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ABSTRACT 

The design of an analogue integrated circuit is a complex 

and tedious task which requires many compromises to be 

made between conflicting objectives.  This work focuses 

on the synthesis and design of CMOS operational 

amplifiers (opamps).   We show how a multi-objective 

Genetic Algorithm (GA) [5] is used to search the design 

where many of the objectives that need to be satisfy are 

conflicting.  In this paper, we introduce a novel coding 

scheme where both the structure and value parameters of 

the circuit can be encoded in a single chromosome.  We 

further show how this coding scheme can be translated 

into a real circuit for a Pareto-based multi-objective 

algorithm to solve the problem. 

1. INTRODUCTION 

The design of an analogue integrated circuit is a very 

complex task.  While designers can apply elaborate 

Computer-Aided-Design (CAD) techniques to automate 

digital circuitry, the absence of such aids for its analogue 

counterpart has made analogue design the bottleneck issue 

in the whole ASICs design process.  Analogue circuits are 

less amenable to design automation mainly because of the 

lack of standard building blocks that can be piece together 

to produce a workable design as in the case of digital 

circuits [8][9].  To achieve the best circuit performance, 

analogue design needs a profusion of customised building 

blocks ranging from simple transistor pairs to opamps.  

Moreover, specifications such as low power, smaller chip 

area, higher gain bandwidth, are just but a few of the 

mandatory requirements that a good analogue circuit 

needs to meet.  Thus, the use of automatic design tools 

that can handle conflicting objectives is highly important.   

In this paper, we apply a multi-objective GA to solve 

the problem of synthesising and designing a Miller 

Operational Transconductance Amplifier (Miller OTA) 

where the transistor sizes, bias currents and compensating 

capacitance values are optimised to meet a set of 

specifications.  We introduced a novel coding scheme in 

which both the structure and the value parameters of the 

circuit can be encoded into the chromosome.  The 

advantage of this coding scheme is its generality in that it 

can be easily extended to design other types of circuits.  A 

pareto-based Non-dominated Sorting Genetic Algorithm 

(NSGA-II) [7] is used to solve the multi-objective 

problem.  This algorithm has proved to be very efficient 

for real value coded problems and we demonstrate its 

effectiveness when applied to circuit design.   

This paper is organised as follows.  Section 2 gives an 

overview of the optimisation methodology.  Section 3 

discusses the application and presents the results obtained 

and Section 4 concludes the work and provides some 

suggestions for future work. 

2. CIRCUIT REPRESENTATION AND 

OPTIMISATION  

Conventionally, the design of an opamp relies on the 

formulation of a system of equations that represents the 

opamp�s behaviour and characteristics.  This model is 

then given to an optimisation method to search for the 

best set of parameters which satisfy the given 

specifications.  This method, although produces 

encouraging results, requires much human intervention in 

the design process and makes it difficult to automate.  

Another disadvantage of conventional methods [10][12] 

lies in the fact that it produces only a single solution.  In 

circuit design, especially when several objectives are 

taken into account, there exists no exact solution, but 

rather a pool of solutions that are capable of meeting the 

specifications.  GAs have been well known for their 

optimisation abilities.  They are particularly suited for this 

application since the opamp design problem can be easily 

converted into a multi-objective search task. 



2.1 Representation 

The coding scheme used has been carefully designed to 

enable it to be used for designing both the structure and 

value parameters of a wide range circuits.  It is deemed 

that the representations should have the following 

desirable properties: 

It should allow almost any circuit within the design 

scope to be represented. 

All circuits created are valid circuit graphs, thus 

reducing time and computer resources. 

If it is known prior to the search that certain topologies 

are suitable for the design task, the representation 

should permit the inclusion of these topologies in the 

search, thus reducing the search space. 

Time taken to transform the representation into a 

netlist for evaluation should be as short as possible. 

Figure 1 illustrates the representation.  Each gene consists 

of 3 fields, namely, its type, node connections and value 

parameters (value, width, length).  The gene can take on 

any valid component type.  For example in our amplifier 

design, an inductor type is undesirable and hence is 

omitted from the array of component types available.  The 

node connections allow 2, 3 and 4-legged components to 

be represented.  The value fields are numbers randomly 

generated between 0 and 1.  They are then scaled 

according to the bounds specified by the user.   

2.2 Multi-Objective Optimisation

Many multi-objective optimisation methods have been 

developed over the past years [1][2][3].  These methods 

can generally be classified under the two main categories;  

weighted or aggregated approaches and the Pareto-based 

approaches [1][4].   Although both approaches have been 

widely used, the first approach suffers from the fact that 

the decision maker (DM) has to decide on the value of the 

weights to use prior to the optimisation.  This leaves the 

DM with a level of uncertainty as to whether the chosen 

weights appropriately mirror the importance of the 

objectives.   

In [11], a modified version of the weighted approach 

has been used to optimise opamps.  It uses adaptive 

weights along the optimisation process to determine the 

overall fitness of an individual.  Although the DM no 

longer needs to pre-decide on the weights, the weights 

used for each objective are computed from the average 

fitness of the population for the respective objective and 

may not correctly reflect the performance of the 

individual for that objective.  In addition, there is an 

amplification factor that is added which may further 

influence the effect of the weights on the fitness.  Apart 

from that, this method suffers from the fact that it does not 

take into account how well distributed the solutions are. 

In this paper, we use NSGA-II algorithm to perform 

the multi-objective optimisation.  This method has been 

widely tested and has proved its effectiveness [4][7] when 

used on real scheme coded problems.  Figure 2 illustrates 

how the coding scheme used for circuit synthesis can be 

translated into real value coding and NSGA-II is used to 

optimise the value parameters of the circuit components. 
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Figure 2.  Converting from circuit coding into real coding. 

3. APPLICATION AND RESULTS 

We applied the proposed methodology to optimise the 

Miller OTA.  The Miller OTA shown in Figure 3 is a 2 

stage amplifier.   
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Figure 1.  Coding scheme for circuit synthesis 
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 Figure 3.  Miller OTA

The first stage consists of differential inputs and 

current mirrors, while the second stage is a simple CMOS 

inverter.  Cp is the compensation capacitor which acts as a 

Miller capacitance.  The circuit exhibits low output 

impedance for most of its frequency ranges [6].  The GA 

is used to manipulate the transistor sizes, biasing current, 

Ibias and the compensation capacitance, Cp.  A summary of 

the objectives and desired specifications can be found in 

Table 1.  The bounds used for the transistor width, length, 

Ibias, Cp are given in Eq 1, 2, 3 and 4 respectively.   

           7.5 m < width < 200 m; steps of 1 m                (1) 

            3 m < length < 200 m; steps of 1 m                (2) 

          1.5 A < Ibias < 2.5 A; steps of 0.01 A          (3) 

                0.1pF < Cp < 10pF; steps 0.1pF                 (4) 

No

.

Specification Desired Values 

1. DC Gain >  60dB 

2. Gain Bandwith > 1MHz 

3. Phase Margin > 55 degree 

4. DC Bias < 0.2V 

5. Power Dissipation < 400 W

6. Slew Rate > 1V/ s

Table 1.  Design specifications. 

From Table 1, it can be seen that some of the 

objectives are conflicting, for example, a higher gain 

bandwidth would result in higher power consumption 

however, it is desired that the circuit should exhibit low 

power dissipation and high gain bandwidth.  In order to 

ensure that all the objectives at least meet the lower bound 

of the desired specifications, we implemented the 

objective functions as follow.  Suppose we would like to 

maximise the DC gain and minimise the power 

dissipation, we can see that if Eq. 5 resolves to a negative 

fitness, it means that the minimum desired gain has not be 

met.  Similarly, from Eq. 6, if the fitness is negative, it 

means that the power has exceeded the minimum 

allowable amount.  The GA seeks to maximise the 

deviation between the desire and actual values, which in 

turn maximise or minimise the objective depending on its 

formulation. However, if either of the objectives fails to 

meet the minimum desired value, then the other objectives 

will be forced to fail.  This is done by negating its fitness.  

The fitness of an individual is the amount it deviates from 

the desired value. To summarise, we seek to ensure that 

all the objectives satisfy the minimum desired value. 

    DCGain = DCGainactual  � DCGainmindesired          (5) 

         Power = Powermindesired  Power actual                  (6) 

In order to fully automate the design and minimise the 

use of human expertise, Pspice is used for evaluating the 

circuits.  A spice level 2 transistor model which uses the 

process parameters from a 3  CMOS N-well process 

technology [6] is used.  The process parameters are listed 

in Table 2.  The GA is run for 100 generations with a 

population size of 200.  Single-point crossover at a rate of 

0.75 is used and the mutation rate was set at 0.1.  

Parameter NMOS PMOS 

LEVEL 2 2 

VTO  0.9V -0.9V 

KP 50e-6 A/V2 17e-6 A/V2

GAMMA 0.3 V 0.5 V

PHI 0.7V 0.69V 

CGSO 1.76e-10F/ m 2.8e-10F/ m

CGDO 1.76e-10F/ m 2.8e-10F/ m

CJ 0.7e-4F/ m2 3.3e-4F/ m2

MJ 0.5 0.5 

CJSW 3.9e-10F/ m 4.4e-10F/ m

MJSW 0.33 0.33 

JS 1e-3A/ m2 1e-3A/ m2

TOX 42.5nm 42.5nm 

NFS 1e11cm-2 1e11cm-2

LD 0 0 

UCRIT 1e4V/cm 1e4V/cm 

RSH 25ohms 25ohms 

LAMBDA 0.019 0.005 

Table 2.  Process parameter of a 3  CMOS N-well 

Table 3 presents the performance of one of the 

individuals in the best population.  It can be seen that the 

performance of the circuit not only satisfy all the desired 

specifications, it outperforms that of a human designed 

circuit.  No expert knowledge was used in the 



optimisation process apart from the selection of sensible 

ranges for the component values.  Figure 4 shows the 

percentage of good individuals (individuals that satisfy all 

objectives) over 100 generations.  We can see from the 

plots that in the beginning of the evolution, there are very 

few individuals that satisfy all the objectives.  This is 

improved as the optimisation progresses.  The results 

indicate that the GA is dynamically optimising the circuit, 

trying to satisfy all the objectives simultaneously.  

Towards the end of the optimisation almost 80% of the 

individuals are good.  Figure 5 shows the average fitness 

computed by ranking the individuals in the population 

using the Fonseca and Fleming ranking [3].  The average 

fitness is approximately 1 for the first few generations.  

This indicates that most of the individuals in the early 

generations are of the same rank.  However, as the 

optimisation progresses, we see that the average fitness 

increases signalling that there is more diversity in the 

ranks of individuals in the population.  This also means 

that there is now segregation between good individuals 

that satisfy all the objectives and those that do not.  

Further on in the optimisation, we see a decline in the 

average fitness around generation 65 and the population 

finally converges to an average fitness of approximately 1 

by the end of the optimisation indicating that most of the 

individuals are now good and have the same rank. 
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To demonstrate the effectiveness of using the NSGA-

II multi-objective algorithm, the pareto fronts for a 2 

objective optimisation are shown in Figure 6.  The 

parameters optimised are the DC gain and the power 

dissipation.  The pareto fronts are obtained from 

generation 5, 20 and 40 of the evolution process.  We can 

see from Figure 6a that in the beginning of the evolution, 

the individuals are rather scattered.  This means that many 

of the individuals do not satisfy both objectives.  This is 

improved as the evolution progresses.  From Figure 5c, it 

is observed that by generation 40, the front is more evenly 

distributed, indicating that more individuals now satisfy 

both objectives.  The plots also show that GA provides the 

designer with a pool of good solutions and not just a 

single solution like in the case when conventional 

optimisation is used. 

Figure 6. Pareto front for a 2 objective optimisation problem. 

(a) generation 5, (b) generation 20 and (c) generation 40. 
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Figure 5.  Average fitness of individuals computed  

from NSGA-II 
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No. Specification Human 

Design 

GA 

Evolved 

1. DC Gain 71.2dB 71.85dB 

2. Gain Bandwith 2MHz 3.9MHz 

3. Phase Margin 65degrees 64degrees 

4. DC Bias -0.65mV -2.417mV 

5. Power Dissipation 527.8 W 230 W

6. Slew Rate 2.2V/ s 3.8V/ s

Table 3.  Comparison between human designed and GA 

evolved Miller OTA. 

4. CONCLUSION 

In this paper, a novel circuit coding scheme which can be 

used to represent a wide range of circuits is developed.  

We have demonstrated how this coding scheme is 

translated into a real circuit and that the NSGA-II 

algorithm can be applied to optimise circuits with 

conflicting objectives.  The case study on the Miller OTA 

showed encouraging results when compared to that 

produced by human designed circuits.  The evolved 

circuits, which make use of minimal human expertise, are 

competitive to and can outperform the human designed 

ones.  Future work in this area includes synthesis and 

sizing of sub-blocks using low-level components, 

consideration of sensitivity issues with process parameter 

variations and optimising for more objectives to produce 

more practical circuits. 
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