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X-ray spectroscopy diagnostics have been widely used as
a standard technique to determine the temperature and
density of astrophysical and laboratory plasmas.
Traditional techniques have relied on performing an
interactive search with a graphical user interface to
select theoretical model parameters that best fit the data.
We use a Pareto optimal genetic algorithm to drive a
search of model parameters that produce high-quality
simultaneous fits of spectra and spatially-resolved
emissivity profiles. Preliminary results indicate that our
Pareto optimal genetic algorithm is able to quickly find
physically meaningful solutions.

1 Introduction

X-ray spectroscopic analysis has proved to be a useful
technique to determine temperature and density of
astrophysical as well as laboratory plasmas (Griem 1992).
Routinely analysis is performed manually, that is, using an
interactive graphical user interface to compare experimental
and theoretical spectra calculated using a particular set of
plasma model parameters. When a good fit to experimental
data is achieved, the parameters used to calculate the
synthetic spectrum are considered to be representative of the
state of the plasma during the formation of the spectrum. A
criterion for measuring good fits is the distance between
synthetic and experimental spectra defined in a given metric
as well as visual similarity. This procedure is simple and
convenient as long as the spectral model is not very
complex, does not depend on too many parameters, and is
relatively inexpensive (can be performed in real time). For
many other cases the availability of a computer-driven
automated analysis procedure is important. In this paper we
will make an attempt to estimate plasma temperature and
density gradients for high energy density plasmas.
Traditional (as described above) spectroscopic analysis
has been used to determine averaged or effective
temperatures (T.) and densities (N.). However, the
spectroscopic analysis of plasma temperature and density
gradients represents a more complicated search problem in
parameter space. In this paper we use a genetic algorithm to
estimate plasma temperature and density gradients for
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Inertial Confinement Fusion (ICF) experiments. The goal
here is to find temperature and density gradients that
produce simultaneous, good fits to time-resolved spatially
integrated X-ray line spectra and X-ray monochromatic
emissivity profiles. Spatial emissivity profiles can be
extracted from Abel inversion of X-ray monochromatic
images provided that the plasma is optically thin and
spherically symmetric (see Figure 1).
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Figure 1. Plasma temperature and density gradients estimation.

Temperature and density spatial gradients as well as other
properties of plasmas can be computed using hydrodynamic
modeling. Hydro simulations are model calculations that
include hydrodynamics, thermal transport, atomic, radiation
physics, etc. The models are very complex and it is
important to be able to compare simulation results with
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independent information obtained from the analysis of
experimental data. Our work is, to a large degree,
independent of hydrodynamic simulations and hence can
provide the data for these comparisons. Estimating plasma
temperature and density gradients based on the analysis of
experimental data is a complex inverse problem. This work
is one of the first attempts in this direction. The results of
the analysis of experimental data can be used to improve
characterization of core plasma dynamics and to provide
new data for detailed benchmarks of hydrodynamic codes.

Since we need to simultaneously fit both spectra and
emissivity the problem involves  multi-objective
optimization. The multi-objective nature of the problem
makes it especially difficult to fit the data by hand.
Spectroscopic analysis for non-linear models is also difficult
for conventional minimization schemes and exhaustive
searches can be prohibitively expensive. We have reported
previously (Golovkin 1999) that Genetic Algorithms (GAs)
perform very well when applied to spectroscopic
diagnostics. In this paper we show that a Pareto optimal
Genetic Algorithm is a robust and efficient tool to analyze
experimental spectra and monochromatic images.

Genetic Algorithms are search algorithms based on the
mechanics of natural selection (Holland 1975, Goldberg
1989). They are capable of finding a solution in a poorly
understood search space while exploring only a small
fraction of the space and can robustly deal with complex
non-linear spaces. A GA’s reliability, robustness, ease of
use, and speed were our primary motivations to apply it for
our purposes. In addition, spectral analysis has a threshold
of sensitivity determined by the quality of the experimental
data and by the model’s sensitivity with respect to parameter
changes. Since GA’s are especially proficient at finding
promising areas (corresponding to solutions within our
threshold) of the search space, they are well suited for our
problem.

We use the principles of Pareto Optimality in designing a
Pareto optimal genetic algorithm (Horn 1994). This
algorithm is well known and widely used. Moreover, our
existing code could be readily modified to be used as a basis
for the new niched Pareto genetic algorithm. There are
several other multi-objective optimization schemes that can
be applied to spectroscopic analysis. Studying performance
of these algorithms can be a subject of further investigation.

At each generation there is a set of non-dominated
solutions that form a surface known as the Pareto optimal
front (or Pareto front). The goal of a Pareto optimal GA is to
find and maintain a representative sampling of the solutions
on the Pareto front. If the criteria are not self-contradictory,
there should be a point on the final convex front that
satisfies all criteria well. In our case this solution will be
considered as the solution to the spectral analysis problem
(Figure 2).

If there is no such point (concave front), an expert
decision has to be made about which (if any) solution on the
concave Pareto optimal front represents the most
acceptable, physically sound solution. Analysis in this case
may not be reliable because a self-consistent high quality
spectral model should be able to describe all radiative

properties of the plasma. Tracing the Pareto optimal front
also helps address the issue of solution uniqueness.
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Figure 2. Results of the search a) successful; b) unsuccessful.

In this paper we show that the method we developed is
capable of determining correct gradients. To this end we
performed numerous calculations based on the analysis of
synthetic experimental data. Running our spectral model
using known gradients as input produces synthetic data. We
add noise to the generated spectra and emissivity profiles to
represent experimental uncertainties.

We pursue two main goals: to study how the quality of
experimental data affects the diagnostic capability of our
method; and to determine whether we can expect to resolve
gradients that have complex structure. The first goal can be
achieved by analyzing the data with simple gradients and
different levels of noise. For the second problem we will try
to analyze data produced with gradients obtained from
hydro simulations of plasma implosions.

Successful analysis should be able to recover the
gradients we used to construct the synthetic data, by fitting
emissivities and spectra. We will show, however, that under
certain circumstances GA can find alternative gradients that
produce good fits to both emissivities and spectra. It is
therefore very important to understand the limitations of the
method before applying it to the analysis of real
experimental data with unknown gradients.

As an application we consider analysis of Ar Hep and
associated Li-like satellites spectral feature observed during
the collapse of Ar-doped laser-driven ICF implosions. This
feature is widely used for diagnostic purposes. Based on the
spectra of this feature effective emissivity-averaged plasma
density and temperature can be determined. Combined with
the information that can be obtained from monochromatic
X-ray images of the plasma (photon energy at the center of
Ar Hep line) the spectra can be used to bracket temperature
and density spatial gradients. Our spectral model is a
collisional-radiative atomic kinetics steady state model that
includes the effects of Stark broadening, line overlapping,
and opacity (Golovkin 2000).

Our preliminary results indicate that spectroscopic
analysis driven by the Pareto optimal Genetic Algorithm is
capable of determining plasma temperature and density
gradients. The method is generalizable, and with minor
modifications can be used to drive searches in other plasma
spectroscopy applications.

The next section describes our implementation of the
algorithm that results in good performance. Then we will
discuss the results of the computations. Finally we will
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present the conclusions and some guidelines for future
work.

2 Implementation

The spectra are fully determined by the spatial distribution
of plasma, electron number density and temperature. Both
density and temperature should be smooth functions of
position and all values must fall within a certain range in
order to be physically meaningful. Moreover, the functions
must be symmetric with respect to the center of the plasma
and the first derivative of temperature should be equal to
zero at the center.

There are several plausible gradient choices to satisfy
these properties. We enforce these restrictions at the level of
our encoding by noting that functions of the form f{x) =
ax’*+b or fix) = ax’+bx’+c automatically provide desired
properties. A parabolic gradient is the simplest choice,
requiring only two parameters to be fully defined, but may
not always be flexible enough to approximate all physically
possible gradients. The second function is more flexible, but
adds a great deal of non-linearity to the encoding (we do not
search for the coefficients of the polynomial but rather for
extreme points so that the function lies within a given
range). Another approach is to characterize each spatial
region of the plasma by a density and temperature pair. This
type of encoding can approximate any gradient, however
special care must be taken to enforce smoothness. This can
be done by restricting relative changes between adjacent
points at the level of encoding, or to introduce extra terms in
the fitness function. In addition, this type of encoding
requires many parameters, longer chromosomes, larger
population sizes, and therefore greater computing time.
Regardless of the type of encoding we use five (5) bits to
represent every parameter since five bits provides sufficient
precision for diagnostic purposes. Figure 3 illustrates our
encoding for the simple case of a parabolic gradient.

Temperature
T(r) = a;r*+c,

Density
N(r) = a,ri+c,

N(R)
[1.00x10% cm™ - 1.65x10% cm3)

Figure 3. Encoding of temperature and density.

1(0) T(R)
[260 eV - 1500 eV]

N(0)

The idea of the analysis is to minimize the difference >
between the experimental and synthetic data; therefore we
measure the performance of each candidate as l/)(,2 (the
higher the performance, the better the fit). Equation 1
defines a standard method of measuring the difference
between the data and the fits for both emissivities and
spectra:

2
ZZ — 2 , (Il_exp _ Iitheor) , (1
icexp
where I°? and [™ are intensities (emissivities) of
experimental and theoretical data respectively and @ ; is a

weight factor. A particular choice of the weight factor may
have an impact on the performance of the algorithm, it also
may be important for estimation of uncertainty intervals
(Coldwell 1991). Since our primary goal was to study the
performance of the GA, we have chosen @ ; = I for the
spectra and @; =(1/I°?)* for the emissivities. This is done to
compensate for possible substantial changes in the
emissivity profile. The objectives are to find the best
possible fits to spectra and emissivities simultaneously.

One approach to solve this problem is to combine the
multiple criteria into a single scalar fitness function.
Unfortunately, this simple method did not work well on our
problem. Instead we turned to multi-objective optimization
and used the Niched Pareto Genetic Algorithm (Horn 1994).

The crucial difference between a canonical GA and the
Niched Pareto GA is in the implementation of selection. We
implemented Pareto domination tournament selection where
two candidates are picked at random from the population. A
comparison set of individuals is also picked randomly from
the population. Each of the candidates is then compared
against each individual in the comparison set. If one
candidate is dominated by the comparison set, and the other
is not, the latter is selected for reproduction. If neither or
both are dominated by the comparison set, then we must use
sharing to choose a winner. Equivalence class sharing
implemented in our model defines the winner as an
individual that has the smallest number of the other
individuals inside its niche. This technique helps to maintain
diversity along the Pareto front. Niche size gets adjusted
automatically for each generation based on the average area
of the front. We also normalize the objective function for
each generation so that the objective function for each
criterion ranges from O to 1.

In order to increase selection pressure we use an elitist
scheme where: 1) members of the current generation and
offsprings are combined in a common pool in each
generation; 2) the solutions along the Pareto front are
selected for the next generation and removed from the pool;
3) the procedure is repeated until the next generation is
filled. We have found empirically that elitism combined
with uniform crossover provides reliable and rapid
convergence.

The size of the comparison set controls selection pressure.
However, when using elitist scheme, the algorithm is not
very sensitive to size. In our implementation we compare
each candidate against 5 individuals. Probability of
crossover and mutation is 0.95 and 0.05 respectively. We
performed a number of runs varying GA parameters to
ensure reliability and optimize performance of the
algorithm. The implementation we discussed above is well
suited for our purposes.

We vary population sizes depending upon complexity of
the problem. Each evaluation is rather expensive and we use
the smallest size that produces good performance.
Moreover, increased population does not always lead to
better quality solutions.
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3 Results

In this paper we are addressing two main problems: 1) what
is the quality of the data (noise level) that allow for
unambiguous determination of the gradients; and 2) can
gradients with complex structure be resolved? Here we
present the results of our computer runs with the Niched
Pareto GA.

3.1 Simple Gradients, Different Level of Noise

Level of noise in real experimental data can vary from a few
percent (high quality data) to 20 percent (poor data). We
performed a series of calculations with the following noise
levels: 1, 5, 10, 15, and 20%. For each case we performed 5
runs starting with different initial random seeds. We used
simple parabolic gradients to generate the data in all cases
and, therefore, parabolic functions to encode solution. Two
parameters are required do define a parabola for both
temperature and density. We used 5 bit encoding for each
parameter, which results in a 20-bit chromosome. With 100
individuals in each generation we achieve rather stable
performance.

We will discuss the results of GA runs for 10% noise in
more detail. The propagation of the Pareto front in the
objective space shows the dynamics of the run. Figure 4
displays propagation of the front for a typical run.
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Figure 4. Propagation of Pareto front.

The behavior of the front indicates that GA successfully
drives the search towards better solutions. The upper right
point represents the solution that has good spectral and
emissivity fits (Figures 5 and 6).
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Figure 5. Good spectrum fit (10% noise).
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Figure 7. Temperature gradients (10% noise).
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Figure 8. Density gradients (10% noise).

It is important to study the points in the vicinity of the
right solution. If the gradients for these points are similar to
the one for the correct solution then the analysis is
successful. The family of gradients then is indicative of the
uncertainty intervals of the analysis. If, on the other hand,
there are some points that satisfy all criteria well but
nevertheless have different gradients, then we have
alternative solutions and the analysis is ambiguous. For the
run we discussed above the analysis is successful (Figure 7
and 8). Note that since the plasma is symmetric we display
only one half of the gradients.

It is intuitively clear that the higher the level of noise, the
larger the chances to find alternative solutions. For 1, 5, and
10% of noise the solution is unique. Starting at 15% noise
we see alternative solutions (Figure 9 and 10). Analysis
becomes ambiguous since any pair of the gradients
produces acceptable fits to spectra and emissivities and no
preference can be given to either of the solutions.
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Figure 9. Temperature gradients (20% noise).
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Figure 10. Density gradients (20% noise).

Another interesting aspect is the ability of genetic
algorithm to satisfy all objectives. Table 1 summarizes
statistics for different levels of noise.

Noise level All objectives satisfied
1% 1 runoutof 5
5% 3 runs out of 5
10% 5 runs out of 5
15% 5 runs out of 5
20% 5 runs out of 5

Table 1. Number of successful runs for different noise level.

It seems that with the same parameters for the genetic
algorithm it is easier to fit the noisier data. One possible
explanation is that for smaller noise possible candidates are
localized in a smaller region of the parameter space and
therefore are more difficult to find. Note that objectives can
be satisfied with correct as well as alternative solutions.

3.2 Complex Gradients
Even though parabolic gradients can be expected to be
reasonable approximations for the type of plasmas we are
modeling, there might be more complex shapes of the
temperature and density spatial profiles. So we applied our
method to analyze synthetic data calculated with gradients
produced by hydro simulations and 10% noise added.

A problem arises because simple functions may not be
capable of reproducing the gradients and will result in poor
fits and wrong solutions. We consider several choices to
characterize the gradients:

1. parabolic (fx) = ax’+b),

2. bi-quadratic (f{x) = ax*+bx*+c),

3. tabulated (each point in space is represented by a pair of
temperature and density that can vary within a range of
physically acceptable values),

4. tabulated with smoothness restrictions (each point must
not be very different from adjacent points)
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Other analytical functions (e.g. rational) are difficult to
implement due to limitations based on the physical
meaningfulness of the gradients.

For each method we performed 5 runs with different
initial random seeds. Table 2 summarizes the results for
each method used.

1 2 13 4
Real parameters 4 8 12 12
Chromosome length 20 [ 32 [60 | 60
Population size 100 | 150 | 200 | 200
All objectives satisfied 4/5 | 1/5 | 5/5 |45
Best spectrum fitness 380 | 380 | 380 | 380
Best emissivity fitness 10 |40 |65 |65

Table 2. Summary of the runs.

As can be expected all runs produce good quality fits to
spectra. Being space integrated, spectra are not very
sensitive to the details of the gradients. Emissivity fitting
improves when we use more flexible ways to describe the
gradients. The penalty for this flexibility however is having
alternative solutions.

Gradients obtained from the best runs for each method are
displayed on figures 11 and 12. Results obviously have
some room for improvement. Although GA finds fits to
spectra and emissivities, the gradients that produce these fits
are not necessarily the correct ones. Parabolic function
apparently does not have enough flexibility and results in
poor performance. Bi-quadratic function is the only one that
reproduces correct gradients, by fitting the spectra and
emissivities. However there is still some discrepancy with
the right solution (thick dashed line on figures 11 and 12).
The disadvantage is that it makes the algorithm less reliable
due to a highly non-linear nature of the encoding.
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Figure 11. Temperature gradients.

Methods 3 and 4 produce good quality fits to the spectra
and emissivities with gradients that are different from the
correct solution. Therefore we may conclude that without

imposing a smoothness condition to a particular functional
dependence the analysis can be ambiguous. It may be
possible however to break the ambiguity by specifying
additional physical objectives (e.g. another spectral feature
to be analyzed simultaneously).
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Figure 12. Density gradients.

Work is currently in progress to improve performance of
our model as well as to understand how much we can expect
from the analysis of the data. The goal is to find a method
(or a combination of methods) that has high success rate and
does not lead to alternative solutions.

We are developing a new technique that combines
flexibility of tabulated parameterization with strictness of
functional dependence. In this implementation we
approximate tabulated data with polynomials and use these
polynomials as plasma gradients. This procedure is quasi
linear and automatically enforces important physical
constrains. Initial results are very promising.

4 Conclusions and Future Work

We studied the possibility of using Pareto optimal genetic
algorithms for the estimation of plasma temperature and
density gradients by performing simultaneous analysis of
experimental X-ray spectra and monochromatic images.
This information may be used to improve characterization
of core plasma dynamics and to provide new data for
detailed benchmarks of hydrodynamic codes.

The algorithm performs well when we analyze synthetic
data produced using simple parabolic gradients. The
Genetic Algorithm is capable of finding quality solutions
while exploring only a tiny part of the search space. We
have shown however that unambiguous determination of the
gradients is sensitive to the quality of the experimental data.

Work is currently in progress to improve performance of
the method and to perform adequate analysis of the data
with more complex gradients. New techniques to
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parameterize the gradients as well as additional physical
constrains may be required.

We are also working on a parallel implementation of the
code to be run on our in-house Beowulf machine. This will
allow us to increase population sizes (and hopefully
improve performance) and perform extensive parameter
study. Currently it takes 12 hours to perform a single run
with 200 individuals in each generation for 200 iterations on
an SGI Power Challenge machine.

This work was supported in part by DOE High Energy
Density Science Grant No. DE-FG03-98DP00213.
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