) where n is the total number of orders that must
be produced. This matrix may be directly compared to the distance matrix in the TSP. The last
order of the previous planning period is represented by an additional row. The elements of this
matrix are the relative setup times, ijs :

 ijs = sij / Max sij (6)

In order to favour respect of due dates and the minimization of total tardiness, we use a second
"distance" matrix representing the relative slack if order j is produced following order i. The
slack of an order is defined as:

mij = dj - pj - sij,

and the second matrix is composed of elements , ijm , calculated as follows:

 >

=
otherwise. 0

0 if Max / ijij mmm
m

ij
ij (7)

Note that we use the "absolute" slack of order j and not the conditional slack which would
require knowing the end time of the preceding order, which is not available at the time of the
formation of the matrix. This does not affect the choice of the next order to place in the
sequence because it merely adds a constant quantity to each of the local decision options.

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 9

We use the relative values for the two matrices of setup times and slack times to facilitate the
trade-offs that the algorithm will seek to make between these two elements. The parameters β
and δ allow control over the behaviour of the algorithm and the weight that is given to one or the
other of these elements in the makeup of the distance measure used in the algorithm. During the
selection of the next order j that is to be produced, a compromise is made between the trail
intensity and the distance measure for the order. Equations (1) and (3) of Figure 1 which
describes the transition rule are modified and now take the following forms for the scheduling
problem:

()[] [] []{ }

>

≤⋅⋅
=

∉

0

0
 1 1

i

q q if

q q if max arg kTabou

J

t
j ii ms

δβατ
ll

l l

where J is chosen according to probability:
()[] [] []

()[] [] []∑
∉

⋅⋅
⋅⋅

=

k
ii

ijij

Tabou
ms

msj
k
ij t

ttp
l

l
ll

δβα

δβα

τ
τ

 1 1
i

 1 1
i

)(

Local improvement methods
We have included two local improvement methods in the ACO algorithm. The first of these two
methods is the restricted 3-opt method described by Dorigo & Gambardella [1997]. This method
has the important characteristic of not inverting the complete order sequence, which is important
where setup times are sequence dependent. The second method, called RSPI (Random Search
Pairwise Interchange), proceeds to invert each pair of adjacent orders in turn. This method was
used by Rubin & Ragatz [1995] either alone or in conjunction with a metaheuristic to solve the
single machine, sequence dependent setup times, minimization of total tardiness problem. The
results, presented in Tan et al. [2000] for this problem, indicate that the RSPI offers results that
are better than those obtained by simulated annealing, branch and bound and the genetic
algorithm if sufficient computation time is allowed.

One of these local improvement methods is applied to the path found by each ant. The choice of
method is made by a random (fair coin toss) choice. The restricted 3-opt method, in which one
cycles only once through the list of adjacent pairs, is applied in order to reduce the computation
times, which is particularly important if the problem size is large.

Candidate list
The use of a candidate list limits the number of choices for the next order to place in the
sequence. In the TSP, the candidates chosen are the closest "cities" to the current one. In the
scheduling problem treated here, the candidate list is made up of those orders having the smallest
slack times. The calculation of the slack for order j, where j∉ Tabu, following order i, is done
according to the definition of mij in equation (7). The list of orders { j} is then sorted in
increasing order of slack and the first cl of these become the candidate list for order i.
Parameter values
In most cases, the values of the parameters in the ACO algorithm follows the suggestions given
by Dorigo & Gambardella [1997] and in the remaining cases, the values have been determined
through direct numerical experimentation. The trail is initialized to the value, τ0 = (n⋅Lnn)-1
where n is the size of the problem and Lnn is the result of a solution obtained either randomly or
through some simple heuristic. The remaining parameters have been assigned the following

(1')

(3')

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 10

values: ρg = ρl, = 0.9, m = 10, q0 = 0.9 and cl = 0.3⋅n with a lower bound equal to 10. Further the
maximum number of cycles without improvement of the best known solution is fixed at 50.
Note that the values of α, β and δ have been adjusted empirically according to the problem
characteristics (processing time variance, tardiness factor, due dates range) and take values
between 1 and 4. For example, where the due-dates are such that tardiness factor is high, more
weight is given to the slack matrix.

4.2 Including look-ahead information
While we have included the supplementary improvements suggested by Dorigo & Gambardella
[1997], we also propose a new element in the transition rule. Usually, the selection of the next
order to place in the sequence is the result of a compromise between the trail, information on past
choices, and the visibility, information derived from the problem parameters. In addition, we
propose the addition of look-ahead information about the potential of the current partial solution.
The idea that we propose differs in a number of respects from that proposed by Michel &
Midderdorf [1999] for a different problem. These authors proposed a look-ahead function which
works by evaluating the trail intensity resulting from a choice.

The look-ahead information that we propose estimates the potential quality of a partial solution
by taking the actual value generated by the current partial solution and adding the consequences
of one of the candidate choices as well as a lower bound on the remaining uncompleted portion.
The computation of the lower bound for the uncompleted portion follows the method used in the
branch and bound computations of Ragatz [1993], and later in Tan et al. [2000].

The lower bound on the total tardiness of the partial solution Qh , including the order j presumed
to be the candidate chosen following order i, is calculated according to the following:

 ' Q hQ h TTBij += (8)

Equations (1') and (3') related to the transition rule are again modified by the addition of a new
term, ijB , which represents the look-ahead information. As for the two measures of distance,
relative values are used to obtain a comparable scale of values and the parameter φ controls the
weight of this information. The lower bound for a partial solution including the candidate order j
is therefore divided by the largest bound among the list { j} of candidates. The following
definitions are obtained:

()[] [] [] []{ }

>

≤⋅⋅⋅
=

∉

0

0
 1 1 1

i

q q if

q q if max arg

kTabou

J

t
j iii Bms

φδβατ
lll

l l

 (3')

where J is chosen according to the probability:

()[] [] [] []
()[] [] [] []∑

∉
⋅⋅⋅

⋅⋅⋅
=

k
iii

ijijij

Tabou
Bms

Bmsj
k
ij

t
t

tp

l

l
lll

φδβα

φδβα

τ
τ

 1 1 1
i

 1 1 1
i

)((1')

and where
ij

ij
ij Max B

BB = (9)

The performance of this new element in the ACO algorithm has been studied and is presented in
section 6 in performance comparisons with and without the look-ahead information. We show
that, while there is an increased computational load imposed by the need to compute the look-
ahead information, we obtain an improvement in solution quality.

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 11

5. Numerical experiments
A series of numerical experiments allowed us to evaluate the performance of our ACO algorithm
and to compare it to previous solution methods. We first compare a version of our ACO method
without look-ahead information with a version that incorporates this feature. We then compare
our approach to other heuristics previously compared in Tan et al. [2000], including a branch-
and-bound algorithm, a genetic algorithm, a simulated annealing method and the RSPI local
improvement procedure.

All tested algorithms used the set of thirty-two test problems devised by Rubin & Ragatz [1995]
and available on the Internet at (http://mgt.bus.msu.edu/datafiles.htm). The problem set is
divided by size into four groups of problems having 15, 25, 35 and 45 orders respectively.
Moreover, the eight problems of each group were derived from a 2x2x2 experimental plan
related to three characteristics each of which may be adjusted to one of two levels. These
characteristics are the processing time variance (PTV), the tardiness factor (TF) and the due
dates range (DDR). The operation times of the orders are normally distributed with an arbitrary
mean of 100 units and the setup times are uniformly distributed with a mean of 9.5 units.

Each of the problems was solved twenty times both in the results quoted from the work of Tan et
al. [2000] and in our ACO algorithm experiments. We worked on two different computers. In
an attempt to reproduce as closely as possible the experimental conditions of these latter authors
who worked on an Intel Pentium 90-MHz machine, we obtained an Intel Pentium 100-Mhz
computer. We were, however, unable to compare other machine characteristics such as the
available RAM, and we realise that our comparisons can only be approximate.

We completed our experiments by testing our ACO algorithm on a current computer having an
Intel Pentium III 733-Mhz processor with 256 Meg RAM, running under Windows 2000. The
ACO algorithm is coded in the C language. Note that the algorithms compared in Tan et
al.[2000] were coded in different languages.

We created a new series of larger test problems having the same characteristics as the original
set. These test problems are divided into four groups having 55, 65, 75, and 85 orders
respectively. We present the results obtained using our ACO algorithm on these problems in the
next section and we will make the problem set available to those wishing to use them in future
comparative experiments.

6. Computational results
A first comparison seeks to evaluate the impact on solution quality of the new elements that we
have introduced into the transition rule. Table 1 presents the results of two different versions of
the ACO for the 32-problem set. Both versions include the modifications to the basic algorithm
proposed by Dorigo & Gambardella [1997] but only one includes the look-ahead information
previously described. Problems were solved 20 times using each algorithm and the table shows
the percentage difference with respect to the best solution found by the branch-and-bound
algorithm for the best ACO solution, the median ACO value and the worst ACO solution. The
branch-and-bound results are drawn from Tan et al. [2000]. Those branch-and-bound results that
are optimal are indicated by an asterisk, and in other cases computation was stopped after a
maximum of five million nodes were generated. The first columns of the table show the
problem characteristics. For each algorithm, the times shown are the averages of the twenty
solution runs.

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 12

From Table 1, we note that, in general, the look-ahead information has allowed an improvement
in solution quality. Six exceptions are highlighted (in grey) in the table. In five of these six
cases the quality drop is less than 1%. In the remaining case, problem #705, the median value of
the gap with the branch-and-bound solution has dropped from 3% to 5.6%.

There has been an increase in computation times due to the use of look-ahead information.
Generally, as Table 1 shows, solution times have increased by less than a factor of two, although
in some instances the increase is higher. Currently, look-ahead information is computed every
time the transition rule is used, but we feel that a more selective use of this information would
allow us to retain the solution quality improvements while imposing a lesser computational
penalty.

Table 1 : Experimental ACO results for 32 problems with and without look-ahead information.@

We analysed our results to determine whether the quality improvements observed have statistical
significance. Conover & Iman's [1981] result allows us to use a parametric t-test on the average
ranking. The ranking was obtained from the 40 runs of the two algorithm versions for each
problem. However, to avoid a too-large number of ties, as is the usual practice, we have
fourteen problems where 80% or more of the results are identical have been set aside for this test.
Table 2 presents the results of this statistical test which allows us to draw the conclusion that the
version of the algorithm that includes look-ahead information offers solutions of better quality.

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 13

The eighteen problems considered by this test are listed in column 1 of Table 1 in bold
characters.

Table 2 : T-TEST for a comparison of two mean rank for the 18 problems considered: two
samples with different variances. The significance level for the test is 5%.

These results have encouraged us to conclude that using look-ahead information contributes
significantly to improving solution quality and we therefore proceeded to compare this version of
the ACO algorithm to the genetic, simulated annealing and RSPI local improvement heuristics
and the branch-and-bound algorithm presented in Tan et al. [2000]. Figure 2(a), which is derived
from the data of Table 3, shows the percentage difference between the median results of the
branch-and-bound algorithm and the different heuristics tested in Tan et al. and provides visual
confirmation of the ranking of these methods. The ACO algorithm is compared to the RSPI
heuristic in Figure 2(b). Tan et al. [2000] presented a statistical analysis showing that the RSPI
method performed better than the other approaches tried and so it is used in the following
comparisons with our results.

 Figure 2: Percentage difference of the median results for different heuristics vs the B&B results.
(a) Performance of the genetic algorithm (GA), simulated annealing (SA) and the RSPI local
improvement method. (b) Performance of the RSPI local improvement method and the ant colony
optimization (ACO) algorithm.

Table 3 presents the details of the results obtained by the heuristics of Tan et al. [2000] and of
our ACO algorithm experiments. The form is similar to that of Table 1 and shows the same
three performance indicators.

 WITHOUT look-
ahead information

INCLUDING look-
ahead information

Mean rank 24.189 16.811
Variance 137.741 98.591
Number of cases 380 380
t value
2-tailed prob.

9.356
0.000

Pr
ob

40
1

Pr
ob

50
1

Pr
ob

60
1

Pr
ob

70
1 RSPI

SA
GA-50.0

0.0

50.0

100.0

150.0

(a)

Pr
ob

40
1

Pr
ob

50
1

Pr
ob

60
1

Pr
ob

70
1

ACO

RSPI
-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

(b)

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 14

 Table 3 : Comparison of the performance of the ant colony optimization (ACO) algorithm with
the methods reported in Tan et al. [2000] :branch and bound (B&B), genetic algorithm (GA),
simulated annealing (SA), and the RSPI local improvement method.@

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 15

 The figures highlighted in gray indicate which of the ACO or RSPI methods is better and where
performance is rated the same. We note that the smaller problems having 15 and 25 orders are
more easily solved by the RSPI. The ACO algorithm has a better solution in only three such
cases as compared to 16 for the RSPI. For the 35-order problem group, performance of the two
methods is about the same. For the larger problems, the ACO performs better 12 times
compared to the RSPI method which is better 6 times. We are observe that the ACO algorithm
has a relative advantage for the larger problems.

The values of the ACO parameters α, β, δ and φ were set to identical values for all problems
having the same characteristics. These parameters were adjusted following empirical tests on
the more realistic larger-sized problems. The results of a number of tests allow us to conjecture
that the ACO algorithm could have performed better for the small problems had we specifically
adjusted the parameters for them.

A statistical analysis allowed the confirmation of the summary conclusions that may be drawn
from Figure 2. Tan et al. [2000] graciously furnished us with their detailed results to allow this
analysis to be made. As in the statistical analysis of Table 2, the problems for which the two
heuristics produced 80% or more identical results were ignored to avoid a preponderance of ties.
The fourteen problems considered are indicated in column one of Table 3 in bold characters.
Table 4 shows the statistical analyses on the average rank grouped by problem size. Because the
problems of 15 orders showed little variation in results among methods they were not considered
in this analysis. The results of the statistical tests appear in Table 4 and part (a) shows that the
RSPI method has the better performance for problems of 25 orders, part (b) indicates that the
two heuristics offer equal performance and part (c) shows that for the larger problems, the ACO
algorithm is superior. In summary, the statistical analysis confirms our earlier remarks.
 (a) (b) (c)
 ACO RSPI ACO RSPI ACO RSPI
Mean rank 23.85 17.15 21.23 19.77 17.28 23.73
Variance 138.90 95.86 151.78 114.97 125.42 121.99
Number of cases 40 40 120 120 120 120
t-value
2-tailed prob

2.766
0.007

0.984
0.326

-4.492
0.000

Table 4: T-TEST for a comparison of two mean rank for the 18 problems considered: two
samples with equal variances. (a) 2 problems of 25 orders, (b) 6 problems of 35 orders and
(c) 6 problems of 45 orders. The significance level for these tests is 5%.

The number of times that a heuristic is superior to another does not, however, convey the degree
of difference in performance. For this reason, the average percentage difference for those cases
where one method is better than the other has been calculated, using the median results. The
RSPI heuristic shows a 2.87% lead over the ACO in cases where it is better, but the ACO has a
13.89% lead over the RSPI in those cases where the ACO is better. Figure 2(b) illustrates this
difference in the amplitude of the differences between the two methods. We note, therefore, that
using the ACO can produce a much better result than the RSPI but it is not likely to be, even in
the worst case, much worse than the RSPI result.

Particular cases in the results in Table 3 have been noted:

- the RSPI has better performance for the 8th problem of each group, that problem
where PTV is high, TF is moderate and DDR is large;

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 16

- the largest difference in results is observed for problem #508 between the median and
the worst case results.

It is likely that these differences could be lessened were the parameters of the ACO adjusted to
the characteristics of these specific problems.

In other problems the ACO algorithm produces much better results:

- for the first and fifth problems (those with low TF and close DDR) in the 35 and 45
order problem sets;

- for the odd numbered 45-order problems of Table 3 (highlighted in gray);

- for all problems having closely spaced due-dates, the ACO algorithm is better for all
three performance measures;

We note that the ACO algorithm uses specific information concerning the setups and the due
dates in the form of the two distance matrices and it is, no doubt, this information that allows a
greater measure of success in meeting the due dates. Finally the second and the sixth problems
of each group proved easy for both solution methods.

Table 5 presents further statistical t-test on the mean rank for those problems having the same
PTF, TF and DDR characteristics. Again those problems for which 80% of the results are
identical have been set aside to avoid a preponderance of ties. The second and sixth problems
were also set aside since they were easily solved to optimality by both approaches. Analyses (a),
(b) and (d) of Table 5 show that the ACO algorithm is superior for the first, third and fifth
problems of each order-size group. Analyses (c), (e) and (f) of Table 5 show the RSPI to
perform better for the fourth, seventh and eight problems of each group. In each t-test on mean
ranking, a variance comparison test was also used before.
 (a) (b) (c)
 ACO RSPI ACO RSPI ACO RSPI
Mean rank 12.73 28.27 13.88 27.13 27.30 13.70
Variance 83.01 55.61 70.25 113.01 120.88 57.33
Number of cases 60 60 40 40 40 40
t-value
2-tailed prob

-10.219
0.000

-6.190
0.000

6.443
0.000

 (d) (e) (f)
 ACO RSPI ACO RSPI ACO RSPI
Mean rank 13.48 27.53 23.75 17.25 30.00 11.00
Variance 115.44 55.46 131.71 116.29 53.82 33.53
Number of cases 40 40 60 60 40 40
t-value
2-tailed prob

-6.797
0.000

3.197
0.002

12.858
0.000

Table 5 (a), (b), (c), (d), (e) and (f) : T-TEST for a comparison of two mean rank for problems
having same characteristics (the nth problem of each group). Note that the 2nd and the 6th problem
are not included in this analysis because a lack of variances. The tests (a), (b), (e) and (f) have two
samples with equal variances and the tests (c) (d) have two samples with unequal variances. The
significance level for these tests is 5%.

We have already pointed out that comparisons of solution times are difficult not only because of
the nature of the computers used but also because of the nature of the algorithms. Tan et al.
[2000] have used fixed solution times of 6, 16, 30, and 60 minutes for problems of size 15, 25,
35 and 45 orders respectively. The ACO algorithm uses quite different stopping criteria. Despite

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 17

these differences and to further our understanding of the results, we show the average computing
time required by the ACO algorithm in the final column of Table 3.

In the measure that the results of the two sets of numerical experiments can be compared, we
note that the ACO algorithm does not approach the solution times of the RSPI even in the worst
cases. For example, the longest solution time for solution of 45 order problems, when run on a
100MHz Pentium computer, is about 44 minutes as compared to the 60 minutes allowed the
RSPI. When run on a current computer, solution time for problems of this size was under two
minutes as shown in the final column of Table 1.

Table 6 presents a statistical analysis similar to the previous ones concerning the equality of
mean ranking for the set of fourteen problems retained. Neither algorithm was shown to
dominate the other in this test.

 ACO RSPI
Mean rank 19.911 21.089
Variance 143.616 120.432
Number of cases 280 280
t-value
2-tailed prob

-1.214
0.225

Table 6 : T-TEST on mean ranking for the 14 problems considered: two samples with equal
variances. The significance level for these tests is 5%.

In summary, our statistical tests show that for the Rubin & Ragatz [1995] problem set the ACO
algorithm is competitive in solution quality and has shorter computation times than the best
performing method tried by Tan et al. [2000]. The RSPI seems to perform somewhat better on
small problems while the ACO algorithm is better for the larger problems.

Table 7 : Results for larger test problems (55, 65, 75, 85 orders).@

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 18

A new set of larger test problems were generated randomly using a procedure defined by Ragatz
[1993]. These problems are available through the Internet at
http://depcom.uqac.uquebec.ca/~c3gagne/. Each problem of 55, 65, 75, and 85 orders was
solved 20 times by the ACO algorithm. Table 7 presents the results in the format of the relevant
previous tables and adds the mean and standard deviation of the results obtained. We offer these
results to provide a basis for future comparisons of larger sized problems more typical of real
order books.

7. Conclusions
The single machine scheduling problem with sequence dependent setup times for total tardiness
minimization is NP-hard, but we have found that the Ant Colony Optimization algorithm that we
have presented is able to efficiently solve problems of a size encountered in industrial situations.

The modifications and adaptations of the original ACO algorithm that we propose have
contributed to the performance of this method in the cases studied. The generalization of the
concept of distance drawn from the TSP to include two distance matrices, one based on setup
times and the second on due dates, has proven useful in controlling algorithm performance and
might be generalized to allow solution of industrial problems with multiple objectives.

The use of look-ahead information in the selection of the next order during the construction of a
solution has been shown, with the support of statistical tests, to improve solution quality. The
extra computational load does not, in our opinion, lengthen solution times unduly. In an
industrial context, the improvements in solution quality will compensate wholly for the longer
computational times.

The Ant Colony Optimization algorithm described here has performed competitively with the
best results obtained by Tan et al. [2000] for other heuristics. Overall, the solutions obtained by
the ACO algorithm for larger problems are of equal or better quality and the computational times
are appreciably lower. For the smaller problems we did not find this advantage to hold, but such
problems are, in our experience, less representative of those found in industry. To better
represent these larger problems, we make available a further problem set in the hope that it may
be useful to other authors in future numerical experiments.

Our results have encourages us to incorporate the ACO algorithm presented in our practical work
on the scheduling of aluminum casting.

Acknowledgements
This research was financially supported by the FCAR (Québec) and NSERC (Canada) granting
councils. The authors also wish to thank Professor Paul A. Rubin and his colleagues for having
generously furnished details of their own results and for their valuable comments.

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 19

References
Allahverdi A., Gupta J.N.D., Aldowaisan T., [1999], A review of scheduling research involving

setup considerations, Omega, 27, 219-239.

Baker K.R, [1992], Elements of sequencing and scheduling, Hanover, NH.

Colorni A., Dorigo M., Maniezzo V., [1991], Distributed optimization by ant-colonies,
Proceedings of the European Conference on Artificial Life (ECAL'91), Elsevier Publishing,
Paris, France, 134-142.

Conover W.J., Iman R.L., [1981], Rank transformations as a bridge between parametric and
nonparametric statistics, The American Statistician, 35, 124-129.

Conway R.W., Maxwell W.L., Miller L.W., [1967], Theory of scheduling, Addison Wesley, MA.

Das S.R., Gupta J.N.D., Khumawala B.M, [1995], A saving index heuristic algorithm for
flowshop scheduling with sequence dependent set-up times, The Journal of the Operational
Research Society, 46, 1365-1373.

Della Croce F., Tadei, R., Baracco P., Grosso A., [1998], A new decomposition approach for the
single machine total tardiness scheduling problem, The Journal of the Operational Research
Society, 49, 10, 1101-1106.

Deneubourg J.L., Pasteels J.M., Verhaeghe J.C., [1983], Probabilistic behaviour in ants: A
strategy of errors ?, Journal of Theorical Biology, 105, 259-271.

Deneubourg J.L., Goss S., [1989], Collective patterns and decision-making, Ethology &
Evolution, 1, 295-311.

Dorigo M. [1992], Optimization, learning and natural algorithms, Ph.D. Thesis, Politecnico di
Milano, Italy.

Dorigo M., Di Caro G., [1999], The Ant Colony Optimization Meta-Heuristic, In: D. Corne, M.
Dorigo and F. Glover Editors, New Ideas in Optimization, McGraw-Hill.

Dorigo M., Gambardella L.M., [1997], Ant colonies for the traveling salesman problem,
BioSystems, 43, 73-81.

Dorigo M., Maniezzo V., Colorni A., [1991], Positive feedback as a search strategy, Technical
Report No 91-016, Politecnico di Milano, Italy, 20 pages.

Dorigo M., Maniezzo V., Colorni A., [1996], Ant system: optimization by a colony of
cooperating agents, IEEE transactions on System, Man & Cybernitic, 26, 1, 29-41.

Du J., Leung J.Y., [1990], Minimizing total tardiness on one machine is NP-hard, Mathematics
of Operations Research, 15, 483-494.

Emmons H., [1969], One-machine sequencing to minimize certain functions of job tardiness,
Operations Research, 17, 701-715.

Franca P.M., Gendreau M., Laporte G., Muller F.M., [1996], A tabu search heuristic for the
multiprocessor scheduling problem with sequence dependent setup times, International
Journal of Production Economics, 43, 79-89.

Flynn B.B., [1987], The effects of setup time on output capacity in cellular manufacturing,
International Journal of Production Research, 25, 1761-1772.

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 20

Glover F., [1989], Tabu search � Part I, ORSA Journal on Computing, 1, 190-206.

Glover F., [1990a], Tabu search � Part II, ORSA Journal on Computing, 2, 4-32.

Glover F., [1990b], Tabu search: A tutorial, Interfaces, 20, 4, 74-94.

Goss S., Beckers R., Deneubourg J.L., Aron S., Pasteels J.M., [1990], How trail laying and trail
following can solve foraging problems for ant colonies, In: Behavioral Mechanisms of Food
Selection, R.N. Hughes ed., NATO-ASI Series, vol. G20, Berlin: Springler-Verlag.

Gravel M., Price W., Gagné C., [2000], Scheduling jobs in a Alcan aluminium factory using a
genetic algorithm, International Journal of Production Research, 38, 13, 3031-3041.

Gravel M., Price W., Gagné C. [2001], Scheduling continuous casting of aluminum using a
multiple-objective ant colony optimization metaheuristic, Document de Travail, Faculté des
Sciences de l’Administration, Université Laval, Québec, Canada. (submitted for
publication).

Graves S.C., [1981], A review of production scheduling, Operations Research, 29, 646-675.

Hax A.C., Candea D., [1984], Production and inventory management, Prentice-Hall Inc.,
Englewood Cliffs, N.J.

Johnson D.S., McGeoch L.A., [1997], The traveling salesman problem: a case study in local
optimization, Local Search in Combinatorial Optimization, E.H.L. Aarts & J.K. Lenstra
editors, John Wiley and Sons Ltd., pp. 215-310.

Kanellakis P.-C., Papadimitriou C.H., [1980], Local search for the asymmetric traveling
salesman problem, Operations Research, 28, 5, 1087-1099.

Koulamas C., [1994], The total tardiness problem: review and extensions, Operations research,
42, 6, 1025-1041.

Koulamas C., [1997], Polynomially solvable total tardiness problems: review and extensions,
Omega, 25, 2, 235-239.

Krajewski L.J., King B.E., Ritzman L.P., Wong D.S., [1987], Kanban, MRP and shaping the
manufacturing environment, Management Science, 33, 39-57.

Lawler E.L., [1977], A "pseudopolynomial" algorithm for sequencing jobs to minimize total
tardiness, Annals of Discrete Mathematics, 1, 331-342.

Lawler E.L., Lenstra J.K., Rinnooy-Kan A.H.G., Shmoys D.B., [1985], The traveling salesman
problem, Wiley, New York.

Maccarthy B.L., Liu J. [1993], Addressing the gap in scheduling research: a review of
optimization and heuristic methods in production scheduling, International Journal of
Production Research, 31, 1, 59-79

McKay K.N., Wiers V.C.S., [1999], Unifying the theory and practice of production scheduling,
Journal of Manufacturing Systems, 18, 4, 241-255..

Michel R., Middendorf M., [1999], An ACO algorithm for the shortest common supersequence
problem, In: D. Corne, M. Dorigo and F. Glover Editors, New Ideas in Optimization,
McGraw-Hill.

Morton T.E., Pentico D.W., [1993], Heuristic scheduling systems: with applications to
production systems and project management, John Wiley & Sons, New York.

Scheduling a single machine with sequence-dependent …; C. Gagné, W.L. Price, M. Gravel

 21

Panwalkar S.S., Dudek R.A., Smith M.L., [1973], Sequencing research and the industrial
scheduling problem, Symposium on the Theory of Scheduling and its Applications,
Beckmann M., Goos P.G., Zurich H.P.K., ed., 29-38.

Pinedo M., [1995], Scheduling theory, algorithms and systems, Prentice-Hall, NJ.

Potts C.N., Van Wassenhove L.N., [1982], Decomposition algorithm for the single machine total
tardiness problem, Operations Research Letters, 1, 177-181.

Ragatz G.L., [1993], A branch-and-bound method for minimum tardiness sequencing on a single
processor with sequence dependent setup times, Proceedings: Twenty-fourth Annual
Meeting of the Decision Sciences Institute, 1375-1377.

Reinelt G., [1994], The traveling salesman: computational solutions for TSP applications,
Springler-Verlag, New York.

Rubin P.A., Ragatz G.L. [1995], Scheduling in a sequence dependent setup environment with
genetic search, Computers and Operations Research, 22, 2, 85-99.

Tan K.C., Narasimhan R., [1997], Minimizing tardiness on a single processor with sequence
dependent setup times: a simulated annealing approach, Omega, 25, 6, 619-634.

Tan K.C., Narasimhan R., Rubin PA., Ragatz G.L., [2000], A comparison of four methods for
minimizing total tardiness on a single processor with sequence dependent setup times,
Omega, 28, 313-326.

Wilbrecht J.K., Prescott W.B., [1969], The influence of setup time on job performance,
Management Science, 16, B274-B280.

Wisner J.D., Siferd S.P., [1995], A survey of U.S. manufacturing practices in make-to-order
machine shops, Production and Inventory Management Journal, 1, 1-7.

Wortman D.B., [1992], Managing capacity: getting the most from your firms assets, Industrial
Engineering, 24, 47-49.

Yang W.-H., Liao C.-J., [1999], Survey of scheduling research involving setup times,
International Journal of Systems Science, 30, 2, 143-155.

	Caroline Gagné (1), Wilson L. Price (2) & Marc Gravel (1)
	A
	Abstract
	1. Introduction
	2. Literature survey
	3. Ant colony optimization (ACO)
	3.1 The basic algorithm
	3.2 Extensions to the basic algorithm
	Transition rule
	Local updating of the trail
	Local improvement rules
	Candidate lists

	4. An algorithm for solving the scheduling problem
	
	4.1 Components of the algorithm for the scheduling problem
	Initial order
	Distance matrices
	Local improvement methods
	Candidate list
	Parameter values

	4.2 Including look-ahead information

	5. Numerical experiments
	6. Computational results
	7. Conclusions
	Acknowledgements

	References

