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Abstract 
This paper presents an ant colony optimization 
metaheuristic for the solution of an industrial 
scheduling problem in an aluminum casting 
center.  We present an efficient representation of a 
continuous horizontal casting process which takes 
account of a number of objectives that are 
important to the scheduler.  We have incorporated 
the methods proposed in software that has been 
implemented in the plant.  
Keywords: scheduling, metaheuristic, ant colony 
optimization, aluminum, casting, multiple objectives 

Résumé 
Ce document présente l’utilisation de l’optimisation 
par colonie de fourmis pour la résolution d’un 
problème d’ordonnancement industriel dans un 
centre de coulée d’aluminium. Nous proposons une 
représentation efficace  d’un processus de coulée 
horizontale tenant compte des objectifs multiples 
des planificateurs.  Ces méthodes sont incorporées 
dans un logiciel qui est implanté dans l’usine. 
Mots-clés: ordonnancement, métaheuristique, 
optimisation par colonie de fourmis, aluminium, coulée, 
objectifs multiples 

Introduction 
In their surveys of the literature, both MacCarthy & Liu [1993] and Bjorndal et al. [1995] noted 
that many published scheduling papers are limited to the treatment of simple, basic problem 
situations.  They feel that this has contributed to creating a gap between theory and industrial 
practice.  This paper addresses this concern and presents results of our industrial scheduling 
work using metaheuristics.  We obtain an efficient representation of a continuous horizontal 
casting operation using an ant colony optimization metaheuristic and take into account several 
objectives that are important to the scheduler. 

In many industrial situations, exact optimization algorithms require overlong solutions times and 
cannot produce an acceptable or even feasible solution in the time available.  It may also be 
awkward to represent some of the necessary constraints or objective function characteristics in 
the algebraic form required by classical optimization methods.  It is therefore natural to turn 
towards the use of metaheuristics which have been shown to offer successful solution strategies 
for many problems.  In their review of  solution techniques that have been used for scheduling 
flexible shops, Blazewicz et al. [1996] note that methods such as simulated annealing, tabu 
search and genetic algorithms are frequently used and have been shown to be powerful 
techniques for this task.   Elsewhere in the scheduling literature, we find the use of neural 
networks (Huang & Zhang [1994], Sabuncuoglu & Gurgun [1996]) as well as ant colony 
optimization (Colorni et al. [1994], Stützle [1998]). 

In their classifications of scheduling problems, Belton & Elder [1996] as well as Nagar et al. 
[1995] point out that reports of research into multiobjective industrial scheduling problems are 
relatively rare and that this avenue of research is promising.  Since that time, a number of studies 
of multiobjective scheduling have been published.  Murata & Ishibuchi [1996], Ishibuchi & 
Murata [1998], Cavalieri et Gaiardelli [1998], Fanti et al. [1998], Brandimarte [1999] et Santos 
et Dourado [1999] have worked with multiobjective genetic algorithms.  Min et al. [1998] and 
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Kim et al. [1998] used multiobjective neural networks.  Marett & Wright [1996] and Ruiz-Torres 
et al [1997] proposed the use of simulated annealing in a multiobjective setting.   Brandimarte & 
Calderini [1995] and Marett & Wright [1996] chose multiobjective tabu search methods for the 
scheduling problems that they treated.  

Problem description  
This paper treats a scheduling problem encountered in an Alcan aluminium foundry located in 
the Saguenay region of Québec.  In this foundry, two holding furnaces are charged with molten 
metal from a transfer crucible coming from the refiners as shown in Figure 1.  These furnaces 
continuously feed liquid metal to the horizontal casting rig.  A customer's order has specific 
characteristics, which are the alloy type, the number of pieces to be produced, the dimensions of 
these pieces and the delivery date.  A customer's alloy specification is produced by adding the 
required ingredients and grain refiners to the molten aluminium in the holding furnaces.  These 
furnaces serve to keep the aluminium in flux while the various ingredients are added.  Molten 
aluminum is poured  into channels leading to a basin and a mold having the crossection of the 
desired ingots.  The aluminum flows through the mold taking the proper crossectional shape and, 
at the same time, fuses.  Since the casting is continuous, a large automated circular saw cuts the 
fused aluminum into the required ingot lengths as it is produced.   Changes in the length of 
ingots produced may be made simply by changing the program of the saw.  If the crossection 
must be changed, then casting must be stopped and the mold changed.  A change in the alloy 
being produced may also require a draining and cleaning to prevent contamination of the alloy to 
be cast next. 

This casting center is amply supplied with pure molten aluminum by several nearby electrolysis 
plants.  However, should the horizontal casting machine lack molten metal for any reason, it will 
require a costly shut-down and cleaning even if ingots of the same characteristics are to be 
produced when operations resume.  Care must therefore be taken to manage the supply of metal 
in the two holding furnaces to ensure that the flow of metal to the casting machine is not 
interrupted.  Casting must be restarted with a different mold while the previous one is cleaned.  
This event will therefore require the rescheduling of all remaining orders including the uncast 
portion of the stopped order. 

The holding furnaces are charged with molten pure metal coming from the refiners as well as 
with solid metal from various sources.  This solid metal, called “remelt”, may be scrap from 
previous operations or may be purchased from outside suppliers.  It can be used to compensate 
for momentary penuries in metal supply.  These occur because the transfer crucible has a 
capacity of 16MT while each holding furnace can take up to 21MT.  If the transfer crucible is 
itself low in molten metal or empty from previous pours, the furnace will be charged partly or 
totally with remelt.  This will affect the holding furnace preparation time because the solid metal 
must melt.  Stoppages on the casting rig can be avoided if, while one holding furnace supplies 
metal for the pour, the second  is prepared and loaded.  The speed of a pour depends on the alloy 
type and on the number of pieces in the mold.  The preparation time of a holding furnace is a 
function of the quantity of molten metal used, the quantity of solid metal used, and of any 
draining and cleaning required. 

As mentioned above, a change of alloy will also affect the holding furnace preparation time.  The 
metallurgical composition of the new alloy may require that the holding furnace be drained and 
cleaned before the pour.   

The basin (Figure 1) is a holding chamber that retains a small amount of molten metal just before 
the mold and the availability of basins constitutes a further technological constraint.  Molds may 
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be attached only to specific basins and the one required may be undergoing cleaning from a 
previous usage.   For some dimensions, only one example of a basin is available and so some 
otherwise feasible sequences must be eliminated because successive pours using different molds 
require the same basin.    

A feasible sequence of orders is one that ensures that sufficient pure metal is available for all 
pours, that basins and molds are available when required for each order and that draining and 
cleaning of the rig is done when required.  A desirable feasible sequence takes into account the 
objectives of customer service and efficiency.  We model the objectives of the scheduler by 
treating the minimization of unweighted total tardiness for all orders, the minimization of unused 
production capacity over the planning horizon, the minimization of the total number of drainings 
for the furnaces and we include a penalty function encouraging efficient transportation of the 
product. This function favors sequences where orders for the same destination are consecutive 
and penalizes sequences where this is not the case.  

The problem that we describe here is drawn form an actual production setting and has not been 
simplified to fit a pre-defined theoretical model.   In its general form, this problem addresses the  
scheduling of n orders with sequence dependent setup times on one machine while taking into 
account the technological and logical constraints on equipment and the management of the 
supply of liquid metal. 

Figure 1: The casting process 

  
In the literature, we find that this problem has been classed as NP-hard (Conway et al. [1967], 
Lenstra & Rinnooy [1979], Du & Leung [1990]) and is more complex than many described in 
the survey paper of  MacCarthy & Liu [1993]. 

A number of similar applications drawn from various industrial settings have been reported.  
França et al. [1996] use tabu search to minimize the makespan of a schedule for parallel 
processors.  MacCarthy et Liu [1993] survey a number of scheduling papers that treat industrial 
cases bearing some similarity to ours.   These include a fiberglass factory treated by Leong et 
Oliff  [1990]  and a chemical processing installation described by Selen et Heuts [1990].  Lee et 
Pinedo [1997] seek to minimize the weighted sum of tardiness in a situation comparable to ours 
using a three-phase heuristic incorporating a simulated annealing algorithm.  Rubin et Ragatz 
[1995] use a genetic algorithm to schedule n jobs on one machine so that the sum of weighted 
tardiness is minimized where setups are sequence dependent. Tabu search has been used by Valls 
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et al. [1998] to solve a generalized flexible shop scheduling problem drawn encountered in a 
Spanish company.  

Ant colony optimization  
The ant colony optimization metaheuristic (Colorni et al. [1991], Dorigo [1992]) was inspired by 
studies of the behavior of ants (Deneubourg et al., [1983]; Deneubourg & Goss, [1989]; Goss et 
al, [1990]).  Ants communicate among themselves through pheromone, a substance they deposit 
on the ground in variable amounts as they move about.  It has been observed that the more ants 
use a particular path, the more pheromone is deposited on that path and the more it becomes 
attractive to other ants seeking food.   If an obstacle is suddenly placed on an established path 
leading to a food source, ants will initially go right or left in a seemingly random manner, but 
those choosing the side that is in fact shorter will reach the food more quickly and will make the 
return journey more often.  The pheromone on the shorter path will therefore be more strongly 
reinforced and will eventually become the preferred route for the stream of ants. 

The works of Colorni, Dorigo & Maniezzo, [1991], Dorigo, Maniezzo & Colorni, [1991],  
Dorigo, Maniezzo & Colorni, [1996], Dorigo & Gambardella, [1997], Dorigo & Di Caro, [1999] 
offer detailed information on the workings of the algorithm and the choice of the various 
parameters. 

We use an ant colony optimization metaheuristic to treat the complex problem that we have 
described,  and we will show how the multiple objectives of the scheduler may be simply treated.   
In the scheduling problem, we must determine the processing sequence for a sequence of orders 
where set-up times are sequence dependent.  Our formulation is based on the well-known 
traveling salesman problem (TSP).    Each order to be processed is represented by a node in a 
network.   If we consider, for the moment, the single-objective case, a matrix D shows the 
distance between each pair (ij) of nodes where (dij) represents the setup and processing time 
required to do job j if it is preceded by job i. 
When an ant moves from node i to node j, it will leave a trail analogous to the pheromone on the 
edge (ij).     The trail records information related to the previous use of edge (ij) and the higher 
this use has been, the greater is the probability of choosing it once again.  We will explain later 
how the trail is initialized and modified.  

At time t, the ant chooses the next node using a probabilistic visibility rule where ηij, is defined 
as being 1/dij.  This is a greedy rule favoring the closer nodes, which is to say, the shorter jobs in 
terms of both setup and processing.  The choice probability is also affected by τij(t), the trail 
intensity on edge (ij).   At initialization of the algorithm, the trail on each edge is set to an 
arbitrary but small positive level,  τij(0).   Parameters α and β are used to vary the relative 
importance of the visibility and the trail intensity.  

To ensure the production of a feasible tour, nodes that have already been visited on the current 
tour are excluded from the choice through the use of a tabu list.  Each ant k will have its own 
tabu list tabuk recording the ordered list of nodes already visited.  Note that this concept differs 
from that used in the usual tabu search methods described, for example, in Glover & Laguna 
[1993]. 
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Then ( )tp k
ij , the probability of choosing edge (ij) is calculated as follows: 

 

At any given time, more than one ant seeks a feasible path.  A cycle is completed when each of 
the m ants has completed a tour of the n nodes.  The version of the algorithm proposed in this 
paper carries out an updating of the trail intensity at the end of each cycle.  This allows us to 
update the trail according to the evaluation of the solutions found in the cycle.  Let the length of 
the tour found by the kth ant be Lk.  This tour length will in turn influence k

ijτ∆ , the amount of 
pheromone that is added to each of the arcs (ij) in tour k.  This quantity is proportional to the  
quality of the tour as measured by Q/Lk where Q is a system parameter.  The updating of the trail 
is also influenced by an evaporation factor (1-ρ) that diminishes the trail present during the 
previous cycle.   Figure 2 describes the steps of the ant colony optimization metaheuristic 
proposed by Colorni et al. [1991]. 

Figure 2: Ant colony optimization metaheuristic (Colorni et al [1991]) 
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Solution algorithm 
In this section, we describe the adaptations to the ACO metaheuristic that we have devised in 
order to treat the multi-objective industrial problem that we address in this paper.   These 
adaptations affect, on the one hand, the construction of the distance matrix D, and on the other 
hand,  the rules for updating the pheromone trail at the end of a cycle.   

Constructing the D-matrix 
For the decisions required at the local level, as an ant is selecting the next node to visit, we 
construct and use a matrix D that aggregates information on each of the four objectives that we 
have identified.   

The first order in the sequence to be determined is deemed to be the last order in the previous 
sequence.  This allows us to take into account the set-up time required to bridge sequences in 
successive planning periods.  The "distance" matrix is therefore of dimension [n+1 x n+1] where 
n is the total of orders in the order book and an additional dimension is added to take into 
account the last order of the previous sequence. 

As previously stated, we have a feasible sequence of orders if sufficient metal is available for all 
orders, if basins and molds are available when required and if the "drain-and-clean" is done when 
required.   A desirable feasible sequence takes into account the objectives of customer service 
and efficiency.  The coefficients of the matrix represent the various measures or penalties 
established as a function of each of the objectives.  The distance matrix penalizes undesirable 
and infeasible  sequences. 

We must also take into account several objectives that are important to the scheduler:   

- The first objective function refers to the minimization of unused capacity due to setup 
times, drainings and  time lost owing to technological constraints such as a lack of molten 
metal.  We can compute this as the clock time from the start of operations to the 
termination of the final order, less actual casting time. 

- The second objective function refers to the total tardiness of the set of orders.  The 
tardiness of a job is the amount by which its completion time exceeds its due date.    
(Baker [1974]). 

- The third objective function refers to the minimization of the total number of drainings 
required when changing alloys. 

- The fourth objective function is a transportation penalty function that computes the total 
unused vehicle capacity.  Metal is loaded and removed as it is ready because there is no 
storage available.  Because vehicles can serve only one destination on a given trip, this 
function will be minimized if we tend to consecutively sequence orders having the same 
destination while taking into account vehicle capacity. 

Note that the first three of these objectives are somewhat related.  Other things being equal, 
tardiness is likely to be reduced if capacity utilization is high and if the number of drainings is 
low.  Unused capacity includes drainings, as well as mold changes, so that  these functions will 
tend to move in the same direction.   The transport planning function, however, is quite unrelated 
to the first three objectives.    
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The coefficients of the matrix of dij are determined as shown in Table 1.   Of course, the various 
constants used above can be changed if required.  We have found the values shown to be useful 
in finding operational solutions. 

Table 1 : Rule-based procedure for constructing the D-matrix 

(1) The matrix is initialized to dij = 1 for all ij. 

(2) To encourage respect of the due-dates of the orders and to minimize the unweighted total 
tardiness, a penalty corresponding to twice the ratio of the [max(0,order slack)/maximum 
slack for all orders] is calculated and added, where: 
order slack =  (order due-date) - (production start date) - (order processing time). 

(3) Where successive orders have different alloys such that a drain-and-clean would be 
required between orders, a penalty of +2 is added to dij. 

(4) Where a mold change is required between successive orders, a further penalty of +2 is 
added to dij. 

(5) If the destinations differ for two successive orders, again a penalty of +2 is added to dij. 

(6) A penalty of +500 is added to a matrix element where the sequence (ij) violates one of 
the technological constraints, for example that concerning the availability of basins. 

Updating the trail intensity 
During the schedule construction, the ants are guided by the D-matrix.   However, once a cycle is 
completed, the schedule found by the kth ant is then directly evaluated for each objective h (h = 
1,2,3,4).  Let these evaluations be called Lk

h.      

The four objectives are ranked in order of importance by the company planner.  Let the most 
important objective be h = h' and the evaluation of the schedule for ant k according to this 
function be Lk

h'.   The contribution to the update of the trail for ant k is then calculated as 
follows: 

k
ijτ∆  =  Q/ Lk

h'.    

Because of the nature of the procedure, at the end of a cycle we may have found more than one 
schedule with the same value of the primary objective function.  If such is the case, we choose 
the schedule to retain by a lexicographic sort on the values of the remaining objectives.   

In summary, the D-matrix is used in the local computations during a cycle, where ants choose the 
next order to process.  At the end of a cycle, one of the four individual objectives is used in the 
global trail-updating . 

Numerical example and results 
Let us consider the order book presented in Table 2. Note that the order designates as order 0 is 
deemed to be the last order produced during the previous planning period. 
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Table 2: Sample data from the order book  
 Order Alloy 

type 
Dimension  Basin Duration 

(hours) 
Destination Metric 

Tons 
Due 
date 

 0 Alloy 1 Mold 8 1 -   - 
 1 Alloy 1 Mold 1 2 21.26 1 33.869 3 
 2 Alloy 1 Mold 2 2 52.29 3 112.763 2 
 3 Alloy 1 Mold 3 1 29.8 3 44.323 7 
 4 Alloy 1 Mold 4 1 7.61 1 25.548 5 

 5 Alloy 1 Mold 4 1 10.33 2 34.676 5 

 6 Alloy 2 Mold 5 2 10.17 4 34.155 2 

 7 Alloy 3 Mold 6 1 7.95 2 21.978 5 

 8 Alloy 3 Mold 6 1 10.09 4 17.312 8 

 9 Alloy 2 Mold 5 2 5.98 2 20.079 8 

 10 Alloy 2 Mold 5 2 8.24 3 27.670 3 

 

The results of the construction of matrix of  dij are presented in  Table 3 . 

 

Table 3: Matrix of  dij  for the sample order book data 
          To 
From 0 1 2 3 4 5 6 7 8 9 10 

0 0 3.55 3 500 500 500 3.41 500 500 5 3.69 

1 0 0 500 6.49 4.21 6.18 500 6.20 6.96 500 500 

2 0 500 0 4.49 6.21 6.18 500 6.20 6.96 500 500 

3 0 5.55 5 0 500 500 5.41 500 500 5 5.69 

4 0 3.55 5 500 0 4.18 5.41 500 500 7 5.69 

5 0 5.55 5 500 4.21 0 5.41 500 500 5 5.69 

6 0 500 500 8.49 8.21 8.18 0 8.20 6.96 5 3.69 

7 0 5.55 5 500 500 500 5.41 0 4.96 5 5.69 

8 0 5.55 5 500 500 500 3.41 4.20 0 7 5.69 

9 0 500 500 8.49 8.21 6.18 3.41 6.20 8.96 0 3.69 

10 0 500 500 6.49 8.21 8.18 3.41 8.20 8.96 5 0 

 
For the data of Tables 2 and 3, and using the capacity function as the primary objective for 
updating the trail, the best solution that we find has an unused capacity (L1) of 1.64 days, 6.97 
days of total tardiness (L2), requires 2 drainings (L3) and an unused transport capacity (L4) of 
12.71 metric tons.   The value that is calculated for L1 corresponds to six mold changes of a 



Scheduling jobs in an Alcan aluminium foundry using ant colony…;    M.Gravel, C.Gagné, W. Price 

 9

duration of 6 hours each and six mandatory preheating periods of 20 minutes each as well as two 
drainings of 36 minutes each following an alloy change.  The value that is calculated for L2 
corresponds to a delay of 0.515 days for order 1, of 4.973 days for order 2 and of 1.478 days for 
order 3.  These delays are shown as cross-hatched areas for the orders in question in Figure 3.  
The value that is calculated for L3 corresponds to the two drainings necessary between alloys 2 
and 1 on both furnaces.  A truckload between 26 and 36 metric tons bears no penalty.  Taking 
this into account,  the value that is calculated for L4 corresponds to changes in destination 
between orders 7 and 8 causing a penalty of 4.02 metric tons and a second change between 
orders 8 and 2, causing a penalty of 8.69 metric tons.      

This problem is presented as the first problem of size 10 in Table 4.  The order sequence 
obtained is  (6-10-9-5-4-1-7-8-2-3).   The computation time was 2.5 seconds using Pentium III 
computer having a clock speed of 600Mhz and 258MB of  RAM.  The computer implementation 
was done in C in the Windows 98 environment.  

Figure 3 shows how this solution is presented to the scheduler in our software implementation.  
The remaining seven problems have between twenty and eighty orders and cover the range of 
problem sizes that we meet in practice.  

We have carried out a number of numerical experiments to illustrate the effectiveness of the 
multiobjective procedure that we propose.  We compare the results found using our metaheuristic 
to the results obtained using the same metaheuristic with a single objective.  Each result shown 
in Table 4 is derived from ten trials of the metaheuristic for the particular problem instance.  We 
show the mean and the standard deviation for each of the four objectives.    

The left half of Table 4 (a, b, c, d) presents the results obtained by the ant colony optimization 
metaheuristic for eight problems where each of the four objective functions is designated in turn 
as the primary objective.  In Table 4a, the unused capacity is the primary objective, in Table 4b 
total tardiness is primary, in Table 4c the number of drainings is primary and in Table 4d the 
unused transportation capacity is primary.    

The right half of each part of Table 4 shows the results of a single objective optimization on each 
of the functions in turn.  In these computations, the values of the dij  include penalties pertaining 
only to the primary objective.  For example, in the case where the primary function is L1, only 
steps 1, 3, 4 and 6 are used to create the D-matrix.  For L2, steps 1, 2, 3, 4 and 6 are used, but the 
penalty applied in steps 3 and 4 is of value 1 rather than 2.  The change in these penalties was 
made to give more relative weight to the due-dates without eliminating the impact of draining 
and mold changes.  For L3 steps 1, 3 and 6 pertain, and finally for L4 steps 1, 5 and 6 apply.   For 
the solutions found, the values of the remaining three functions have been calculated at 
termination, but they play no part in the computation itself.  Again, ten trials were made for each 
problem and the mean and standard deviation of the results are shown.  

The results of the ant colony optimization metaheuristic presented in Table 4 were obtained 
using parameter choices based both on results presented in the literature and on our own series of 
numerical experiments. For each of the problems in Table 4, the values of the other 
parameters {α, β , ρ, Q,} are {1, 5, 0.5, 100}.  The intensity of the initial trail (τij(0)) on each of 
the arcs (ij) was fixed at 0.05, the number of ants (m) was set to 40 and the maximum number of 
cycles (NCMAX) was set to 20.  Note that each problem was restarted 10 times. 

The results of Table 4 show that when the D-matrix is constructed using all four of the 
objectives, the results for the objective designated as primary (noted in Table 4 in bold type) are 
somewhat worse than those obtained when the primary objective is used alone in building the D-
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matrix.  Overall, however, the results are better for the other objectives and in some cases 
markedly so.    

In the industrial application, the multi-objective approach is therefore more likely to yield 
attractive solutions than is the  single objective approach.  For example, in Table 4(a), for 
problems ranging from 40 to 80 orders, the value found for unused capacity is slightly above 
what was found by single objective optimization, but there is a major improvement in the 
transport function.  Tardiness is also often improved. More drainings, however, occur with the 
multiple objective procedure.   For Table 4(b), similar remarks may be made but we point out 
that the results for the 20 order problem may be somewhat surprising.  The mean result produced 
by the multi-objective procedure is slightly better for the primary function.  This may be 
considered to be an artifact that will inevitably occur for some examples.  In Tables 4 (c) and (d), 
the multiobjective procedure has produced better or equal results on all objective functions for all 
problems save the 10 order problem of Table 4 (d), where the tardiness is less in the single 
objective case.   

 
Table 4 (a):  Results obtained when "unused capacity"  is the primary objective.  The 

first result is the mean of ten trials and the second is the standard deviation. 
Multiple objective ACO Single objective ACO Problem 

size 
Capacity Tardiness Draining Transport Capacity Tardiness Draining Transport 

10 1.64 
0.00 

6.97 
0.00 

2 
0.00 

12.71 
0.00 

1.64 
0.00 

6.97 
0.00 

2 
0.00 

12.71 
0.00 

20 3.69 
0.00 

53.49 
5.30 

0 
0.00 

0 
0.00 

3.69 
0.00 

68.50 
4.53 

0 
0.00 

5.18 
4.46 

30 3.69 
0.00 

97.26 
11.11 

0 
0.00 

0.43 
0.00 

3.69 
0.00 

111.33 
8.26 

0 
0.00 

2.08 
2.95 

40 3.80 
0.00 

100.52 
11.99 

2 
0.00 

14.83 
7.64 

3.69 
0.00 

170.24 
11.51 

0 
0.00 

21.2 
4.69 

50 4.85 
0.00 

183.12 
12.07 

2 
0.00 

7.31 
8.80 

4.75 
0.00 

243.76 
15.94 

0 
0.00 

69.38 
10.78 

60 4.90 
0.08 

279.52 
53.20 

2.00 
0.00 

12.53 
6.67 

4.75 
0.00 

337.31 
24.99 

0 
0.00 

72.17 
18.72 

70 4.93 
0.08 

441.76 
42.29 

2.00 
0.00 

13.64 
13.01 

4.75 
0.00 

496.59 
22.40 

0 
0.00 

107.73 
25.62 

80 4.88 
0.06 

674.37 
131.13 

1.60 
0.80 

5.34 
8.72 

4.75 
0.00 

713.49 
52.47 

0 
0.00 

84.49 
26.25 
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 Table 4 (b):  Results obtained when "total tardiness" is the primary objective.  The 
first result is the mean of ten trials and the second is the standard deviation. 

Multiple objective ACO Single objective ACO Problem 
size 

Capacity Tardiness Draining Transport Capacity Tardiness Draining Transport 

10 1.93 
0.36 

6.88 
0.11 

2.80 
0.98 

11.55 
1.78 

2.30 
0.22 

6.72 
0.12 

3.80 
0.60 

10.48 
1.93 

20 3.77 
0.00 

17.86 
0.64 

2 
0.00 

0.00 
0.00 

3.87 
0.13 

17.93 
0.50 

2 
0.00 

0.00 
0.00 

30 4.40 
0.27 

38.62 
2.95 

2 
0.00 

7.84 
7.58 

4.43 
0.27 

36.01 
0.92 

2 
0.00 

6.01 
6.66 

40 4.48 
0.45 

75.15 
4.93 

2 
0.00 

33.65 
7.47 

5.32 
0.34 

66.36 
2.78 

2.20 
0.60 

22.80 
10.74 

50 7.13 
0.43 

88.68 
8.96 

3.40 
0.92 

11.28 
15.15 

6.97 
0.68 

66.39 
5.71 

3.00 
1.00 

58.92 
15.27 

60 8.54 
0.65 

142.86 
7.68 

4.20 
1.08 

17.91 
12.99 

8.19 
0.97 

111.37 
5.43 

3.60 
1.20 

68.94 
15.26 

70 8.37 
0.89 

277.29 
17.35 

4.20 
0.60 

11.99 
13.78 

9.21 
1.23 

237.90 
10.08 

5.40 
1.28 

79.30 
33.51 

80 8.81 
0.50 

384.39 
17.63 

4.20 
0.60 

8.41 
8.75 

8.76 
1.17 

338.59 
15.64 

3.80 
0.60 

63.08 
15.49 

 
 

Table 4 (c):  Results obtained when "drainings" is the primary objective.  The first 
result is the mean of ten trials and the second is the standard deviation.  

Multiple objective ACO Single objective ACO Problem 
size Capacity Tardiness Draining Transport Capacity Tardiness Draining Transport 
10 1.64 

0.00 
6.97 
0.00 

2 
0.00 

12.71 
0.00 

1.64 
0.00 

6.97 
0.00 

2 
0.00 

13.30 
1.87 

20 3.69 
0.00 

53.27 
4.71 

0 
0.00 

0 
0.00 

3.84 
0.13 

81.68 
13.62 

0 
0.00 

2.59 
4.17 

30 3.69 
0.00 

98.62 
13.08 

0 
0.00 

0.43 
0.00 

4.45 
0.19 

130.86 
18.86 

0 
0.00 

2.66 
4.98 

40 3.88 
0.12 

157.42 
17.71 

0 
0.00 

17.91 
0.47 

7.16 
0.34 

247.74 
22.57 

0 
0.00 

26.62 
11.30 

50 5.12 
0.13 

222.67 
33.14 

0 
0.00 

3.69 
7.69 

9.36 
0.34 

366.70 
56.27 

0 
0.00 

68.60 
19.98 

60 5.23 
0.16 

370.32 
26.99 

0 
0.00 

2.70 
5.41 

10.99 
0.46 

526.90 
66.74 

0 
0.00 

71.76 
11.60 

70 5.20 
0.21 

532.67 
63.65 

0 
0.00 

7.18 
7.28 

13.21 
0.42 

808.70 
73.83 

0 
0.00 

94.20 
14.97 

80 5.01 
0.21 

817.63 
74.26 

0 
0.00 

0.00 
0.00 

14.48 
0.49 

1241.42 
112.20 

0 
0.00 

60.21 
17.35 
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 Table 4 (d):  Results obtained when "transport penalty function" is the primary 
objective.  The first result is the mean of ten trials and the second is the standard 

deviation.  
Multiple objective ACO Single objective ACO Problem 

size 
Capacity Tardiness Draining Transport Capacity Tardiness Draining Transport 

10 1.64 
0.00 

15.03 
0.00 

2 
0.00 

0.00 
0.00 

2.10 
0.03 

12.95 
1.99 

3.80 
0.63 

0.00 
0.00 

20 3.69 
0.00 

54.79 
9.70 

0 
0.00 

0.00 
0.00 

4.10 
0.12 

70.01 
15.24 

2.40 
0.84 

0.00 
0.00 

30 3.77 
0.00 

67.23 
9.00 

2 
0.00 

0.00 
0.00 

4.97 
0.12 

103.60 
24.24 

2.80 
1.40 

0.00 
0.00 

40 3.88 
0.12 

113.71 
23.71 

2 
0.00 

0.00 
0.00 

7.69 
0.24 

237.04 
37.96 

5.40 
1.26 

0.00 
0.00 

50 4.94 
0.11 

203.23 
42.19 

1.60 
0.80 

0.00 
0.00 

9.92 
0.19 

306.91 
33.29 

5.50 
2.37 

0.00 
0.00 

60 4.97 
0.12 

306.26 
39.58 

1.80 
0.60 

0.00 
0.00 

12.22 
0.45 

535.99 
87.75 

9.20 
0.63 

0.00 
0.00 

70 4.98 
0.11 

529.69 
82.17 

1.60 
0.80 

0.00 
0.00 

14.23 
0.25 

792.97 
68.07 

10.50 
1.84 

0.00 
0.00 

80 4.89 
0.08 

759.12 
111.21 

1.40 
0.92 

0.00 
0.00 

15.81 
0.27 

1185.29 
71.97 

10.40 
2.27 

0.00 
0.00 

 
Figure 3: Screen image from the software implementation 
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Conclusions 
We have described a successful adaptation of the ant colony optimization metaheuristic for a 
computerized scheduling application in an Alcan Inc production facility.  Our implementation 
allows us to take into account a number of objectives that are important to the scheduler while 
preserving the characteristics of the original procedure.   It has succeeded in giving robust 
solutions in short computing times.  A typical order book contains about 60 orders and may be 
solved in approximately 40 seconds.   Schedulers we have encountered in this project use the 
results produced by the metaheuristic and feel that it well represents the constraints and 
objectives with which they are faced. 

In previous implementations (Gravel et al. [2000]), we used a genetic algorithm to solve similar 
problems with good results.  In comparison testing of the single objective models, we found the 
results of the ant colony optimization metaheuristic to give much better quality results in much 
shorter computing times.  We would agree that further tuning of the genetic algorithm could 
speed up its convergence and improve solution quality.  We cite this comparison merely as 
evidence that the ant colony optimization metaheuristic is quite competitive with other 
metaheuristics. 

We consider that the multiobjective procedure presented here is simple and robust and that it 
offers good quality solutions in short computation times.  We have, as one might expect, 
produced solutions of a better overall quality than those found by single objective optimization.   
We have not, however, attempted to ensure that the solutions suggested are Pareto-efficient  in 
order to reduce computing effort.    

This method may be enriched somewhat without difficulty.  For example,  the preferences of the 
scheduler might be better represented by a form of weighted aggregation of the Lk

h or by 
changing the components in the calculation of the  ( )tp k

ij .  Tuning of the elements of the D-
matrix are likely to be required  to adapt the procedure to different industrial environments.   In 
the longer term, we seek to investigate the usefulness of other, more comprehensive, 
multiobjective methods. 
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