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Early results from screening combinatorial libraries have been disappointing with libraries either failing to
deliver the improved hit rates that were expected or resulting in hits with characteristics that make them
undesirable as lead compounds. Consequently, the focus in library design has shifted toward designing
libraries that are optimized on multiple properties simultaneously, for example, diversity and druglike
physicochemical properties. Here we describe the program MoSELECT that is based on a multiobjective
genetic algorithm and which is able to suggest a family of solutions to multiobjective library design where
all the solutions are equally valid and each represents a different compromise between the objectives.
MoSELECT also allows the relationships between the different objectives to be explored with competing
objectives easily identified. The library designer can then make an informed choice on which solution(s) to
explore. Various performance characteristics of MoSELECT are reported based on a number of different
combinatorial libraries.

INTRODUCTION

The development of combinatorial chemistry techniques
during the past decade has revolutionized the processes
involved in the discovery of novel bioactive compounds in
the pharmaceutical and agrochemical industries.1,2 Initially
the focus in combinatorial library design was on selecting
diverse sets of compounds on the assumption that maximiz-
ing diversity would result in a broad coverage of bioactivity
space3 and hence would maximize the chances of finding
hits. However, early results from combinatorial libraries were
disappointing4,5 with libraries either failing to deliver the
improved hit rates that were expected or resulting in hits
that did not have “druglike” characteristics. Thus, it is now
evident that diversity alone is an insufficient criterion for
library design and other factors should also be taken into
account. For example, the physicochemical properties of the
molecules that determine effects such as ADME6 are
important as well as other factors such as cost and availability
of reactants. Consequently, the focus in combinatorial library
design has now shifted toward designing libraries based on
a number of properties simultaneously.4,7-10

The techniques that have been developed for designing
combinatorial libraries can be divided into reactant-based and
product-based methods. In reactant-based methods,3,11 opti-
mized subsets of reactants are selected on the assumption
that when they are combined combinatorially they will
approximate to an optimized set of products. However,

evidence suggests that more diverse libraries can be achieved
by performing the design in product space.12-14 The product-
based approaches are computationally demanding9 and are
typically implemented via an optimization technique such
as a genetic algorithm7,15-17 or simulated annealing.8,9,18,19

The SELECT program7 is an example of a product-based
approach to library design in which combinatorial subsets
are selected from a fully enumerated virtual library using a
genetic algorithm (GA). SELECT takes as input a virtual
library together with molecular descriptors that have been
calculated for each molecule within the library. Initially,
SELECT was developed to optimize a single objective,
namely, the diversity of the combinatorial subset using a
distance-based diversity index. Each chromosome of the GA
represents a combinatorial subset of the virtual library
encoded as lists of reactants selected from each reactant pool.
The GA begins with a population of individuals that are
initialized with random values and thus represent randomly
selected combinatorial subsets. A chromosome is scored by
enumerating the combinatorial subset it represents and then
measuring the diversity of the subset via a fitness function,
as shown by

Typically diversity is measured as the sum-of-pairwise
dissimilarities calculated using the cosine coefficient and
Daylight fingerprints, although other diversity indices and
other descriptors can also be used.13 The population is then
sorted according to fitness. Next, the GA enters an iterative
phase where individuals are chosen for reproduction using
roulette wheel parent selection, reproduction takes place via
mutation or crossover, the newly created individuals are
scored and inserted into the population replacing the worst
individuals, and the population is resorted. The iterations
continue until convergence is reached. The number of
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chromosomes selected for reproduction is determined by the
replacement rate; for example, a typical value is 10%.
Convergence occurs when there has been no change in the
fitness of the best individual for a user-specified number of
iterations. Most of the parameters of SELECT are configured
via an input file, for example, population size, the relative
rates of crossover versus mutation, and the replacement rate.
SELECT has been used to demonstrate the benefits of
performing product-based library design over reactant-based
design.12,13

Traditionally optimization techniques, such as genetic
algorithms and simulated annealing, have tended to deal with
a single optimization criterion or objective, i.e., the mini-
mization or maximization of a single measure or quantity.
However, most practical search and optimization applications
are characterized by the existence of many objectives against
which a final search result is measured. For example, as
already described, in the library design context such objec-
tives would typically include diversity, some measure of
druglikeness, and cost. However, optimal performance in one
objective often implies unacceptably low performance in one
or more of the other objectives. For example, libraries
designed on diversity alone have a tendency to contain
molecules that exist in nondruglike regions of chemistry
space, e.g., molecules with high molecular weights.4 Thus,
there is a need for compromise and the search for solutions
that offer acceptable performance in all objectives, even
though they may be suboptimal in the single objective sense.
One way of achieving a compromise is to combine objectives
via a weighted-sum fitness function. For example, SELECT
has been extended to perform multiobjective optimization
in product space where other properties of the libraries can
be optimized simultaneously with diversity, such as the
physicochemical property profiles of the libraries. The fitness
function now has the form

where the weights (w1, w2, w3, etc.) are user defined and the
properties (property1, property2, etc.) can include physico-
chemical property profiles such as molecular weight profile
or other calculable properties such as cost. Typically, each
objective is normalized before being combined. An outline
of the GA implemented in SELECT is shown in Figure 1.

The benefits of performing multiobjective optimization in
library design are illustrated in Figure 2 for an amide library.
SELECT was configured to design 30× 30 combinatorial
subsets from a two-component amide library consisting of
100 amines and 100 carboxylic acids (representing a virtual
library of 10K amides). The molecular weight profile of the
virtual library is shown in Figure 2a. Two runs of SELECT
were performed. In the first, the combinatorial subset (subset
1) was optimized on diversity alone, where diversity was
measured as the normalized sum-of-pairwise dissimilarities
using Daylight fingerprints and the cosine coefficient.12 The
maximum diversity achieved was 0.596. In the second run,
the subset (subset 2) was optimized on both diversity and
molecular weight profile. Specifically, the aim was to
maximize diversity, using the same diversity measure as
before, while simultaneously minimizing the root-mean-
square deviation (rmsd) between the molecular weight profile
of the library and the molecular weight profile found in the

Figure 1. Overview of the GA implemented within SELECT.

f(n) )
w1(diversity)+ w2(property1)+ w3(property2)+ ...

Figure 2. (a) Molecular weight profile of the 10K virtual amide
library (white) is shown superimposed on the molecular weight
profile found in WDI (black). (b) Molecular weight profiles of
amide libraries designed using SELECT are superimposed on the
molecule weight profile found in WDI (black). Subset 1 (white) is
optimized on diversity alone, whereas subset 2 (gray) is optimized
on molecular weight profile and diversity simultaneously. The
relative diversities of subset 1 and subset 2 are 0.596 and 0.582,
respectively. It can be seen that an improved molecular weight
profile is achieved at the expense of a small change in diversity.
(c) A further improvement in the molecule weight profile is
achieved by assigning penalties to the various bins that reflect their
relative importance, subset 3.
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World Drug Index (WDI).20 The weighted-sum fitness
function was specified as

whereD is diversity, included in the fitness function as 1-
D so that the termw1(1 - D) is minimized;∆MW is the
normalized rmsd between the two profiles;w1 and w2 are
set to 1.0 so that the objectives are weighted equally. The
diversity of subset 2 is 0.582. Figure 2b shows the molecular
weight profiles of subset 1 (white) and subset 2 (gray)
superimposed on the molecular weight profile found in WDI
(black). It can be seen that overall a more druglike molecular
weight profile is achieved for subset 2 at the expense of a
relatively small change in diversity. The increase in oc-
cupancy of the higher molecular weight bins in subset 2
relative to subset 1 is due to the characteristics of the virtual
library itself (there are many high molecular weight com-
pounds in the virtual library as seen in Figure 2a) and the
fact that all bins are equally weighted in the rmsd calculation.
The occupancy of the bins representing high molecular
weights can be reduced by adopting a strategy similar to
that described by Brown et al.,9 where penalties are assigned
to individual bins to reflect their relative importance, as
shown in Figure 2c for subset 3.

A similar weighted-sum approach has been used in several
other programs for library design,8-10 and there are many
other examples in computational chemistry where multiple
selection criteria are combined through the use of a weighted-
sum fitness function. For example, in the GOLD program
for flexible docking the fitness function of its GA involves
weighted components that reflect contributions due to
hydrogen bonding, steric interactions, and the internal energy
of the ligand.21

The advantage of combining multiple objectives via a
weighted-sum fitness function is that a single compromise
solution is produced. However, there are many limitations
to such an approach. These are summarized as follows:

(a) The definition of the fitness function can be difficult
especially with noncommensurable objectives; for example,
in library design it is not obvious how diversity should be
combined with cost.

(b) The setting of the weights is nonintuitive; for example,
in the SELECT program several trial-and-error experiments
may be required to choose appropriate weights.22

(c) The fitness function determines the regions of the
search space that are explored, and combining objectives via
weights can result in some regions being obscured.

(d) The progress of the search or optimization process is
not easy to follow since there are many objectives to monitor
simultaneously.

(e) The objectives may be coupled, thus implying conflict
and competition, which can make it more difficult for the
optimization process to achieve reasonable or acceptable
results.

(f) A single solution is found which is typically one among
a family of solutions that are all equivalent in terms of the
overall fitness, although they may have different values of
the individual objectives. For example, consider a two-
objective problem where the fitness function is defined as

wherex andy are hypothetical objectives andw1 andw2 are
both set to unity. The solutionx ) 0.4,y ) 0.5 has the same
fitness (0.9) as the potential solutionx ) 0.5, y ) 0.4, and
thus both solutions can be considered as equivalent; typically,
however, only one of them will be found.

Some of these limitations are illustrated in Figure 3, which
shows the results of 20 runs of SELECT for the amide library
design problem described previously. The libraries are
optimized on diversity and molecular weight profile simul-
taneously. They-axis is reversed so that diversity decreases
with distance from the origin, and the aim is to find a solution
that is as close to the origin as possible. The triangles show
the results found when both weights,w1 andw2, are unity
(10 runs). These points appear to cluster in the top left-hand
corner of the graph, favoring low (good) values of∆MW
with relatively poor values for diversity. The average value
of the weighted-sum fitness function is 1.163 (standard
deviation 0.004). The small variation in values is due to the
stochastic nature of the GA. Increasing the relative impor-
tance of diversity by adjusting the weights tow1 ) 2 andw2

) 0.5 results in a cluster of solutions with improved diversity
but at the expense of higher values of∆MW, shown by the
circles (five runs). The diamonds show results obtained for
w1 ) 10 andw2 ) 1, respectively (five runs), with the points
shifted further in favor of diversity at the expense of the
molecular weight profiles of the libraries. Each of the
solutions found represents a different compromise between
the two objectives, and all are equally valid. Thus, finding
an acceptable solution using a weighted-sum fitness function
may require that many runs are performed using different
weights to ensure that adequate coverage of the search space
is achieved.

MULTIOBJECTIVE OPTIMIZATION

As seen above, multiobjective optimization problems tend
to be characterized by a family of alternative solutions that
are all considered equivalent in the absence of additional
information. Multiple solutions arise even in the simplest
case of two competing objectives, and in general, as the
number of objectives increases the problem of finding a
satisfactory compromise solution rapidly becomes increas-
ingly complex. Generally, a hypersurface exists in the search
space that represents a continuum of solutions where all the
solutions are seen as equivalent and they all represent
compromises or tradeoffs between the various objectives.

Figure 3. SELECT configured to choose libraries optimized on
two objectives simultaneously, namely, diversity and molecular
weight profile. The effect of varying the relative weights of the
objectives is shown by the three distinct clusters of solutions.

f(n) ) w1(1 - D) + w2∆MW

f(n) ) w1x + w2y
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Conventional optimization techniques such as gradient-
based and simplex-based methods, and also less conventional
ones such as simulated annealing, are difficult to extend to
the true multiobjective case, because they are not designed
with multiple solutions in mind. In practice, multiobjective
problems have to be reformulated as a single objective prior
to optimization, leading to the production of a single solution
per run of the optimizer. Evolutionary algorithms, however,
operate with a population of individuals and are thus well
suited to search for multiple solutions in parallel; hence they
can be readily adapted to deal with multiobjective search
and optimization. Fonseca and Fleming give a thorough
survey of various approaches to multiobjective optimization23

and have developed a multiobjective evolutionary framework
called MOGA (MultiObjective Genetic Algorithm).24

In MOGA, multiple objectives are handled independently
without summation and without the need for normalization.
The method attempts to map out the hypersurface in the
search space where all the solutions are seen as equivalent.
The continuum of points on the hypersurface is referred to
as a frontier or surface. The actual solutions are called
nondominated or Pareto solutions. (Pareto was a French
mathematician who dealt with this issue toward the end of
the nineteenth century.) In multiobjective optimization, a set
of nondominated solutions is sought rather than a single
solution. A nondominated solution is one where an improve-
ment in one objective results in a deterioration in one or
more of the other objectives when compared with the other
solutions in the population. Thus, one solution dominates
another if it is either equivalent or, better, in all the objectives
and, strictly, it is better in at least one objective. In MOGA,
the ranking of the population is based on dominance (also
known as Pareto ranking) instead of ranking based on fitness
that is used in a standard GA. Pareto ranking allows the
population to map out the Pareto frontier or tradeoff surface
by evolving multiple nondominated solutions simultaneously.

Consider a problem with two objectivesf1 and f2 where
the aim is to minimize both of the objectives, as illustrated
in Figure 4. The graph represents a number of potential
solutions to the problem with each point representing a pair

of values that reflect the two objectives. If lines parallel to
the axes are drawn from each point, a solution is nondomi-
nated if the square area bounded by the two lines and the
axes does not contain any other points. The nondominated
or Pareto solutions are represented by the solid circles. In
MOGA, individuals are ranked according to the number of
times they are dominated; thus the nondominated solutions
are given rank zero and the dominated solutions (unfilled
circles) are given ranks as shown.

Pareto frontiers have been used in many applications of
multiobjective optimization; see, for example, the review
article by Coello Coello.25 The only application to date in
chemoinformatics of which we are aware is the work of
Handschuh et al.,26 who have used Pareto optimization in
the GA they developed for the flexible superposition of three-
dimensional structures. Their method finds the maximum
common substructures (MCSS) between two molecules. The
search for the MCSS involves two criteria: the number of
atoms in the substructure and the fit of the matching atoms.
These are conflicting criteria since a larger MCSS will by
definition have a larger deviation in the coordinates of the
superimposed atoms when the larger MCSS is a superset of
the smaller. Rather than attempting to combine the different
criteria into a single weighted-sum fitness function, a set of
Pareto solutions is obtained at the end of each run whereby
an optimal geometric fit is found for each possible size of
MCSS.

We have adopted the MOGA approach in a new develop-
ment of SELECT, called MoSELECT (MultiObjective
SELECT),27,28 for the design of combinatorial libraries
optimized on multiple objectives. MoSELECT overcomes
many of the limitations of the weighted-sum approach used
in SELECT. In the following sections we begin by describing
the modifications made to SELECT to produce MoSELECT.
We then describe a series of experiments that have been
performed to test the operation of MoSELECT and to
compare its performance with SELECT. The experiments
have been performed on a number of different combinatorial
libraries and library design objectives.

MOSELECT

The algorithm used in MoSELECT is outlined in Figure
5. The definition of chromosomes and the reproduction

Figure 4. Potential solutions in a two-objective (f1 andf2) problem.
The circles represent pairs of values that reflect the two objectives.
The solid circles are nondominated solutions and fall on the Pareto
frontier. Dominated solutions are shown as unfilled circles. In
MOGA, individuals are ranked according to the number of times
they are dominated; thus the nondominated solutions are given rank
zero and the dominated solutions are given ranks as shown.

Figure 5. Basic structure of the MOGA implemented in MoSE-
LECT.
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operators are the same as used in SELECT; however, in
MoSELECT, individuals are chosen for reproduction using
Pareto ranking based on the values of the individual
objectives rather than the weighted-sum fitness function
implemented in SELECT. Each time a new chromosome is
produced the values of all of the objectives are calculated
and stored independently with the chromosome. After each
iteration of the MOGA the rank of each chromosome is
calculated as the number of chromosomes in the population
by which it is dominated; see Figure 4. Thus, nondominated
individuals are assigned rank zero, individuals that are
dominated by one other chromosome are assigned rank one,
and so on. Roulette wheel parent selection is employed to
bias parent selection toward the “best” members of the
population. Each chromosome is assigned a segment of the
roulette wheel with segment size determined by rank so that
individuals are selected for reproduction with a probability
that is inversely proportional to rank (or dominance).

In SELECT, performance is monitored by the progress of
the fittest chromosome and the program converges when
there is negligible change in this. In MoSELECT, however,
there is no longer a single value assigned to an individual;
hence the convergence test used in SELECT cannot be
applied. Thus, in the initial experiments both SELECT and
MoSELECT are run for a fixed number of iterations to allow
a comparison to be made. Potential convergence criteria that
could be applied in MoSELECT are investigated in later
experiments.

EXPERIMENTAL DETAILS

The combinatorial libraries used in the experiments are
shown in Figure 6. They are a two-component amide library,
a two-component 2-aminothiazole library, and a three-
component thiazoline-2-imine library. The amide library
represents a virtual library of 10K compounds formed by
the coupling of 100 amines and 100 carboxylic acids,
extracted at random from the SPRESI database.29 The
2-aminothiazole virtual library of 12 850 products consists
of 74 R-bromoketones coupled with 170 thioureas. In this
case, reactants for each pool were extracted from the
Available Chemicals Directory (ACD)30 and filtered using
the ADEPT software31 (reactants having molecular weight
greater than 300 and more than 8 rotatable bonds were
removed, and a series of substructure searches were per-
formed to remove reactants that contain undesirable sub-
structural fragments). The thiazoline-2-imine library consists
of 70 092 virtual products constructed from 12 isothiocyan-
ates, 99 amines, and 59 haloketones, again extracted at
random from SPRESI.

Each virtual library was enumerated, and various properties
were calculated for the product molecules comprising each
library (namely, 1024-bit Daylight fingerprints, molecular
weight (MW), number of rotatable bonds (RB), number of
hydrogen bond donors (HBD), and number of hydrogen bond
acceptors (HBA)). Except where otherwise stated, diversity
was calculated as the sum of pairwise dissimilarities using
the cosine coefficient.7 In the examples presented here the
virtual libraries are enumerated upfront and descriptors are
calculated for all products prior to running MoSELECT.
However, the MOGA technique is not restricted to the
descriptors used here nor is it restricted to prior enumera-
tion: the technique can also be applied when libraries are
enumerated and descriptors are calculated on the fly.

THE AMIDE LIBRARY

The first experiment was designed to investigate the overall
performance of MoSELECT. The aim was to select 30×
30 combinatorial subsets from the 10K amide virtual library
using two objectives, namely, diversity and molecular weight
profile. As in the libraries illustrated in Figures 2 and 3, the
aim was to maximize diversity while minimizing the rmsd
between the molecular weight profile of the library and the
molecular weight profile found in WDI. MoSELECT was
run for 5000 iterations with a population size of 50. The
progress of the search is shown in Figure 7a. As in Figure
3 they-axis is reversed so that the direction of improvement
for both objectives is toward the bottom left-hand corner of
the graphs. In each of the graphs the Pareto frontier, i.e., the
set of nondominated individuals in the current population,
is represented by circles with the crosses representing the
dominated individuals. The top left-hand graph shows the
initial population, with the remaining graphs showing
progress at 100, 500, 1000, 2500, and 5000 iterations. The
improvement in multiobjective space is demonstrated by the
advance of the Pareto frontier toward the origin, especially
during the first 1000 iterations. Negligible change in the
position of the Pareto frontier is seen over the next 4000
generations. As the search progresses, the number of solu-
tions that are nondominated increases from 4 in the initial
population to 17 in the final population. Figure 7b gives an
expanded view of the final results after 5000 iterations, where
it can be seen that the result of the search is a family of
equivalent solutions on the Pareto frontier that span a range
of values in each objective. The competing nature of the two
objectives is clearly seen with increasing diversity leading
to solutions with less favorable molecular weight profiles,
and vice versa; thus the relationship between the two
objectives is apparent from a single run of MoSELECT.

COMPARISON OF SELECT AND MOSELECT

The next set of experiments was designed to examine the
robustness of MoSELECT and to compare its performance
with SELECT. The MoSELECT run described in the
previous experiment was repeated 10 times, and the family
of nondominated solutions found at the end of each run was
noted. These results were then compared with the 20 runs
of SELECT already reported in Figure 3, for different relative
weights attributed to diversity and molecular weight profile
in the weighted-sum fitness function. Finally, SELECT was
configured to optimize each objective separately in order to

Figure 6. (a) Amide library. (b) 2-Aminothiazole library. (c)
Thiazoline-2-imine library.
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find optimized values of each objective independently. The
values found over 10 runs were an average of 0.593 for
diversity (standard deviation 0.002) and 0.585 for∆MW
(standard deviation 0.002).

The results of the comparison are shown in Figure 8. The
nondominated solutions found in the 10 MoSELECT runs
are shown as crosses. The even spread of solutions indicates
that the Pareto frontier has been mapped efficiently. The
dashed lines show the optimum values achieved when
diversity and molecular weight profile are optimized inde-
pendently, and it can be seen that the MoSELECT runs also
include solutions at these extremes.

The results for the runs of SELECT shown in Figure 3
are also included in Figure 8 as the solid triangles, circles,
and diamonds. It can be seen that one run of SELECT will
produce a single solution that typically lies somewhere on
the Pareto frontier of a MoSELECT run; i.e., the solution is
likely to be close to one of those within a family of solutions
produced by MoSELECT. However, in general, each time
SELECT is run, a different member of the family will be
found and, as described in the Introduction, it is usually

necessary to vary the relative weights of the two objectives
in order to find an acceptable solution. This has the effect
of mapping out the Pareto surface by performing multiple
runs, whereas MoSELECT will produce solutions that span
the entire Pareto frontier in a single run. There is some
variation in the quality of the solutions found by MoSELECT
due to the stochastic nature of a MOGA; however, even the
worst family of solutions found by MoSELECT contains
individuals that dominate many of the SELECT solutions.
Furthermore, there are no significant overheads associated
with adopting Pareto ranking with the MoSELECT runs
taking on average 27 min compared with 31 min for the
SELECT runs (SGI R10K workstation running at 195 MHz).
The average number of solutions found for the MoSELECT
runs is 31 (standard deviation 12), out of a population of
50, which contrasts with the single solution found in a run
of SELECT. Once a family of solutions has been found, the
user can then browse through them and choose one that is
acceptable based both on the objectives used in the search
and on other criteria, for example, availability of reactants.

CONVERGENCE CRITERIA IN MOSELECT

As mentioned previously, SELECT is usually run with a
convergence criterion that is used to terminate the search.
Convergence is reached when no change is seen in the fitness
function of the best individual solution over 250 iterations
(measured at 50 iteration intervals). MoSELECT, however,
aims to identify a family of nondominated solutions, all of
which are equally valid but which may have different values
for the objectives, There is no longer a single summed value
assigned to a potential solution; thus the convergence
criterion used in SELECT is inappropriate for MoSELECT.

The next experiments were designed to investigate the
effect of two different convergence criteria that have been
implemented in MoSELECT. The first is an adaptation of
that used in SELECT and attempts to monitor the progress
of the Pareto frontier, rather than the single best solution
monitored in SELECT. Once the initial population has been
created, a copy of the nondominated set is maintained. The
search then proceeds for some given number of iterations,
for example 50, after which the current nondominated set is
compared with the previously stored nondominated set. If

Figure 7. (a) Progress of a MoSELECT run for the optimization
of an amide library using two objectives, namely, diversity and
molecular weight (MW). The nondominated solutions are shown
as filled circles with the dominated solutions shown as crosses. (b)
The final graph of (a) is shown expanded.

Figure 8. Distribution of nondominated solutions for the design
of 30 × 30 amide subset optimized on diversity and molecular
weight profile found over 10 runs of MoSELECT shown as crosses.
The results found in the SELECT runs shown in Figure 3 are
superimposed on the MoSELECT results. The dashed lines show
the optimum values achieved when diversity and molecular weight
profile are optimized independently.
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none of the chromosomes of the previous nondominated set
are dominated by the current nondominated set, then the
Pareto frontier is said to be unchanged over the 50 iterations.
The previous nondominated set is replaced by the current
nondominated set, and the search continues for another cycle
of 50. If the Pareto frontier is unchanged over a total of 250
iterations, then the search is terminated.

The distribution of Pareto frontiers over 10 runs of
MoSELECT with this convergence criterion in place is
shown in Figure 9. The distribution is similar to that shown
in Figure 8 when no convergence criterion is applied;
however, there does appear to be some loss of coverage of
the extreme values and the spread of frontiers is broader,
indicating some loss of robustness of the algorithm. Despite
the small loss of coverage, the use of such a convergence
criterion can be advantageous since the results are achieved
for a significantly reduced number of GA cycles. The mean
number of iterations to convergence for MoSELECT is 1715
(standard deviation 525), compared to the 5000 iterations
used in Figure 8. This can be compared with a mean of 1245
iterations (standard deviation 291) over 10 SELECT runs
for the same problem with the convergence criterion
described above. It should be noted that, although the average
number of iterations to convergence is greater for MoSE-
LECT than SELECT, a single MoSELECT run produces an
entire family of equivalent solutions whereas one run of
SELECT produces a single solution only. The large standard
deviations indicate a high degree of variability in the number
of iterations required to reach convergence in both algo-
rithms.

The second convergence criterion that was investigated
involves calculating the percentage of nondominated solu-
tions in the Pareto set as the search progresses. As already
seen in the earlier experiments, the number of nondominated
solutions in the population tends to increase throughout the
run (in the experiment illustrated in Figure 7 the number of
nondominated solutions increased from 4 to 17 out of a total
of 50 individuals); hence it was felt that this might provide
a method of testing for convergence. The aim was to
determine a suitable threshold such that once the percentage
of nondominated solutions in the population was above the
threshold the search would be terminated. This method,
however, did not prove to be effective since there was no
clear trend to indicate what a valid threshold should be. Thus,

it was concluded that if a test for convergence is desirable
for efficiency reasons, then the first convergence criterion
is more reliable, that is, monitoring the progress of the Pareto
frontier.

NICHE INDUCTION

One potential problem associated with GAs and with
MOGAs is that of genetic drift or speciation. This is where
the algorithm tends to “drift” toward areas where there are
clusters of closely matched solutions and leaves other areas
not well mapped out or not explored at all. The effect of
speciation can be reduced by employing the technique of
niche induction. In niche induction, the density of solutions
within hypervolumes of either the decision or the objective
variable spaces is restricted.

In MoSELECT, the objective space was used to attempt
to spread the distribution of solutions over the Pareto frontier.
After each iteration, the Pareto frontier is identified and each
solution on the frontier is compared with all others in order
to establish proximity in the various objectives. This is
implemented as an order-dependent process where the first
solution encountered is positioned at the center of a hyper-
volume, or niche. If the (absolute) difference in the objectives
of the next solution and the objectives of any solution that
already forms the center of a niche is within a given
threshold, for all objectives, the fitness (or dominance) of
the current solution is penalized; otherwise it forms the center
of a new niche. The threshold is also known as theniche
radius.This process is repeated for all solutions on the Pareto
frontier. The niche radius is set dynamically throughout a
run and is given as a percentage of the range of values that
exist for each objective on the current Pareto frontier. Figure
10 shows the final Pareto frontiers of a series of MoSELECT
runs for the amide library using different niche radii. The
first graph shows the solutions found when no niching is
performed; the subsequent graphs show the solutions found
as the niche radius is increased progressively up to 20%.
The loss of resolution as the niche radius is increased is
evident, and a niche radius of 10% provides a good
compromise for this library design problem having a
relatively small number of evenly spread solutions.

Figure 9. Distribution of nondominated solutions for the design
of 30 × 30 amide subset optimized on diversity and molecular
weight profile found over 10 runs of MoSELECT with convergence
criterion defined as no change in the progress of the Pareto frontier.

Figure 10. Effect of niche induction on the amide library. As the
niche radius is increased, the number of nondominated solutions is
decreased but the spread of the solutions is maintained.

COMBINATORIAL LIBRARY DESIGN USING A MOGA J. Chem. Inf. Comput. Sci., Vol. 42, No. 2, 2002381



CLUSTERING THE SOLUTIONS

Niche induction has been applied as the search progresses
in an attempt to increase the efficiency of the search by
reducing the number of potential solutions to explore and to
increase the effectiveness of the search by preventing
speciation. It could also be used as a way of clustering the
final Pareto set according to their spread in objective space.
An alternative way of clustering the solutions is according
to their similarities in terms of the actual molecules contained
in the libraries, or the degree of overlap of the libraries. This
is illustrated in Figure 11 for the amide 30× 30 subsets
where a MoSELECT run with a population of 50 resulted
in a final Pareto set consisting of 48 solution libraries. A
pairwise overlap matrix was constructed for the 48 libraries,
where the overlap between each pair of libraries was
calculated as the number of molecules in common between
the libraries divided by the library size. The distribution of
the resulting 1128 (N(N - 1)/2) overlap values is shown.

In principle, it is possible to implement niche induction
based on library comparisons during the search process itself;
however, comparing the libraries represented by chromo-
somes is more computationally demanding than merely
comparing the values of the objectives. Thus, the efficiency
of the search process would be compromised. An alternative
computationally more efficient approach would be to com-
pare the overlap of the selected reactants.

INCREASING THE NUMBER OF OBJECTIVES

So far, the performance of MoSELECT has been inves-
tigated for library designs based on just two objectives, which
is the simplest possible case of multiobjective optimization.
The following experiments investigated the effect of increas-
ing the number of objectives. The same amide library was
used with the number of objectives increased to five, namely,
diversity and profiles of the following properties: molecular
weight (MW), occurrence of rotatable bonds (RB), occur-
rence of hydrogen bond donors (HBD), and occurrence of
hydrogen bond acceptors (HBA) (the SMARTS definitions
for RB, HBD, and HBA are given in Table 1). The aim was
to minimize the difference in the distribution of each property
with respect to its distribution in WDI while simultaneously
maximizing diversity.

When there are more than two objectives, it is no longer
possible to show the tradeoffs between all the objectives in
a simple two-dimensional graph. Instead, tradeoffs between
multiple objectives can be illustrated using parallel graphs.
Figure 12 shows a parallel graph representation of the Pareto

frontier for the two-objective problem illustrated in Figure
10 at 10% niching. The horizontal axis represents the two
objectives, namely, molecular weight profile and diversity,
and the vertical axis represents the values of each objective.
Diversity is represented as its complement (1- D) so that
the direction of improvement in both objectives is toward
zero on they-axis. The two objectives have been scaled to
allow them to be plotted on the same graph. Scaling was
achieved by finding best and worst values for each objective
independently using SELECT. For example, the best value
of diversity is found by configuring SELECT to maximize
diversity, whereas the worst value is found by configuring
SELECT to minimize diversity. The best and worst values
of diversity for the amide library are 0.593 and 0.363,
respectively. Thus zero on they-axis represents the best value
that can be achieved when an objective is optimized
independently. (This method of scaling is used in all
subsequent parallel graphs.) Each continuous line in the graph
in Figure 12 represents one solution on the final Pareto
frontier. The competing nature of the objectives is shown
clearly by the crossing lines. In this example, it can be seen
that close to the best values possible in each objective are
achievable; however, they are not achievable simultaneously
in a single solution, so an optimum value of diversity
corresponds to a suboptimal value in molecular weight
profile, and vice versa.

Increasing the number of objectives over which a library
is optimized results in an increase in the size of the search
space that MoSELECT should explore, and hence a larger
population is required to ensure that the search space is well
covered. An initial run of the amide library over five
objectives with a population size of 200 showed that there
was a tendency for speciation to occur. This is illustrated in
Figure 13a, which shows solutions on the Pareto frontier, in
a parallel graph representation, after 5000 iterations of
MoSELECT. A total of 188 nondominated solutions were
found; however, these were clustered in a relative small part
of the search space.

Figure 13b shows the same library design problem run
with niching, with the niche radius set at 30%. Only the

Figure 11. Distribution of pairwise overlaps among the 48 solution
libraries found in a MoSELECT run.

Table 1. SMARTS Definitions for Rotatable Bonds (RB),
Hydrogen Bond Donors (HBD), and Hydrogen Bond Acceptors
(HBA)

property SMARTS

RB [!$(*#*)&!D1]-&!@[!$(*#*)&!D1]
HBD [!#6;!H0]
HBA [$([!#6;+0]);!$([F,Cl,Br,I]);!$([o,s,nX3]);!$([Nv5,Pv5,Sv4,Sv6])]

Figure 12. Parallel graph representation of the two-objective
problem illustrated in Figure 10 at 10% niching.
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solutions on the Pareto frontier are shown in each of these
graphs for clarity. It can be seen that as the search progresses
the solutions drift in the direction of multiobjective improve-
ment, i.e., to lower values on the vertical axis, indicating
lower values of the objectives. Also, the number of non-
dominated solutions tends to increase. A much smaller
number of solutions is found (24) after 5000 iterations
compared to the run without niching; however, these
solutions represent a much greater range of values in each
of the objectives and they indicate that much more of the
search space has been explored. The relatively large niche
radius is appropriate because of the large search space and
because the niche radius is applied to all objectives simul-
taneously. Competition between the objectives is evident,
for example, between the profiles of molecular weight and
hydrogen bond donors (∆HBD) and between hydrogen bond
donors (∆HBD) and acceptors (∆HBA), as shown by the
crossing lines in the graph. Near-optimum values are
achievable for all of the objectives; however, these are not
achievable simultaneously in a single solution and a com-
promise should be sought. The relationship between all pairs
of objectives could be examined by reordering the objectives
on the horizontal axis. Where there is no competition between
objectives, i.e., improvement in one corresponds to improve-
ment in another, these would be shown by parallel lines and
it would not be necessary to include both within the search
process.

Increasing the population size leads to a consequent
increase in search times with MoSELECT taking ap-

proximately ∼97 min with population size 200 for 5000
iterations at 30% niching.

Figure 14 shows the overlap plot for the amide libraries
optimized on five objectives. When this is compared with
the plot shown in Figure 11, it can be seen that there is less
overlap between the libraries and this indicates that forcing
the solutions to be separated in this five-objective space
seems to correspond to a separation in terms of the molecules
shared between the different solution libraries.

THE 2-AMINOTHIAZOLE LIBRARY

The 2-aminothiazole library consists of 74× 170 virtual
products. The library design experiments involved the
optimization of six objectives including cost, diversity, and
profiles of molecular weight, hydrogen bond donors, hydro-
gen bond acceptors, and rotatable bonds. Reactant costs in
price per gram were extracted from the Available Chemicals
Directory.30 When the cost for a particular reactant was not
available, it was assigned a cost equal to the most expensive
reactant in the corresponding reactant pool. Diversity was
measured using a cell-based method.32 The Cerius2 (version
4.5) default set of topological parameters and physicochem-
ical properties was calculated for each of the molecules with
the descriptor space being reduced to three dimensions using
principal components analysis.33 The resulting three-
dimensional space was partitioned into a series of 1134 cells
(9 × 14 × 9), and each molecule was then mapped to a
cell. The virtual library of 12 580 products occupies a total
of 364 cells. The aim of the runs was to select 15× 30
combinatorial subsets (450 compounds) with maximum cell
coverage, minimum cost, and druglike distributions of the
various physicochemical properties.

First, SELECT was run to maximize diversity alone in
order to find the maximum cell coverage achievable without
considering the additional objectives. The maximum cover-
age found was 282 cells for a library of cost $149,141.
SELECT was then run to find a library with minimum cost,
this library cost $1,485 and occupies 68 cells. Thus it can
be seen that diversity is in competition with cost, with
maximum diversity corresponding to a high cost and a
minimum cost library corresponding to low diversity.
MoSELECT was then run to optimize cell coverage simul-
taneously with cost. The solutions found on the Pareto
frontier are shown in Figure 15. The dashed lines show the
maximum diversity and minimum cost achievable when each
objective is optimized independently. In this example, it is
likely that a compromise would be sought between diversity
and cost. The extreme values for diversity and cost are not
found.

Figure 13. (a) Results of a MoSELECT run for the optimization
of 30 × 30 amide library on five objectives, namely, molecular
weight profile (MW), hydrogen bond donor profile (HBD),
hydrogen bond acceptor profile (HBA), rotatable bond profile (RB),
and diversity. The population size is 200 and MoSELECT is run
without niching. (b) Progress of a MoSELECT run for the
optimization of a 30× 30 amide library on five objectives, namely,
diversity (1- D); molecular weight profile (∆MW), hydrogen bond
donor profile (∆HBD), hydrogen bond acceptor profile (∆HBA),
and rotatable bond profile (∆RB). Results are shown at 0, 500,
2000, and 10 000 iterations. The population size is 200 and the
niche radius is 30%.

Figure 14. Overlap of 24 amide libraries shown above.

COMBINATORIAL LIBRARY DESIGN USING A MOGA J. Chem. Inf. Comput. Sci., Vol. 42, No. 2, 2002383



The parallel graph in Figure 16 shows the results of
running MoSELECT using all six objectives simultaneously.
Solutions are found with near-optimum cost and hydrogen
bond acceptor and rotatable bond profiles; however, optimum
diversity is further compromised by the inclusion of ad-
ditional objectives, relative to Figure 15. Some relationships
between the objectives are apparent: diversity competes with
both cost and molecular weight profile; molecular weight
profile also appears to be in competition with hydrogen bond
donor profile. The relationship between donors and acceptors
is less evident in this multiobjective case. Searching over
the entire Pareto surface results in solutions that have extreme
values over many of the objectives; however, it is likely that
a compromise solution would represent the best combina-
torial library to synthesize. MoSELECT allows the library
designer to choose a solution that has acceptable values over
as many of the objectives as possible.

INCREASING THE NUMBER OF COMPONENTS IN
THE LIBRARY

The three-component thiazoline-2-imine library of size 12
× 99× 59 (70 092 virtual products) was used to investigate
further performance aspects. MoSELECT was configured to
design 3× 20× 10 libraries optimized on the five objectives
used in the amide experiment and to run for 5000 iterations
with a population size of 200 at 30% niching. The Pareto
frontier, shown in Figure 17, consists of 20 individuals found
after 5000 iterations. Here, near-optimum values are achiev-
able for each of the objectives, although these are clearly
not achievable simultaneously. Competition is evident be-

tween some of the objectives, for example, between diversity
and molecular weight profile, between donor and acceptor
profiles, and between molecular weight and donor profiles.
The variation in donor profiles is relatively large compared
to the other objectives as is the range of diversity values,
showing that these objectives are strongly affected by the
other objectives included in the experiment. Again, it is likely
that a compromise solution would represent the best solution
in terms of all of the objectives.

When the same library design was run without niching,
the solutions were concentrated in a localized region of the
search space, as was observed with the amide library,
confirming that it is necessary to use niching if a wide spread
of solutions is required.

CONCLUSIONS
MoSELECT is a new approach to combinatorial library

design based on optimizing multiple objectives simulta-
neously. MoSELECT overcomes many of the limitations of
the weighted-sum approach used in SELECT and results in
a family of solutions, all of which are equally valid in terms
of overall fitness. The library designer can then make an
informed choice on which solution(s) to explore rather than
proceeding with the single solution generated by SELECT
which may lie anywhere on the Pareto frontier. MoSELECT
maps out the Pareto frontier, which allows the relationships
between the different objectives to be explored with compet-
ing objectives easily identified. There are no significant
overheads in terms of computing time for adopting Pareto
ranking, and a single run of MoSELECT takes approximately
the same time as a run of SELECT but with the advantage
of finding a whole family of solutions. A number of different
combinatorial libraries have been used to study various
performance characteristics of MoSELECT.

The work reported here represents our initial attempts to
explore the use of Pareto ranking for multiobjective opti-
mization problems in chemistry. Our initial results suggest
that the approach has considerable potential in our chosen
domain of combinatorial library design. More recent work
explores the design of focused libraries, where the approach
has been shown to be equally effective.34 Future work will
investigate the possibility of interacting with the search
process so that the relationships between objectives are
explored during the search. This will allow the user to
observe which objectives are relatively hard to improve,
which are more easily optimized, and which objectives are
in competition. The search process itself could then be altered
to take account of these characteristics.

Figure 15. Optimizing cell based diversity simultaneously with
cost for 15× 30 subsets selected from the 74× 170 2-aminothia-
zole libraries. MoSELECT was run with a population of 50 and a
niche radius of 10%.

Figure 16. Optimizing 15× 30 2-aminothiazole subsets based on
six objectives: minimum cost, maximum cell coverage (represented
as 1- D), and profiles of molecular weight, hydrogen bond donors,
hydrogen bond acceptors, and rotatable bonds. MoSELECT was
run with a population of 200 and a niche radius of 30%.

Figure 17. Pareto frontiers after 5000 iterations of MoSELECT
configured to select 3× 20 × 10 combinatorial subsets from the
12 × 99 × 59 thiazoline-2-imine library. MoSELECT is run with
a population size of 200 and a niche radius of 30%.
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