
Embedded Processor Characteristics Specification Through 
Multiobjective Evolutionary Algorithms 

K.Ghali 1 and O.Hammami 2 
ENSTA 

32 Bvd Victor 
75739 Paris 
FRANCE 

{ghali, hammami}@ensta.fr 
1 IEEE Student member   2 IEEE member 

  
Abstract—The design of a superscalar microprocessor for a 
given workload is a tremendous task by itself due to the 
numerous parameters involved and the ranges of their 
possible values. If power consumption and area are also to be 
considered then the problem is even more complicated and 
requires a suitable framework and methodology for exploring 
the vast multidimensional space for such a problem. In this 
paper we propose such a framework based on multi-objective 
evolutionary algorithms and demonstrate its use on a 
significant size example. 

 
Index Terms—Embedded, multi-objective, processor. 

I. INTRODUCTION 

     Intellectual properties are increasingly used in system on chip 
designs and involve complex function such as microprocessors, 
DSP and various specialized functions. The advent of system level 
design methodologies and languages stimulate the use of soft IP 
described in a high level language such as SystemC and which are 
therefore more amenable to parameterization. Several vendors 
propose parameterizable microprocessors with associated software 
tools. However parameterization is workload driven as well as 
design constraints dominated by for example chip area and power 
consumption.  It is impossible to manually explore the huge space 
of the all possible configurations and clearly an automatic tool for 
such a purpose would be of high value. The problem at hand is the 
automatic exploration and solutions search in a multidimensional 
solution space for the selection of the best characteristics of an 
ASIP (Application Specific Integrated Processor).  

II. MOEA and NSGA-II 

     Multi-objective evolutionary algorithms (MOEA) tackle 
problems with multiple objectives and produce a set of optimal 
solutions known as the Pareto-optimal solutions. The MOEA share 
many of the basic features of genetic algorithms such as the concept 
of population, individuals, fitness function although in a 
multidimensional space.  A number of multi-objective evolutionary 
algorithms have been proposed over the past decade [2,3] among 
them the PAES and SPEA algorithms . Recently a new MOEA the 
NSGA-II algorithm [4] was proposed which outperforms both 
PAES (Pareto-archived evolution strategy) and SPEA (strength 

Pareto EAs) multi-objective EAs. We selected the NSGA-II 
algorithm to conduct experimental studies in the framework of 
embedded processor microarchitecture features selection under the 
constraints of power consumption, execution time and area. The 
NSGA-II was implemented using the associated NSGA-II Library 
and accordingly modified to interface with various software tools 
used to evaluate the three main parameters: (1) power 
consumption, (2) area estimation (3) execution time.  The NSGA-II 
algorithm was executed on a pool of 48 networked PCs and 
produced very quick results. 

A. Genome Structure 

     The characteristics of a genome includes cache organization, 
number of floating point and integer functional units, pipeline 
organization (fetch, decode, issue).  

B. Power Consumption 
     Power consumption is estimated with the help of the Wattch 
tool. Wattch is a framework for analyzing and optimizing 
microprocessor power dissipation at the architecture-level.  Wattch 
is 1000X or more faster than existing layout-level power tools, and 
yet maintains accuracy within 10% of their estimates as verified 
using industry tools on leading-edge designs.   

C. Area Estimation 
     Area estimation of superscalar processor configuration was 
approximated by the sum of caches area, the floating point units 
and individual computation units. The first was evaluated with the 
CACTI tool, the second with the FUPA Stanford utility and finally 
the computation units were evaluated based on published data in 
the literature. 

D. Execution Time 
     Execution time was evaluated the SimpleScalar superscalar 
simulator which is thoroughly described in the next section. 

The three values are the values which characterize the evaluation of 
an individual in the framework of NSGA-II. Classification of all the 
solutions is based on those characteristics. 

0-7803-7912-8/03/$17.00 © 2003 IEEE



III. TURBO-CODERS 

     Turbo coders have been proposed for several embedded 
applications in the field of wireless third generation mobile 
telecommunications (UMTS), satellite and deep spaced 
communications and even for disk drives.  All those applications 
need high coding gains and performances close to Shannon’s limit in 
terms of error bit rate. Those gains and performances can be 
achieved through the use of convolutional concatenated codes.  A 
concatenated encoder is composed of two or more recursive and 
systematic convolutional encoders connected in an encoding 
network.  Due to the high computation of turbo-codes several IP 
and VLSI implementation have been proposed to achieve high 
throughput. In this paper we selected the turbo-coding as our 
workload on which to apply the NSGA-II algorithm for the 
purpose of an embedded processor software implementation. 

IV. SUPERSCALAR SIMULATOR:   SIMPLESCALAR 

     SimpleScalar is an execution driven cycle accurate instruction set 
simulator (ISS) of a superscalar microprocessor [10]. A complete 
development chain (compiler, debugger, profiler) comes with the 
tool which allows the quick porting of any ANSI C application to 
SimpleScalar.  The SimpleScalar toolset is composed o f  a gcc 
compiler ported for the SimpleScalar architecture which generates 
SimpleScalar binary files. The SimpleScalar assembler and loader 
along with the necessary ported libraries produce SimpleScalar 
executables that can be fed directly into one of the provided 
simulators. The simulator themselves are compiled with the host 
platform’s native ANSI C compiler.  The support libraries can be 
modified in that case the glibc source must be installed, modified 
and built . The simulators come equipped with their own loader and 
thus you do not need to build the GNU binary libraries to run 
simulations. The toolset comes with a variety of simulators ranging 
from untimed functional simulators to cycle-accurate complex 
simulators. 

Table 1 – SimpleScalar Simulators  

Simulator Description 

sim-fast Functional  simulator 

(No time accounting)  

sim-safe Functional  simulator + 
alignment and access 
permissions checking 

sim-cache/sim-cheetah cache simulators 

sim-profile Functional  simulator + profiler 

sim-outorder Cycle accurate speculative out 
of order superscalar simulator 

 

The above tools represent the SimpleScalar toolset. 

The SimpleScalar microprocessor micro-architecture is derived from 
the MIPS-IV ISA with a semantics which is a superset of MIPS 
with a few exceptions: (1) delay slots are not used therefore 
instructions succeeding load, stores and control transfers are not 
executed, (2) load and stores support 2 addressing modes: indexed 
and auto-increment/decrement (3)  a square root instruction is 
included and (4) there is an extended 64 bits instruction encoding. 

The SimpleScalar microprocessor models an out-of-order 
superscalar architecture based on a RUU (Register Update Unit). 
The RUU exploits a reorder buffer to automatically rename 
registers and hold the results of pending instructions. However, 
completed instructions are retired in program order to the register 
file. The microarchitecture supports speculative execution. The 
memory system uses a load/store queue and store values are placed 
in this queue if the store is speculative. Load instructions are 
dispatched to the memory system when the addresses  of all 
previous stores are known and loads may be satisfied either by the 
memory system or by an earlier store value reading in the queue if 
their addresses match. Speculative loads may generate cache misses 
but speculative TLB misses stall the pipeline until the branch 
condition is known. The rich set of the various tunable cache 
parameters of the processor are described in the following tables. 

 

 

 

 

 

Table 2 – Processor Caches Parameters  

Cache 
Parameters 

Default 
value  

comments 

Cache parameters 
(nsets, bsize assoc, , 
repl) 

D: 128/32/4/l 

I: 512/32/1/l 

Basic cache parameters: 
associativity, block size 
nbr of sets, replacement 
policy 

dl1lat 1 cycle Hit latency of L1 cache 

dl2lat 6 cycles  Hit latency of L2 cache 

lat 18 cycles Main memory access 
latency 

width 8 bytes Main memory width 

The parameters of processor core are described in Table.3 
Table 3 – Processor Core Parameters  

Processor 

Parameters Default 
Values 

Comments 

decode width 4 decode width 

issue width 4 max issue width 

ruu 16 capacity of the RUU in 
instructions 

lsq 8 capacity of the load/store queue  

ifqsize 4 fetch width 

ialu   Nbr of int ALUs 

imult 1 Nbr of int mult/dividers 

memports 2 Nbr of L1 cache ports 

fpalu  4 Nbr of floating point ALUs 

fpmult 1 Nbr of floating point 
mult/dividers 

 



V. EXPERIMENTAL RESULTS 

     We applied the NSGA-II algorithm on the Turbo-decoder 
application and explored the impact of population size and number 
of generations. The population size value set was P = {13, 23, 33} 
and the number of generations value set was G = {5, 10, 20, 50, 
100, 200}. All the results are described below. 

 

 

Fig.1 For 5 generations – popsize = 13 

 

 

Fig. 2 For 5 generations – popsize = 23 

 

 

 

 

Fig.3   For 5 generations – popsize = 33 

 

Fig.4 For 50 generations – popsize = 13 

 

 

 



 

Fig.5 For 50 generations – popsize = 23 

 

 

Fig.6 For 50 generations – popsize = 33 

 

 

 

 

Fig.7 For 100 generations – popsize = 13 

 

 

 

Fig.8 For 100 generations – popsize = 23 

 

 

 



 

Fig.9 For 100 generations – popsize = 33 

 

 

 
 

Fig.10   200 generat ions – popsize = 23 

 

 
 

Fig.11 For 200 generations – popsize = 33 

 

 

VI. CONCLUSION 

 

     We presented in this paper a method for the production of ideal 
genome configurations in a multidimensional space for the 
optimization of execution time, surface area and power 
consumption. This methodology can easily be extended to take into 
account more micro-architectural parameters and more applications. 
Clearly the impact of population size affects the quality and 
density of the results as demonstrated in this paper. Those results 
stimulate an incremental approach to design automation where 
simulation accuracy is only emphasized on useful configurations.   

VII. 0.REFERENCES 

[1]  Luc Semeria, Andrew Seawright, Renu Mehra, Daniel Ng, Arjuna 
Ekanayake, Barry Pangrle, ‘RTL C-Based Methodology for 
Designing and Verifying a Multi-Threaded Processor’ ,39th DAC, 
june 10-14, 2002. 

[2] C. A. Coello Coello, D.A. Van Veldhuizen, G. B. Lamont , 
Evolutionary Algorithms for Solving Multi-Objective Problems , 
Vol 5, Genetic Algorithms and Evolutionary Computation  
Kluwer Academic Publishers; ISBN: 0306467623 

[3] E.Zitzler, K.Deb and L.Thiele, ‚’’ Multiobjective Evolutionnary  
Algorithms: A Comparative Case Study and the Strength Pareto 
Approach ‘’, IEEE Trans. On Evolutionary Computation’’, 
pp.257-271, 3(4), 1999. 

[4]  Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, T. Meyarivan, 
’A Fast and Elistist Multi-Objective Genetic Algorithm: NSGA-II’, 
Kanpur Genetic Algorithms Laboratory, Indian Institute of 
Technology Kanpur . 

[5] J.Soerensen, P.Birk and Z.Zvonar, “New Challenges for Integrated 
Circuits Solutions”, Wireless Personal Communications, Vol. 17, 
pp. 149-153,  June 2001.  



[6] F.Vahid and T.Givargis, “Platform Tuning for Embedded Systems 
Design”, IEEE Computer, Vol.34, No.3, March 2001, pp. 112-
114. 

[7] B.Ramakrsihan Rau and M.S.Schlansker, “ Embeded Computer 
Architecture and Automation”, IEEE Computer, Vol.34, No.4, 
April 2001. 

[8] K.Keutzer, S.Malik, A.Richard Newton, J.M.Rabey and 
A.Sangiovanni-Vincentelli, “ System-level Design: 
Orthogonalization of Concerns and Platform-Based- Design”, 
IEEE Trans. On Computer Aided-Design of Integrated Circuits 
and Systems, Vol.19, No.12, Dec.2000. 

[9] T.Y.Yen and al., “Hardware-Software Co-synthesis of Distributed 
Embedded Systems” , Kluwer, 1997.  

[10] R.E.Gonzalez, “Xtensa: A Configurable and Extensible 
Processor”, IEEE Micro, Mar./Apr. 2000, pp.60-70. 

[11] Simplescalar Manual: www.simplescalar.org 

[12]  M.F.Jacome and H.P.Peixoto, “ A Survey of Digital Design 
Reuse”, IEEE Design & Test of Computers, pp.98-107, May-June 
2001. 

[13] D. Brooks, V. Tiwari, and M. Martonosi, "Wattch: A Framework 
for Architectural-Level Power Analysis and Optimizations," Proc. 
27th. Int'l Symp. on Computer Architecture, pp. 83--94, June 
2000. 

[14] Patrick Robertson, Peter Hoeher, Optimal and sub-optimal 
maximum a posteriori algorithms suitable for turbo decoding, 
European Trans. On Telecommun.,Vol. 8, No. 2, March-April 
1997, p. 119-125. 

[15] Joachim Hagenauer, Elke Offer, and Lutz Papke, Iterative 
decoding of binary block and convolutional codes, IEEE Trans. 
Inform. Theory, Vol. 42,No. 2, March 1996, p. 429-445. 

[16] G.De Micheli, R. Ernst, and W. Wolf, Readings in 
Hardware/Software Codesign , Morgan Haufmann Publisher, San 
Mateo, CA, 2001. 

[17] A. Wang, E. Killian, D. Maydan, and C. Rowen, 
“Hardware/software instruction set configurability for system-on-
chip processor” in Proc. Design Automation Conf., June 2001, 
pp.184-188. 

[18]   Xtensa microprocessor, Tensilica 
nc.(http://www.tensilica.com). 

[19]    ARCtangent processor, Arc International 
(http://www.arc.com). 

[20]  Jazz DSP, Improv Systems Inc. (http://www.improvsys.com). 

[21] SP-5flex DSP core, 3DSP Corp. (http://www.3dsp.com). 

[22] R. Sucher, “Carmel: A configurable long instruction word 
DSP core” in Microprocessor Forum, Oct. 1998. 

[23] J. A. Fisher, “Customized instruction sets for embedded 
processors” in Proc Design Automation Conf. June 1999, pp. 
253-257. 

[24] R. Cloutier and D.E. Thomas, “Synthesis of pipelined 
instruction set processors” in Proc. Design automation Conf., June 
1993. 

[25] I. J. Huang and A. M. Despain, “Generating instruction sets 
and microarchitectures from applications” in Proc. Int. Conf. 
Computer-Aided Design, Nov. 1994, pp. 391-396. 

[26] A. Kitajima, M. Itoh, J. Sato, A. Shiomi, Y. Takeuchi, and 
M. Imai, “Effectiveness of the ASIP design system PESA-III in 
design of pipelined processors”, in  Proc. Asia south Pacific 
Design Automation Conf., Jan. 2001, pp. 649-654.  

[27] . Choi, J. H. Yi, J. Y. Lee, I. C. Park, and C. M. Kyng, 
“Exploiting intellectual properties in ASIP designs for embedded 
DSP software” in Proc. Design Automation Conf., June  1999, pp. 
939-944. 

[28] A. Pyttel, A. Sedlmeier, and C. Veith, « PSCP : A scalable 
parallel ASIP architecture for reactive systems” in Proc. Design 
Automation Test Europe Conf., Mar. 1998. 

[29] V. S. Lapinski, Algorithms for Compiler-assisted Design 
Space Exploration of Clustred VLIW ASIP datapaths, Ph D. 
thesis, University of Texas at Austin, May 2001. 

 

[30] S. Aditya, B. R. Rau, and V. Kathail, “Automatic 
architectural synthesis of VLIW and EPIC processors”, in Proc. 
Int. Symp. System-level Synthesis, Nov. 1999, pp. 107-113. 

[31] W. Zhao and C. A. Papachristou, “An evolution 
programming approach on multiple behaviours for the design of 
application specific programmable processors”, in Proc. European 
design Test Conf., Mar. 1996, pp. 144 -150. 

[32] K. Kim, R. Karri, and M. Potkonjak, “Synthesis of 
application specific  programmable processors“, in Proc. Design 
Automation Conf. June 1997, pp. 353-358. 

[33] K. Kucukcakar, “An ASIP design methodology for 
embedded system”, In Proc. Int. Symp. HW/SW Codesign . May 
1999, pp. 17-21. 

[34] H. Choi, J. S.Kim, C. W. Yoon, I. C. Park, S. H. Hwang, and 
C. M. Kyung, “Synthesis of application specific instructions for 
embedded DSP software”, IEEE Trans. Computers, vol. 48, no. 6, 
pp. 603-614, June 1999. 

[35] I. J. Huang and A. M. Despain, “Synthesis of instruction 
sets for pipelined microprocessors”, in Proc. Design Automation 
Conf. ,June 1994. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 


