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A Collective-Based Adaptive Symbiotic Model for
Surface Reconstruction in Area-Based Stereo

John Yannis Goulermas, Member, IEEE,and Panos Liatsis, Member, IEEE

Abstract—This paper proposes a novel optimization algorithm
for image-space matching and three-dimensional space analysis,
using an adapted scheme of evolutionary computation that em-
ploys the concept of symbiosis in a collective of homogeneous pop-
ulations. It is applied to the automatic generation of disparity sur-
faces used for depth estimation in stereo vision. The global task of
approximating the complete disparity surface is decomposed to a
large number of smaller local problems, each solvable by a smaller
processing unit. Coevolution is sustained in such a way as to coun-
teract the arbitrary decomposition of the original super-problem,
so that the local evolutions of all the subproblems become inter-
locked. This, in the long run, provides a consistent global solution,
and it does so via an asynchronous and massively parallel architec-
ture. The entire surface is partitioned to a set of adjoining patches
represented by distinct species or populations, with phenotypes
corresponding to different polynomial functionals. The credit as-
signment functions take into account both self and symbiotic terms
in an adaptive and dynamic manner, in order to produce disparity
patches that are fit within their own domain and at the same time fit
in association with their symbionts. This persistent propagation of
local interactions to a global scale throughout evolution generates
a unified disparity surface composed of the many smaller patch
surfaces.

Index Terms—Image-space matching, parallel optimization,
population collective, stereo correspondence problem, surface
approximation, symbiosis.

I. INTRODUCTION

M ACHINE VISION is the science concerned with the
computational modeling, processing, and interpretation

of the two-dimensional (2-D) projections of three-dimensional
(3-D) physical scenes by computer algorithms. A significant
field of machine vision relates to the recovery of the original
physical 3-D information, so that visible surface reconstruction
and depth measurements become possible. Stereo vision refers
to one such mechanism of obtaining surface estimations using
nonintrusive camera-based sensing to acquire multiple views
of the same real-world scene, in a manner similar to the way
many biological beings with eyes of overlapping fields of view
perceive depth. In order to measure the distance between the
observer (camera system) and each of the scene elements from
the pair of captured images, it is required that certain image
features (which correspond to the 2-D projections of 3-D phys-
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ical primitives) in one retina are matched with their conjugate
features in the other retina. These pairs give rise to a set of
disparities or parallax values between the two image retinas,
which by using certain geometrical transformations and camera
parameters can produce the sought measurements [1]–[3]. In
the last two decades, stereo vision has been receiving a rapidly
increasing appeal in a multitude of application domains. These
include vehicle navigation, teleoperation, robotics, manufac-
turing, medicine, terrain analysis, entertainment, etc.

The problem of finding conjugate pairs between images
is called the stereo correspondence problem (SCP), which in
essence is an optimization problem of a very large solution
space. Many different optimization methods with diverse
properties have been employed in the past, such as local search
[4], dynamic programming [5]–[7], relaxation [8], variational
methods [1], [9], [10], gradient methods [11], graph methods
[12], hybrid techniques such as ones combining graph and
gradient methods [13], [14], neural networks [15], [16], sim-
ulated annealing [17], evolutionary optimizations [18]–[21],
and others. In general, there are two kinds of matchers:fea-
ture-basedandarea-based. The former rely on the geometric
invariance of the scene projections, match extracted features
such as edge structures, and generate sparse disparity measure-
ments. The latter are based on the photometric invariance, that
is, preservation of the intensity profiles between the views,
and generate dense disparity maps. This kind of matcher can
be more computationally demanding as compared with the
feature-based ones their search space is significantly broader.
Area-based matchers, however, do not need interpolating steps
to fill the gaps and their naturally dense output is more suitable
to modern applications of stereo, such as view synthesis and
image-based rendering [22]. Comprehensive details for all such
techniques can be found in the reviewing texts [22]–[28] and
the references therein. In this paper, we relate to the latter type
and produce dense disparity output.

Previous applications of genetic algorithms (GAs) to the SCP,
include [18], which used a GA to find the optimum disparity
from a set of discrete values precalculated by aggregation win-
dows of different sizes. A block decomposition scheme was
used for efficiency, however, the search was bounded by the
quality of the precalculated values and no interblock smooth-
ness was imposed. Reference [19] also used a block decom-
position optimising each block with a separate GA execution.
However, the lack of dependency between blocks generated dis-
continuities in the final disparity map. Also, all block chromo-
somes were composed of discrete per-pixel disparity values.
Reference [20] used block partitioning but with simple inter-
actions between blocks to smoothen the transitions. However,
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chromosomes were again discrete, and their quality depended
on a region extraction preprocessing scheme used to preset their
structure. Also, synchronous serial execution was used for the
GAs, and since chromosomes consisted of portions of constant
disparities, surfaces were biased toward frontoparallel ones. The
method proposed in [21] used a quadtree to adaptively decom-
pose the image to areas of different sizes represented as tree
leafs with explicit smoothness handling between the leafs. How-
ever, each area had a constant discrete disparity value and their
scheme was not arranged for parallelization.

Our proposed algorithm, which is an extension of [26] and
[29], uses a particular type of GA, called symbiotic (SGA),
and is distinctly different from previous approaches. The entire
disparity surface map is decomposed into a set of equal-sized
patches with local only support, and the optimization of each
patch is assigned to a single processing unit. Although such
surface decomposition is again employed for efficiency, we use
continuous surfaces that support subpixel disparity accuracy and
modeling of arbitrary surfaces. The objective function of every
population is configured in a way that takes into account two
types of objectives. The first is composed of the self scores of
the intrapatch intensity profiles and the geometrical scene con-
straints. The second, the symbiotic score, enforces interpatch
continuities on the participating surfaces. While each popula-
tion searches for a best-fit surface within its own domain, it con-
tinuously takes into account currently available solution quality
information from the neighboring populations; these popula-
tions are considered to constitute the symbiont species of each
evolving patch. In this way, the incessant propagation of local
information allows each GA to be directed to a region of its so-
lution space that exhibits high surface compatibility with other
proximal patches.

We design symbiosis in a way that counteracts the global dis-
parity surface decomposition and enables a parallelisable solu-
tion of the super-problem. Evolution of each population is im-
plemented by an autonomous processing unit: however, coevo-
lutionary dependencies are sustained through shared elements
in the credit assignment functions of all participating SGAs. Im-
portantly, each species/patch does not have to interact with all
others in the entire collective but only with its immediate neigh-
bors. Despite such locality, global consistency is propagated
from short-term regional interactions to gradually more distant
populations, so that a globally acceptable solution is achievable
in the long term. Toward the end of evolution, the best patch sur-
faces from all populations are collected to integrate the solution
of the super-problem, i.e., the complete disparity map.

In addition to the typical advantages of evolutionary opti-
mization [30] (e.g., global search, no need for continuity, dif-
ferentiability, unimodality, etc.), our novel framework incorpo-
rates certain advantages over the standard GA, as well as some
previous coevolutionary models described in Section II. First,
it allows for the use of a very large number of simple popu-
lations, so that it can be implemented in a massively parallel
system. Each processing unit (CPU or network node) can as-
sume evolution of one or more populations. Also, communica-
tion between the interacting units is frugal. Not only each pop-
ulation needs to communicate with just its nearby neighboring
species, but communication is restricted to the simple transmis-
sion of partial phenotypic information of some representative

members. Furthermore, each objective function evaluation does
not require the repetitive composition of the global disparity so-
lution for the individual credit assignments, but only the data
provided by the aforementioned local communication. Finally,
synchronization between the members is unnecessary. Even if
some processing units miss transmitted information or fail tem-
porarily, the overall performance does not falter.

The structure of this paper is as follows. In Section II, a con-
cise survey of coevolutionary applications is given. Section III
presents the details of the stereo matching problem and the pro-
posed decomposition scheme. Section IV explains the chromo-
some encoding scheme, while Section V describes the GA op-
eration sequencing and the employed genetic operators. The
method used to hybridise the initial populations of the collective
is outlined in Section VI, while the description of the credit as-
signments is given in Section VII. Section VIII describes some
design and implementation issues. Finally, Sections IX and X
include results and conclusions, respectively.

II. PREVIOUS COEVOLUTIONARY PARADIGMS

Computational models utilizing coevolutionary strategies
have been studied in various cases. The first perhaps application
of coevolution in [31] used a population of real coded patterns
to play a simple game of poker. Each pattern encoded evolution
parameters and betting probabilities. During coevolution each
pattern played a number of games against an opponent selected
from the population. The losing patterns were eliminated,
while the winning ones were allowed to reproduce. Reference
[32] employed parasitic GAs to search for minimal sorting
networks of fixed cardinality. The two involved populations
were the networks (hosts) and the test cases (parasites) and
the fitness of a host depended on its ability to solve tests,
while the fitness of a parasite depended on the frequency it
was solved incorrectly by the networks. References [33]–[35]
coevolved one population of constraints and one of solutions
to solve constraint satisfaction problems. The fitness of a
solution depended on the number of satisfied constraints over
a number of interpopulation encounters, while the fitness of a
constraint depended on the number of times it made a solution
to fail. Reference [36] also used one population of test cases
and one of solutions to evolve cellular automata with density
classification capabilities. The work evaluated the usefulness
of resource-sharing fitness functions, where solutions received
high fitness if they could solve test cases that were difficult to a
large set of other solutions. Reference [37] used a population of
neural networks (game strategies) to evaluate board positions in
a tree search playing checkers. At each generation, all parents
and offspring competed for survival, by having each network
played against other population members and preserving
the best.

In the field of optimization, [38] used symbiotic popula-
tions for minimization of -dimensional functions, with each
population encoding a different decision variable. The fitness
of each member was calculated by partnering that member with
good representatives from the other populations. A similar con-
figuration was also applied in rule-based robot learning [39].
Different partnering methods were considered to make fitness
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calculations more realistic. Reference [40] also used two co-
evolving populations for the minimax problem; one for mini-
mization on one decision variable, while the other for maximiza-
tion of the other variable. Reference [41] applied an evolution
strategy to coevolve two populations, one of decision variables
and one of Lagrange multipliers to solve efficiently generic non-
linear constrained problems, formulated as a zero-sum minimax
problem. Reference [42] used coevolution of one host and one
parasitic population to enhance the search for useful schemata
during evolution. The host GA searched for good solutions to
the problem at hand, while the parasitic one explored the solu-
tion space for schemata that improved the search within the host.
A probabilistic gene transcription mechanism from the parasites
to hosts was employed for fitness evaluation. The work was ap-
plied to function optimization, while it was extended in [43] for
constraint satisfaction problems.

Other applications involve the work of [44] and [45], which
evolved neural networks by using one population to encode con-
nectivity and weights of individual neurons and a second popu-
lation to encode complex combinations of neurons from the first
population, in order to form complete network solutions which
were evaluated upon their classification ability. Reference [46]
used symbiosis for designing a fuzzy controller by evolving a
population of different types of fuzzy rules. Fitness evaluation
was performed by selecting a set of rules, then, evaluating the
performance of the controller with the problem data, and finally,
accumulating part of the overall fitness value to the participating
rules. Reference [47] applied coevolution to the design of min-
imax controllers for uncertain environments by using one pop-
ulation of controllers and one of plants. Each controller indi-
vidual was scored according to its performance over the plant
parameter population, while each plant was scored according
to its simulation results with each given controller. References
[48] and [49] proposed a generalized society model for coevolu-
tion, which was applied to radial-basis neural networks for func-
tion approximation. The genome of each population encoded
basis functions of the same type (centers and variances) and the
fitness for each member took into account its similarity with
representatives from other populations. Reference [50] used the
idea of shared memory in the coevolution of two populations;
one of painters and one of whitewashers for the solution of the
room-painting problem. The shared memory enhanced the effi-
ciency of the partnering strategy by storing fertile partnerships
instead of discarding them as soon as fitnesses were evaluated.
Reference [51] used a particular epistatic problem to test var-
ious partnering strategies for generational and steady-state GAs,
such as random, best, selection-based, distributed, and joined. A
different type of work from [52] used a computational model to
demonstrate the learning capability of the immune system. This
was modeled as a population containing bit-coded antibodies,
capable of memorizing pattern information. First, an antigen
population immunized (trained) the system, and then, a different
antigen population was used to assess the learning of pattern
classification problems.

In the field of machine vision, coevolution has also been ap-
plied successfully. The work of [53] used coevolving pop-
ulations to estimate motion and layer information ofvideo
objects. populations encoded the motion transform parame-

ters of each object and another population encoded the layering
of the objects. Fitness evaluation involved repetitive partnering
of selected members from all populations to derive a predicted
frame and compare it with the actual segmented video sequence.
Reference [54] provided an antagonistic coevolution to segmen-
tation of textured areas. There were two populations encoding
textural descriptors for two types of texture, which competed for
territories of different texture. The fitness value was the combi-
nation of the responses of the descriptors applied on their own
textures, as well as the textures of the opposing population. Ref-
erence [55] applied symbiotic optimization of snakes to object
tracking, where different populations were used to search for
adjoining snake segments. Fitness evaluations used self criteria
to minimize the snake’s internal energy, as well as symbiotic
criteria based on the proximity of segment control points and
their Fourier descriptors. Reference [56] applied symbiosis to
the discrete optimization problem of sparse feature-based cor-
respondence. A different population was assigned to each scan
line to solve a weighted bipartite graph matching problem, but
the cost function took into account edge-linking similarity in-
formation from the adjacent species.

III. PROBLEM DEFINITION AND PARTITIONING

The input to the algorithm is a stereo pair with each
image of dimensions pixels. Matching pairs up a left
pixel with a right pixel and gives rise to a dis-
parity function and are used to denote
image rows and columns, respectively). Imageis used as the
reference retina. Without loss of generality, we assume canon-
ical camera configuration with vertically registered retinas, so
that the epipolar constraint [25], [28] forces within scan-line
matching, that is, . A user-defined disparity range

is also enforced so that search is restricted by
.

As mentioned earlier, we employ a partitioning of the
global surface spanning the entire retina to small rectangular
patches. We have also considered various alternatives for such
partitioning. We could, for instance, create populations each
corresponding to a single image row and apply symbiotic
dependency to interrow smoothness between each epipolar row
and its adjacent ones. Although this would give rise toGAs,
the solution space of each GA could be very large, since each
chromosome could be of length, giving a discrete search
space (ignoring occlusions and uniqueness for simplicity) of
size . Since we wish to achieve massive
parallelism, a higher number of populations each solving a
simpler problem is more prudent. Comparing this with the
partitioning to rectangular patches of size , we obtain
a much larger number of populations, each of a smaller search
space of size .

The simple partitioning scheme we used is shown in Fig. 1,
where each patch is centered at the point of a uniformly
spaced grid and overlaps with its adjacent ones by one pixel. We
use to denote a 2-D continuous function with domain
limited by the patch boundaries (note that such surface depends
on both coordinatesand at each image location. In addition,
if the epipolar constraint were not used, two such independent
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Fig. 1. Partitioning ofL into h �w rectangular patches. The disparities within each patch are computed by the values ofd (y; x) in the domain[y ; y ]�
[x ; x ].

functionals would be needed to model the disparity vector). The
range of each corresponds to the set of disparities span-
ning the pixel domain ,

. Image points
are indexed by and , while
patch centers by and ,
with and .

IV. GENOME ENCODING

To obtain phenotypes that are low-order disparity surfaces,
we model the chromosomes as bivariate polynomials of degree

(1)

where is the coefficient of each term; for example, the bi-
quadratic polynomial is given by

. We choose to model such a chromosome
as a coefficient vector, for instance, ,
since real-valued representations have been shown to result in
faster and more consistent searches for continuous problems
[57]–[59]. In addition, we have the benefit of continuous
subpixel disparity measurements. The length of such

chromosomes is , that is,

the number of positive integer solutions of .
Note that modeling local disparity with low-order polyno-

mials has also been used in [60]–[62] but in a different opti-
mization context. Low-order functionals are preferred here as
they naturally incorporate the smoothness constraint. If the dis-
parity surface has an unconstrained form, then explicit regular-
ization terms must be added to the cost function. This is be-
cause the SCP is an ill-posed problem and regularization theory
is needed to recover acceptable solutions [63]. Various smooth-
ness terms with different nullspace properties have been used,
with typical examples including the square-Laplacian

[1], the quadratic-variation [10], [11],
and the square-gradient [63]. The computational over-
head of these operators, however, is avoided here by employing
low-order surfaces.

V. GA CONFIGURATION

We allocate a separate population at each grid point,
responsible for controlling the disparity surface . Every
population contains a fixed number of chromosomes of

real values each and at each generation members are
replenished. The calculation of the objective value of every
chromosome is described in Section VII. This con-
figuration gives a collective of populations that are algorithmi-
cally homogeneous; it is only the problem instance that changes
and, not the type of the underlying problem. All GAs are set-up
similarly to themod-GAproposed in [59] with each generation
completing in the following steps.

Step 1) Select - distinct survivors for the next gen-
eration.

Step 2) Select parents from the current population and breed
offspring from them, with each parent allowed

to mate only once.
Step 3) Replace the current population with the survivors

and the new offspring and evaluate objective values
accordingly.

This scheme has certain advantages over standard genera-
tional replacement techniques [59], as both parent and child
have a good chance of appearing in the next generation. Also,
the finite population slots are exploited better since survivors
are distinct. The parameter defines deterministically the
ratio of population replacement. In the above steps, we add the
elitismoperator to preserve the best members as unconditional
survivors. The fitness allocation mechanism useslinear ranking
[64] and employs Baker’s ranking formula [65] to explicitly
control selective pressure and the balance between exploration
and exploitation (using the parameter ). This scheme
has shown to mitigate significantly thesuper-individualand
close-raceeffects [57], [66].

A. Search Operators

In order to have better control over the search, we split the
breeding in step 2) above. Offspring are produced either by
crossover or by mutation, i.e., these two operators are not ap-
plied sequentially. At each generation, every GA performs
a number of cycles of selecting the next genetic operator
to be applied until all new offspring are collected. At
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each cycle, crossover is applied with probabilityand muta-
tion with probability . As explained in Section V-A1,
we use four crossover operators: three quadratic ones gener-
ating two offspring each and one binary generating one off-
spring. Thus, the average of individuals generated by crossover
is . Mutation (see Section V-A2) always generates
one new offspring. Since is equal ,
crossover and mutation produce and

of all the offspring, respectively.
We use an initial value of , which gives 72% and 28%
offspring for the two operators, respectively.

We have adopted a simple experimental heuristic to improve
search. Since the initial generations contain adequate diversity,
the exploitation facility of crossover is more desirable. Later,
when diversity is decreased, the exploration of new regions by
the mutation operator is more useful. To take this into account,

is halved automatically upon a predefined generation count
. Thus, for generations , a value of

changes the contributions from crossover and mutation to 43%
and 57% of , respectively.

1) Crossover: As we have used a real-valued chromosome
representation, standard point crossovers employed in bit-string
GAs may not be adequate. Previous research on function op-
timization [58], [59], [67] has shown the usefulness of spe-
cialised operators for real-valued representations. In this paper,
for two selected parents and , we use the following
crossover library.
C-I: Classic -point [59]: break-sites are selected ran-

domly and and contribute accordingly to
produce two offspring. Since is small, a small
fixed symmetric value of is adequate. This
crossover generates offspring at the corners of the
hypercube defined by the two parents.

C-II: Line arithmetical [58], [59], [67]: A random uniform
number is generated and then, two offspring
are produced through the linear combinations of the
parental vectors: and

. This crossover produces offspring lying
along the line segment joining the two parent points in
the -dimensional solution space. Note that C-II is
a general case of theaveragearithmeticalcrossover for
fixed .

C-III: Intermediate arithmetical [59], [67]: This works as C-II,
however, a different is generated for each al-
lele and of the two parents, for

. The two offspring are given by the com-
binations and

. This generates offspring within the
boundaries of the hypercube defined by the two parents.

C-IV: Heuristic arithmetical [58], [59]: This operator gener-
ates only one offspring given by ,
for a random given that .
The generated offspring lie at the line passing through
the parents similarly to C-II, but the comparison of the
objective values biases the operator to search toward the
most promising direction.

As seen by the geometric interpretation of the above opera-
tors, they support combinations of the polynomial coefficients

in various ways. If the two parents are near fit because of
some promising depth attributes of their phenotypic polyno-
mial surfaces, such as curvature components or intercept, then
the children have potentially the chance of inheriting these at-
tributes, by either exchanging (C-I) or by arithmetically recom-
bining (C-II, C-III, C-IV) the related coefficient groups. We ob-
served a faster search when this combination of crossovers was
used instead of any single one. Once the GA has decided to use
crossover as the next breeding operation, a scheme from the
library is selected in random. Note that all crossover schemes
guarantee offspring with alleles within the permissible alphabet

(see Section VI), apart from C-IV. A max-
imum of five attempts for reselectingis allowed for this oper-
ator until is respected.

2) Mutation: The mutation operator also uses a library of
varying schemes with different properties, exploiting the real-
valued representation. A single parent member is selected and
each allele is mutated with a probability (with a
minimum of one mutant allele per member). The following mu-
tation schemes are adopted.
M-I: Uniform: The mutant allele is reassigned a

random value from .
M-II: Nonuniform [59]: The new allele value depends

on the age of the population and is calculated by

(2)

where the two choices are decided in random with a
probability of 0.5. The added/subtracted value is given
by

(3)

where is the current generation, is the length of
evolution, is a system dependent parameter set to 4.0,
which reflects the degree of uniformity, and is
a uniform random number. This function gives a value
within which is closer to zero with higher prob-
ability, as more generations elapse. Thus, in the early
stages, the search space is sampled uniformly, while
later on, a local fine-tuning is performed.

M-III: Boundary [59]: This changes the mutant allele to either
or with a probability of 0.5.

When an individual is selected for mutation, one of M-I, M-II,
and M-III schemes is chosen with probabilities 0.4, 0.4, and
0.2, respectively; we do so since M-III is more disruptive. This
composite mutation scheme was found sufficient in sampling
new points of the coefficient space and managing diversity loss.

VI. POPULATION INITIALIZATION

In order to restrict the range of the search during initial-
ization and evolution, we provide a chromosome alphabet

that represents the set of all permissible
values for the gene coefficients . To set its limits to some
reasonable values, we use the disparity rangeand assign

. We also scale the
domain of each patch to . Then, to
obtain the initial populations, we randomly select fromall
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coefficients excluding the constant one . Subsequently,
is recalculated via

(4)

where is an estimated value of the average disparity
of patch . If (4) produces , then the operation
can be repeated. The proposed heuristic combines a simple and
very fast mechanism for generating random solutions near the
feasible regions of the search space without, however, sacri-
ficing the genomic diversity of the initial populations. Note that
those few elements that may have disparities outside
are handled by the penalty terms of the credit assignment (see
Section VII).

A. Hybridization Phase

It is beneficial to hybridise the initial populations, so that the
search is deployed from prosperous regions of the feasible so-
lution spaces. In GAs, various methods for hybridization have
been used [57], [59]. Here, we adapt an inexact but fast stereo
matcher (thebidirectional local search(BLS) similar to the
one used in [4] and [68]), to calculate approximate disparities
for each patch and generate reasonableestimates for (4).
In BLS, each pixel in is assigned its most preferred
(within ) pixel in and only if this preference is mu-
tual then the pairing is accepted. For preference evaluation, we
use thezero-mean normalized cross-correlation score
[68] as in (5), shown at the bottom of the page, where the com-
parison is performed within windows (with

) centered at the two pixels and and are
the average intensities.

Using the above, we employ the following hybridization
procedure.

Step 1) Apply BLS to all patches independently and
for each patch evaluate whether the number of its
pixels with defined disparities is above a threshold

, where is a user-defined percentage.
Step 2) For each patch that passes the test, set its

value equal to the median of its disparity
distribution.

Step 3) For all the patches that failed the test, calculate their
values using the average values of their eight-

connected neighbors, which have defined dispari-
ties. If some patches do not have such neighbors at
all, iteratively apply this step, until all missing values
are gradually filled up.

The above test is used to reject disparities which are of low
confidence and possibly incorrect, while the median value is
used for rejection of the outliers. This heuristic was found to
be very effective in providing the SGAs with good estimates
for the starting populations. Note that although there is a single

for all the chromosomes of each population, the starting
diversity of is high, since the coefficients of its members can
have quite different magnitudes.

VII. CREDIT ASSIGNMENTTERMS

A. Self Contributions

The primary goal of each population is to locate a surface
that optimally conforms with the photometric similarity of

the two images by matching each point
in with a point in . Given the

chromosome in , we use (6), shown at the bottom of the
page, minimizing error term to achieve this. The above ob-
jective penalises the out-of-range disparities by a per pixel con-
stant cost , since the problem constraints are violated (note that,
for simplicity, we use to denote the disparity value
corresponding to the coefficients of at pixel ). The
pair denotes the original pixel intensity tables, while

and are the vertical and horizontal gradient
fields of the images, respectively. These are calculated by con-
volving the original images with the corresponding derivatives
of a Gaussian kernel of scale in order to reduce the ef-
fects of noise and quantization. Since the values in the three
tables are accessed at a subpixel level, we use a simple parabolic
interpolation along the row. We also truncate the responses of
the absolute differences in (6) to a small value offor each of
the three terms prior to summation, in order to limit the contribu-
tion of large errors [22]. Finally, note that although we used the
sum of absolute differences, any dissimilarity/similarity metric
could have been used, such as correlation or metrics based on
rank statistics [4], [69], [70], which exhibit robustness to linear

(5)

if
otherwise. (6)
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and certain nonlinear intensity variations but are more compu-
tationally expensive.

A second error term can be designed by taking into account
certain scene constraints. The uniqueness constraint (UC), for
instance, requires a one-to-one matching. In the above formula-
tion, this is not guaranteed since a right point can be the conju-
gate of multiple left points. A further improvement can be ob-
tained using the ordering constraint (OC). Both constraints are
in fact constraints on the possible scene objects and their use can
reduce the search space of the SCP. The UC implies that each
physical point occupies a unique position in the 3-D space and
assumes opaque scene objects, while the OC disallows thin oc-
cluding scene objects at large separations that cause projection
reversals [2].

Here, we satisfy both constraints simultaneously as follows.
Suppose that at two nearby points and in ,
where , the corresponding disparities are and

. Then, the OC implies that their conjugate points
in preserve their order, that is

(7)

which, for , restricts the horizontal derivative to an
upper bound of 1.0. This has also been observed in [60] and
used in the energy minimization framework of [11]. Here, we
explicitly incorporate the violations of this term via the penalty
term defined as

if
otherwise

(8)

In this way, the OC is not enforced as a hard constraint as in
dynamic-programming-based algorithms, since if the stereo pair
contains objects that cause reversals, the photometric term
has potentially the ability to outweigh and admit a disparity
surface that violates the OC. However, since the majority of the
scene objects are expected to abide by the OC, an additional
improvement can be achieved.

B. Symbiotic Contributions

As mentioned in Section IV, intrapatch smoothness is man-
aged effectively by the low-order polynomials. However, due
to the difference between the views and the noise, the surface
continuity across the patches breaks down. Increasing the size
of the patches may alleviate this problem, however, it causes
loss of resolution and increases the errors at object boundaries,
where discontinuities must be allowed. Thus, since minimizing
the self errors and is a necessary but not adequate opti-
mization strategy, we have to impose extra terms to enforce in-
terpatch regularization. We design such terms based on symbi-
otic interlocking in order to proscribe each patch from evolving
independently of its neighbors. Fig. 2 pictures such dependency
between each population and its four-connected symbiont
species .

The first such term attempts to suppress the strongmosaic
effectby enforcing zeroth-order (or positional) continuity at
the boundary disparities with each of the four neighbors in the

Fig. 2. Symbiotic dependency between speciesP and its four symbionts.
Regularizing forces at the patch boundaries can enforce surface continuity
disrupted by the problem decomposition.

top , bottom , left , and right
sides, as shown in Fig. 2. This is given by the error

term

(9)

which measures the weighted sum of absolute side disparity dis-
crepancies between the surface of chromosomeunder eval-
uation and the currently best local solutions of each
of the four symbionts . in (9) are adaptive weights,
which are discussed in Section VII-C. is scaled by the sum
of all weights to normalize them to a sum of
unity.

The effect from the minimization of is illustrated in
Fig. 3(a) for a simplified 1-D analog. The two end points of
the curve try to obtain similar values with the adjacent
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(a) (b)

Fig. 3. One-dimensional (1–D) analogues for the enforcement ofC andC continuities. (a)f minimizes the disparity jumps at the patch boundaries. A likely
minimization of the errors between the patchesi andi� 1 could produce the dotted joining curves. (b) Minimization of thef error reduces the peak effect.

sides of each neighbor , in order to attenuate the disparity
jumps. Since the curvature of each surface is limited by the
polynomial degree , each curve is forced toward altering its
entire profile to create a surface that is continuous with the
neighboring ones. A likely outcome is shown as a dotted curve
in Fig. 3(a). In this way, by evolving all populations in parallel,
local interactions are propagated to a global scale to yield a
globally smooth disparity map. The benefit gained by is
twofold; not only patch boundary discontinuities are reduced,
but also each surface itself is regularised to the matches that
are consistent with its neighbors. For example, ifhas many
mismatched elements, its neighbors have a good chance
of rectifying its profile to support more consistently their own
possibly stronger surface profiles.

Since the lack of first-order continuity can give rise to a
peak effectat the patch boundaries, we also use a second term

to produce more smoothly flowing surfaces. The corre-

sponding 1-D case of Fig. 3(b) exemplifies the situation. Al-
though the closest endpoints and of and have
similar values, their rapidly and similarly sloping neighboring
points and cause a peak, which is likely un-
wanted due to the inherent smoothness of the physical world.
The minimization of ensures suppression of this effect by
aggregating such errors at discrete side pixel locations [finite
differences are used instead of derivatives since (6) has already
calculated the disparity values at those pixels] as in (10), shown
at the bottom of the page.

Note that the above two discontinuities are also undesirable
in computer graphics, where boundary-based object repre-
sentations are sought. When, for instance, splines are used to
model different regions of an object’s surface, similar surface
continuities are needed. In these cases, rigid conditions, such
as equality and colinearity are imposed on selected spline
control points [71], [72]. For the current work, we could use

(10)
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splines instead of polynomials and enforce such smoothness
symbiotically in exactly the same manner.

The final symbiotic error term is another form of conti-
nuity and measures the local coherency between patch surfaces
by enforcing nearby patches to have similar disparity values.
This coherency error uses a local geographic neighborhood

) around every patch to aggregate the absolute
differences of average disparity values between the current
chromosome and the elite ones of each symbiont as

(11)

The symbols denote the averaged patch disparities and
contains all patches within a fixed distance of approximately 30
pixels around and excluding .

It can be seen that in (9)–(11), we have solely used the best
members from each symbiont. This partnering strategy (see
variations in Section II) is a rather greedy one, since instead
of evaluating a chromosome with the currently elite represen-
tatives, more auxiliary evaluations with various combinations
of weaker representatives could be used to allow for more real-
istic symbiosis. However, experimentation showed that such an
expensive scheme is not needed. The reason lies in the fact that
we have used (see ensuing subsections) symbiosis in an adap-
tive manner that compensates for the greedy behavior of this
strategy.

Another important point to be mentioned about these three
terms, is that the continuity and coherency assumptions cannot
hold near object boundaries. At these areas, nearby patches have
to be allowed to diverge in order to model the depth separations
between scene object. For this reason, we make the three error
terms robust by truncating each of the absolute difference contri-
butions to a small fixed value of . In this way, discontinuities
between different surfaces will be allowed and not smoothed
out.

The above five error families , , , , and are
embedded in the evolutionary optimization framework of the
previous sections using two types of weights; theones that
balance the individual symbiotic contributions and theones
used to combine/scalarise all the errors.

C. Adaptive Symbiotic Forces

The weight adjusts dynamically the effect of evalu-
ating (the current member under evaluation) with respect
to (the best member or in (9) and (10) or (11),
respectively). It can be envisaged as a measure of thesymbiotic
forcebetween the two species members. Each such weight is the
direct product of three further quantities described
below.

is a monotonically decreasing function of the difference
of the average pixel intensities in within the two

patches corresponding to and . This is because the more
similar the intensities of the two patches, the more likely they
belong to the same object region. In such cases, the disparity

discrepancies between and the neighboring symbionts need
more minimization. This weight is defined as the truncated line

(12)

where is a fixed threshold which depends on the intensity
differences between all the symbiotically associated patch pairs
in the collective.

is designed to decrease when the symbionthas higher
error than . It is defined as

(13)

where consists of the combined errors and of
as defined in (15). In this way, continuity or coherency as dic-
tated by a symbiont is less trustworthy when its internal en-
ergy is higher than the energy of (note that only the
self-errors are used here since the part of (15),
which combines , and is not calculated yet for ).

Finally, regulates the dominance between a symbiont
and its peers involved in the evaluation of. We define it as

(14)

where is the total error defined in (16), which combines
(6) and (8)–(11). The denominator is summated over all sym-
bionts of (that is the four for (9) and (10) or all
the in for (11)). In this way, controls the influ-
ence of the participating symbionts by biasing coevolution to be
more compliant with the fitter species. Note that althoughis
fixed during evolution as it depends solely on the image inten-
sities, and adapt constantly to the errors. Such adaptive
behavior has the advantage of making the global propagation of
all local optimizations more realistic and avoid the local optima
effectively.

D. Dynamic Multiobjective Optimization

The need for simultaneous satisfaction of the five error fam-
ilies , , , , and gives rise to a multiobjective
(or vector) optimization problem; such problems are typically
studied using Pareto optimality theory [73]. In the context of
evolutionary optimization, there are various techniques to en-
able recovery of multiple solutions from the Pareto optimal set
[74]–[81]. In this paper, however, due to the large-scale of the
problem, we use a weighted-sum approach from the field of
classical multiobjective theory [73] to recover a single Pareto
optimal point. We directly scalarise the five terms in a single-
valued performance index as the mixture of the following two
energies:

(15)

where , , , and are fixed user-defined weights.
However, at the beginning of evolution, the energy

may not be as effective as later on. Also, some unfortunate phe-
notypic arrangement in the initialization phase among nearby
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Fig. 4. Test images of the Tsukuba, Sawtooth, Venus, and Map pairs, from top to bottom. The first two columns show each stereo pair, while the third column
the provided ground truths.

patches of low symbiotic errors, may lock optimization to local
minima owing to the nature of our decomposition. For these
reasons, we combine and using a time-varying
weighting as

(16)

where is a user-defined generation threshold andis the cur-
rent generation. In this way, thesymbiotic strength biases

TABLE I
ATTRIBUTES OF THEFOUR STEREOPAIRS

the optimization toward the self energies first and gradually in-
troduces the importance of symbiotic interactions. At generation

, the symbiosis culminates and for the remaining evolution
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Fig. 5. The provided occluded areas (black) and the discontinuity areas (white). The surrounding black border is ignored from evaluation.

TABLE II
ALGORITHM PARAMETERS USED FOR THEEXPERIMENTS

, , assume their full strength, so that at the col-
lective converges to a global equilibrium.

is the principal GA objective function used in
each of the populations of the collective. Note that the
time-varying strength and the error-adaptive forces give
rise to a nonstationary optimization environment. Such opti-
mizations of dynamic problems have attracted recent interest in
various domains [82]. A primary problem in such cases is that
convergence may lead to population diversity loss, making, thus,
the system insensitive to environmental changes after some gen-
eration and various mechanisms have been devised to counteract
this effect. In this paper, this is another reason that (as described
in Section V-A), we increase mutation by halving the crossover
probability during evolution.

VIII. I MPLEMENTATION AND EXECUTION SCHEDULING

We have prototyped the proposed algorithm in C++, where
the collective of species is implemented as a queue of GA pop-
ulation objects. Each object is evolved by one generation in turn
and the entire queue is processed for a total of cycles. How-
ever, in order to demonstrate the behavior of a real-world asyn-
chronous parallel implementation, the queue is perturbed at each
cycle to model the fact that one processing unit (processor or
network node) may be slower than others or fail temporarily
to communicate. The scheduler object reshuffles the queue at
every cycle, so that the order of evaluation is changing. We
have experimented with different perturbation schemes, with ar-
bitrary eliminations and/or duplications of population objects
within the queue, with no noteworthy differences in the pro-
duced results. Due to the way symbiosis is sustained, the system
is resistant to the lack of such synchronization.

The only interspecies communication arises when some
needs evaluation of its energy term. As discussed
before, each related species has to make available to its
symbionts the following data pertaining to its currently top
member : the disparity values calculated
from the two outermost pixel perimeters of its patch, its average
disparity , and the values of and .

We designed each population object to maintain a memory
buffer to store all these values. Their update occurs when the

object completes the generation. We have implemented
no buffer synchronization for these values. When a member

needs to have its error calculated, the above values are read
from all its symbionts without waiting. In an asynchronous
implementation, however, it may be the case that an object
is currently updating its internal buffer, when some’s are
in need of its contents. To test this effect (and also evaluate the
time savings in a parallel version—see Section IX-D), we have
also implemented a parallel version of the above queue setup
using multithreaded programming. A user-defined number of
threads access and evolve different objects from the queue
simultaneously and in random order. Again, the system behaved
robustly despite the lack of thread locking and synchronization,
which would undermine parallelism.

A final remark relates to the number of function evaluations,
which is an essential ingredient in the complexity estimation of
an evolutionary approach. Assuming an average of gener-
ations for each of the populations, the collective needs
a total of evaluations for
and evaluations of ; this gives
an overhead of additional eval-
uations for the latter term. This is because reevaluation of
is not needed for old population members but only for the new

offspring. Symbiotic terms , however, need reeval-
uation for all members both old and new at each generation since
the symbiont populations are in flux and their buffers’ contents
may change. Some lazy evaluation scheme can be devised by
checking whether the symbionts’ top member have changed in
order to save time, but for simplicity, we have not implemented
such a scheme here.

IX. EXPERIMENTS AND RESULTS

A. Test Imagery and Evaluation Criteria

Until recently, it had been exceedingly difficult to evaluate
the quality of the SCP algorithms found in the literature due
to the lack of common test imagery and accurate ground truth
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Fig. 6. Resulting disparity maps for the four test cases. Error maps contain bad pixels (in black), correct pixels (in white) and excluded occlusions and borders
(in grey). The percentages for the three types of errors are shown in the right column.

information. The latest reviewing work of [22], however, has
provided the means for a systematic evaluation of different
matchers with controlled imagery of known ground truth. In
this paper, we use the same test cases and evaluation criteria for
quantitative evaluation of the produced disparity maps, as well
as for comparison with other methods.

Fig. 4 shows the left and right images of the four stereo pairs,
referred to as Tsukuba, Sawtooth, Venus, and Map. The right
column of the figure shows the four actual scaled disparity maps
used to estimate the disparity errors. Table I summarizes the di-
mensions, disparity search ranges, borders and scaling factors
of the disparity maps for these pairs. In addition to the ground
truth, there is information about occlusions, discontinuities and
texture. In Fig. 5, for instance, occluded areas are shown in black
and white areas represent surface discontinuities. The black sur-
rounding borders are excluded from evaluation because image
boundaries hinder matching.

Error statistics for each test case in [22] are gathered within
three areas:

• : all pixels in nonoccluded regions;
• : all pixels in regions without texture;
• : all pixels near discontinuities.

The first type of error is calculated across the entire image,
while the other two within regions where matching is difficult in
order to provide a more focused analysis to problematic image
regions. In all cases, the occlusions shown in Fig. 5 are excluded
from evaluation. The error in each of these areas is expressed
as the percentage of bad pixels, that is, pixels with computed
disparities different from the actual ones. The first error, for ex-
ample, is defined as

(17)
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Fig. 7. Evolution of Tsukuba; Progression of best, average, and worst values of theE andE energy terms averaged over the entire collective.

where a threshold is used. and are similarly
defined for the textureless and the discontinuity regions.

B. Resulting Disparity Maps and Error Analysis

The behavior of our algorithm1 depends on the various pa-
rameters described in Sections III–VII. Manual fine-tuning of
these parameters has produced the values shown in Table II.
We use these values for all experiments, unless otherwise stated.
Although better results could be obtained by varying these pa-
rameters with each image pair, we keep them fixed in order to
comply with the criteria of [22] and allow a more realistic eval-
uation without assuming anya priori knowledge.

The final disparity maps of the algorithm are shown in Fig. 6
and can be compared qualitatively with the true maps of Fig. 4.
It can be seen that disparities are generally smooth within the
object surfaces while the depth separations are preserved ade-
quately. The erroneous pixels are shown in the error maps in
black, where occluded regions are excluded and shown in grey.
Tsukuba contains certain mismatches near discontinuity areas
due to the large amount of detailed objects, such as the camera
and its stand and the lamp. Sawtooth contains a blotch of errors

1It can be downloaded from http://www.nicve.salford.ac.uk/~yannis/soft-
ware/casgas.zip, and it supports both serial and parallel execution modes,
as well as different GA and stereo parameter input and images for further
evaluation.

in the bottom untextured area and other mismatches near discon-
tinuities. Venus and Map appear with smaller errors which are
also concentrated in the discontinuity areas. Such mismatches
are due to the square patches we use, which although of small
4 4 size still cause problems as they have to obtain member-
ship with either the object or its background surface. Overall
the disparity maps appear fairly accurate within the majority of
the surfaces. This is verified from the quantitative results in the
right side of Fig. 6. Discontinuity regions have larger error
percentages, textureless values are adequately small, while
the overall error estimations show the accuracy ranging be-
tween 97% and 99.5%.

From the above results, the symbiotic cooperation is suc-
cessful and despite its local enforcement, its propagation to
global scale is effective. Below, we examine in detail the
convergence characteristics of such collective symbiotic inter-
actions. Fig. 7 plots the progress of the and errors of
(15) and (16) (for Tsukuba only as the other tests have similar
curve profiles). Since we cannot examine each population
independently, we average the statistics over all the
species. The three graphs refer to the best , average,
and worst members in each patch and for each generation.
The best shows the (typical in GAs) rapid decrease of both
errors within the first few generations. Subsequently, while
the assumes a stable level, increases slowly until

. This is owed to the increasing symbiosis strength
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Fig. 8. Behavior of theB , B , andB errors during evolution (measured in steps of ten generations).

of (16). Following that, there is consistent decrease of
until termination at . For both the average

and worst graphs, we observe a short initial error increase, due
to the initial population genes being readjusted to the symbiotic
terms (at , the calculation of is solely based on the
ranking of ). The steep error increase at is due
to the increase of the mutation rate explained in Section V-A.
After that, the average obtains a stable error decrease.

For the particular problem we solve, one cannot guarantee
convergence solely from the error reduction shown in Fig. 7. Un-
like classic function extremization problems, reduction of
cannot guarantee minimization of the , , and errors.
This is for two reasons: First, the structure of the self/symbi-
otic cost functions of (6) and (8)–(11) is a matter of subjective
problem design. Second, symbiotic interactions are very com-
plex and cannot guarantee avoidance of oscillatory behavior or
local minima. Although the results show adequate final error
levels, it is important to examine the reduction of the actual
problem errors during evolution. Fig. 8 shows the convergence
of such errors for all experiments. It can be seen that the reduc-
tions are very consistent (the initial irregularity of in Map
is due to the very small amount of 420 textureless pixels) and
within the first 100 generations the mismatches are dramatically
reduced. This verifies the correctness of the proposed perfor-
mance index designs.

For a qualitative alternative of the above graphs, Figs. 9 and
10 show the disparity and error maps for the Tsukuba and Venus

for a selected number of generations. The gradual reductions of
erroneous matches are clearly visible.

C. Comparisons With Other Algorithms

We compare the proposed algorithm with 23 others evaluated
in [22] and the Middlebury page.2 The evaluation makes use
of the imagery and the three error types used in Sections IX-A
and B to compare a large set of best-performing recent stereo
matchers. Table III reproduces some of these comparisons with
optimization methods such as graph cuts [12], dynamic pro-
gramming [6], [7], GAs [21], and hybrid methods [13], [14]. The
table shows the errors for each algorithm and for each image in-
dividually ( is excluded from the evaluation of the Map, as it
is textured almost everywhere). In addition to the error percent-
ages, the table contains the relative comparison rank within each
error column. Each algorithm in the table is sorted according to
its overall rank.

It can be seen that due to the different scene and image prop-
erties of each data set, each algorithm’s output quality may vary
between data sets and error types. The differences between the
best [14] and the worst [7] algorithms illustrate roughly the error
ranges of the complete table. For all errors, our algorithm stands
in the top half of the table with a current overall rank of 5. It

2The Middlebury Stereo Vision Research Pageis accessible at http://www.
middlebury.edu/stereo. It contains comparative results additional to the ones
published in [22] and supports uploading and evaluation of disparity maps on-
line. The reader can browse the comparison data in detail for all 24 entries (in-
cluding the one proposed here), as well as download extra test imagery.
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Fig. 9. Sequence of the Tsukuba evolution for selected cyclest.

should be noted that the only other evolutionary method from
the entire set of the 24 methods is the one of [21] at rank 16.

The majority of matchers calculate disparity values from a
discrete (integer or fractional) set and need post-processing for
subpixel accuracy. From all methods in the table, only [13] and
[14] use continuous disparities by fitting planes and splines, re-
spectively, to the visible surfaces. Our method also uses contin-
uous estimation via piecewise surface fitting. However, it does
not use repetitive alternations of segmentation (with graph cuts)
and fitting (with gradient) as in [13] and [14] but single steps
of repetitive evolution. This provides the advantage of asyn-
chronous large-scale parallelization.

D. Speed Issues and Parallelization

Concerning the speed of the proposed algorithm, it belongs
to the relatively computationally demanding ones. Execution
on an AMD 1.45-GHz processor takes for the four images 84,
127, 129, and 46 min in the above order, for the coevolution,
plus 1–1.5 min for the hybridization and initialization phases.
Some of the other methods, such as ones based on local search
or dynamic programming are considerably faster. However,
those methods calculate discrete disparities, while methods
which calculate continuous surfaces of unrestricted shape can

be much slower due to the larger search spaces. Reference
[14], for instance, also reports similarly high execution times
(120–480 min on a 0.45 GHz UltraSparc II). In general,
the more accurate methods are slower, but implementation
speedups can greatly affect execution. For instance, for
simplicity in our algorithm we have not implemented any pre-
computation/cost storage schemes for (6) or any lazy evaluation
schemes for the symbiotic terms, which could reduce the load
of the repetitive GA cost assignments drastically.

Since, to the best of our knowledge, the proposed method
is the only continuous method of asynchronous parallelization
properties, we exemplify the speedup gain from such paral-
lelism by experimenting with the simple multithreaded model
described in Section VIII. Fig. 11 shows averaged statistics from
multiple executions of the test data on a quad-processor ma-
chine. Because we use slower processors (Intel 0.85 GHz), we
run a simpler problem with larger patches of sides .
We examine cases for a number of threads up to the number of
available CPUs so that no thread needs to stay idle. We let the
preemptive multitasking of the operating system (Windows) to
do the scheduling of the threads and we have not forced thread
affinities, exclusive CPU usages, or thread locking.

It can be calculated from the chart that the average time gain
for two, three, and four threads over the case of a single thread is
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Fig. 10. Sequence of the Venus evolution for selected cyclest.

TABLE III
SOME OF THECURRENT (05/2003) 24 ENTRIES OF THEMIDDLEBURY EVALUATION TABLE. SUBSCRIPTS ON THERIGHT SIDE OF EACH ERRORPERCENTAGE

DENOTEPERFORMANCERANK FOR THE INDIVIDUAL ERRORCOLUMN. THE LAST COLUMN GIVES THE RANK OF OVERALL PERFORMANCE

52.7%, 36.7%, and 28.8%, respectively. This shows that, despite
the simple parallel implementation, it scales well to the number
of processors utilized. The small overhead (from the ideal linear
gain of 50%, 33.3%, and 25%, respectively) can be assigned to

OS thread context switching or memory bus bandwidth as there
is no interthread synchronization. Other more sophisticated
parallel implementation platforms could provide speedup much
closer to linear, perhaps for a larger number of CPUs.
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TABLE IV
ERROR AND TIME (MINS, EXCL. INITIALISATIONS) RESULTS OFEXPERIMENTS WITH ALTERING THE DEFAULT PARAMETERS

OF TABLE II. ONLY THE DIFFERING PARAMETERS ARE DISPLAYED AND RELATED ONES ARE GROUPEDINTO PARTS

E. Tests With Different Parameters

In this section, we examine the effect various important pa-
rameters carry (again, all four image sets are run with fixed
parameters). Part (a) in Table IV shows results without using
the hybridization procedure of Section VI. In this case all ini-
tial populations are given genes selected from the alphabetin
random. Although some columns show similar or slightly better
errors, overall, the lack of hybridization gives more mismatches.
This ascertains the advantage of using informed initialization
using correlation. In the graphs of Fig. 8, it can be seen that the
image errors at generation are around 40 for and
20% for and . Examination of the same starting errors
without hybridization show that they have considerably higher
averages of around 85%. This, on the other hand, verifies that
the proposed dynamic optimization behaves robustly and is ca-
pable of generating very large error reductions even when the
starting surface coefficients are entirely random.

Part (b) in Table IV contains errors and execution times
for different patch sizes and polynomial degrees .
These parameters are interrelated, as in general, larger patches
require higher degrees as more varying surfaces are required to
model the increased level of elevation detail larger areas may
enclose. However, larger patches give higher errors in regions
with abrupt depth variations, for example in cases where a
discontinuity occurs not at the patch boundary, but halfway its
area and the patch has to assume membership with either the
object or the background. Also, if details are finer than surface
curvatures allow, they can get oversmoothed. Furthermore, in
textureless areas high degree surfaces can produce unnecessary
irregularities. These are the reasons that small 44 planar
patches give the best results overall. However, if high accuracy
is not required, using larger patches can significantly reduce the
execution time as the size of the collective decreases.

Finally, in part (c) in Table IV, we examine the benefit of using
the various symbiotic terms , , and , by removing sub-
sets of these terms from the calculation of in (15). The
first three rows examine exclusion of positional and first-order
continuity and both, while the fourth row examines coherency

Fig. 11. Average times of running the four test sets with 7� 7 patches on an
Intel 0.85 GHz quad-CPU PC. The number of threads corresponds to the number
of CPUs used concurrently.

only. The last row is of particular interest as it ignores from op-
timization all symbiotic interactions and makes evolution of all
patches totally independent.

From observing all rows, exclusion of any of these terms re-
sults to higher errors. Exclusion of both and causes
as expected more mismatches than either one alone. The lack
of coherency also causes mismatches, but fewer than the
exclusion of both continuities. Finally, excluding all symbiotic
terms produces as expected very high errors in all images and
all regions of interest , and . To demonstrate the nature
of such errors visually, we use Fig. 12, which contains error
and disparity maps for the last three rows of Table IV. When
continuity is not optimized it can be seen that mismatches are
grainy and isolated as they mainly occur at the patch boundaries.
The middle row of the figure shows that exclusion of coherency
causes blotchy errors since some patches obtain entirely wrong
elevations. The combination of all errors appears in the maps of
the last figure row, where optimization is driven exclusively by
the term. Comparison of these results with those of Fig. 6
verifies the importance of all symbiotic terms within .

The corresponding execution times in Table IV illustrate the
additional computational load of symbiosis (exclusion of ei-
ther or does not change the times as both terms are



GOULERMAS AND LIATSIS: COLLECTIVE-BASED ADAPTIVE SYMBIOTIC MODEL 499

Fig. 12. Resulting disparity and error maps for cases with the symbiotic objectives of continuity and coherency excluded from optimization.

calculated by the same module). When both continuities are ex-
cluded, there is some time reduction, but it can be seen that ex-
clusion of the term speeds up optimization by a factor of 2.5.
This is because, in the current implementation, the calculation
of the forces within the large neighborhood of (11) can
be very expensive.

F. Symbiotic Versus Nonsymbiotic Optimization

The above paragraphs discussed a nonsymbiotic configura-
tion (with ), where all populations/

species are evolved autonomously based on the indexonly.
Although this setup has identical population architecture, it does
not solve the same problem due to the exclusion of all terms
within . To test our proposed algorithm with a nonsymbi-
otic one that solves an identical problem, i.e., the smooth piece-
wise surface fitting, we have implemented a modified architec-
ture. Instead of using populations to code each patch co-
efficients independently, we use a single population with each
chromosome being a concatenation of the co-
efficients from all patches. In this way, the population matrices
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(a) (b)

Fig. 13. Difference in the population memory organizations between (a)
nonsymbiotic and (b) symbiotic models.

remain in essence the same. As exemplified in Fig. 13, the main
difference is that the symbiotic setup has all the genes/coeffi-
cients decoupled and allowed to evolve independently within
each patch territory, while the nonsymbiotic couples all coeffi-
cients to single genotypic strings.

Mutation and crossover operators in this single GA im-
plementation are applied in the same way as described in
Section V-A. All five objective terms of (6) and (8)–(11) now
become self-energies as they are calculated from intrapatch data
alone and without any external genotypic dependency. Also, the
previous symbionts of a patch become the neighboring surfaces
within its own host chromosome. All terms are aggregated to
the single performance index

(18)

where is the member of the GA, and is the portion
of patch coefficients at coordinates . To make the
comparison objective, we have used similarly calculatedand

weights, as well as the hybridization phase.
Regarding the time complexity of such a scheme, it is clear

that only new population members need evaluation of their
. This requires a total of

evaluations for each term of (18), which avoids the symbi-
otic overhead of recalculating , , and for the old

members at every generation (see Section VIII).
For the current parameters, this can save a 30% of the total
evolution time.

Despite the fewer evaluations of this nonsymbiotic architec-
ture, experimentation showed that its optimization capabilities
are overly limited. Using the same parameters as in Table II,
the eleven error measurements at were between 22% and
48%, while experimentations with larger values of , ,
and could only achieve less than a 5% improvement.
These results make such an approach impractical, even when
compared with the nonsymbiotic version of Section IX-E. The
reason for this inefficiency can be understood by observing that
the problem decomposition and the proposed symbiotic model
solves dynamic problems, each with a search space
subset of , while the nonsymbiotic version solves a single

static problem with a search space in . Consider,
for instance, the 380 434 pixels Sawtooth set with 44
planar patches, which yields a collective of 127145 species.
In this case, the search space for the nonsymbiotic approach
is whose dimensionality prohibits efficient search
with any reasonable population sizes and evolution times. The
symbiotic model only solves 18,415 problems in.

X. CONCLUSION

This paper proposed a novel algorithm for solving the SCP
using piecewise continuous surfaces with a parallel evolu-
tionary optimization based on the concept of symbiosis. The
original super-problem was decomposed to a large set of small
patches, each corresponding to a separate species/subproblem
optimisable by a simple GA. All species in the homogeneous
collective were evolved concurrently with local mutualistic
interactions adaptively propagated to yield global optimality.
Results showed that such a model manages to counteract the
detrimental effect from the arbitrary decomposition success-
fully and that it outperforms other equivalent nonsymbiotic
optimizations and also compares competitively with the
currently available SCP solvers. Specific advantages include
asynchronous massive parallelization, robust handling of local
minima, rapid and stable convergence, and computation of
continuous disparity/depth values.

Future improvements include more versatile decomposition,
as the current limitation of having equally sized rectangular
patches gives errors at discontinuity regions. Patches with
adaptively varying shapes could directly alleviate this problem.
Alternatively, adaptive segmentation, such as the graph-cut
based one used in [13] and [14], could be implemented as a
second level collective embedded in the existing configuration,
so that heterogeneous collectives segment and surface fit
concurrently. The proposed method could also be applied to
problems other than the SCP, such as problems decomposable
to a very large number of smaller subproblems whose perfor-
mance indices can be designed with local interactions alone
(e.g., function approximation).
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