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Abstract. A comparative study of the use of Gray coding in multicriteria evo-
lutionary optimisation is performed using the SPEA2 and NSGAII algorithms
and applied to a frame structural optimisation problem. A double minimization
is handled: constrained mass and number of different cross-section types. Influ-
ence of various mutation rates is considered. The comparative statistical results
of the test case cover a convergence study during evolution by means of certain
metrics that measure front amplitude and distance to the optimal front. Results
in a 55 bar-sized frame test case show that the use of the Standard Binary Re-
flected Gray code compared versus Binary code allows to obtain fast and more
accurate solutions, more coverage of non-dominated fronts; both with improved
robustness in frame structural multiobjective optimum design.

1 Introduction

Recently, interest in analysis and design of representations and operators for evolu-
tionary computation has been liven up (e.g. a special Issue about this topic of the
journal IEEE Transactions on Evolutionary Computation is coming). The motivation
of this work is to analyse the influence of an adequate coding in multicriteria optimi-
zation, particularly we compare here the use of Gray coding versus binary coding. In
multiobjective optimization the search has to deal with multiple requirements: the ap-
proximation to the optimum non-dominated front, the achievement of a smooth distri-
bution along the front and also the completion of its maximum coverage [6][8]. So,
the codification influence in the search towards the set of optimum solutions should
be focused in such a plural way. The choice of the proper coding can have a drastic
repercussion in the final results. The smoothness in the correspondence between the
phenotypic and the genotypic space is the main claimed advantage of the Gray Code
[29][30]. Guarantying this smoothness could be especially critical when the genotypic
unit (represented with Os and 1s) has its phenotypic correspondence in an ordered da-
tabase, where each gene has a set of associated values, whose magnitudes can vary
considerably even in consecutive genes. This is a frequent case when using discrete
representation of the chromosome via 0Os and 1s, for example in scheduling optimisa-
tion problems [10].



Here a discrete frame structural multicriteria optimization problem belonging to
that archetype is handled. The first application of evolutionary algorithms to structural
optimization is dated twenty-five years ago [13]: A ten-bar truss is optimized for the
minimum constrained mass problem, with continuous variables for the section area of
the bars. A pioneer article for frame structures optimization using evolutionary algo-
rithms is [18], where a genetic algorithm is used for the optimal design of skeletal
building structures considering discrete sizing, geometrical and topological variables
in two design examples. A recent state of the art of structural optimization with spe-
cial emphasis in evolutionary optimization is [1], where the recent developments in
the field, for the period 1980 to 2000, are documented by the ASCE (American Soci-
ety of Civil Engineering) Technical Committee on Optimal Structural Design of the
Technical Administrative Committee on Analysis and Computation. Interesting re-
views about multicriteria optimization in structural engineering are [4][5][23], and a
set of applications of multicriteria evolutionary optimization in structural and civil
engineering are summarized in [6].

The organization of this paper is described as follows: First, the multiobjective
frame structural problem is described. Section 3 disserts about the evolutionary ap-
proach and the use of Gray Code in multiobjective frame optimization. Section 4 ex-
poses the 55 bar-sized test case. After that, the experimental results are shown in sec-
tion 5, ending with the conclusions section.

2 Frame Structural Optimum Design

2.1 Definition of the Problem

The frame structural design problem considered has two conflicting objectives: the
minimization of the constrained mass and the minimization of the number of different
cross-section types considered in the final design. This design problem was intro-
duced in [11], being solved using a combination of weights. It has been solved with
elitist multiobjective evolutionary algorithms in [14][15]. Both objectives are ex-
plained as follows.

The first objective, the minimization of the constrained mass is taken into account
to minimize the raw material cost of the designed structure. The constraints consider
those conditions that allow the designed frame to carry out its task without collapsing
or deforming excessively. The constraints are the following, taking into account the
Spanish design code (EA-95) guidelines:

a) Stresses of the bars: where the limit stress depends on the frame material and the
comparing stress takes into account the axial and shearing stresses by means of the
shear effort, and also the bending effort (a common value for steel is of 260 MPa -
S275JR steel -), for each bar:
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b) Compressive slenderness limit: where the Ay, value is 200 (to include the buck-
ling effect the evaluation of the B factor, is based on Julian and Lawrence criteria).
For each bar:

A= Aim <0 )

¢) Displacements of joints (in each of the three possible degrees of freedom) or
middle points of bars. In the test cases, the maximum vertical displacement of each
beam is limited (in the multiobjective test case the maximum vertical displacement of
the beams is L / 500):

U., —Ulim <0 (3)
The first objective function constrained mass, results:
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where :

A; = bar i cross-section area; p; = bar i specific mass; /; = length of bar i; £ = con-
stant that regulates the equivalence between mass and constraints; viol; = for each of
the violated constraints (stress, displacement or slenderness), is the quotient between
the value that violates the constraint limit: violated constraint value and its reference
limit. The constraints reference limits are chosen according to the Spanish design
codes. So, constraints if violated, are integrated into the mass of the whole structure as
a penalty depending on the amount of the violation (for each constraint violation the
total mass is incremented):

_ Violated Constraint Value )
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Moreover, the minimization of a second function is considered as a multicriteria
optimization problem: the number of different Cross-Section Types (CST), that sup-
poses a condition of constructive order, and with special relevancy in structures with
high number of bars [11][19]. It helps to a better quality control during the execution
of the building site. It is a factor that has been also recently related with the life cost
cycle optimization of steel structures, as claimed in [24][28], and evolutionary multi-
criteria optimization allows it to be integrated in the design optimization process.

2.2 The System Model

Numerous literature about evolutionary bar optimization problems is about trusses.
They are characterized for its articulated nodes between bars, where no resistant mo-
ment is executed and the only required geometric magnitude of the bar section is its
area. Nevertheless, here we handle with frames: the nodes between bars are rigid, and
the moments have to be taken into account. More bar geometric magnitudes have to
be considered: to evaluate the normal stresses, the area, the modulus of section and



the relation of beam height are required; to evaluate the shearing stresses the web area
is required; to evaluate the medium span displacement the moment of inertia is re-
quired. Moreover, considering the buckling effect implies to take into account the ra-
dius of gyration. Because of the design is performed using real cross-section types -
developing a discrete optimization problem with direct real application-, all these
magnitudes are stored in a vector associated to each cross-section type, whose com-
plete set constitute a database. The codification of the chromosome implies for each
bar of the structure, a discrete value that is assigned to the order of cross-section types
in the database.

The structural calculation implies the resolution of a finite element modelling -with
Hermite approximation functions-, and its associated linear equation system. In the
plane case, each node has three degrees of freedom: horizontal, vertical and gyration
displacements (U), as well as three associated force (F) types: horizontal and vertical
forces and momentum. Forces and displacements are related (F=KU) by the stiffness
matrix (K), which depends on geometric and material properties, and is created with
an assembling process from each element of the structure. A renumbering using the
inverse Cuthill-McKee method [7] is used to reduce the matrix bandwidth, in order to
reduce the calculation time of the system (essential when many evaluations are re-
quired), which is programmed in C++ language.

3 The Evolutionary Approach

The frame structural problem of determining the constrained minimum mass has
many local minima [21], so a global optimization method is recommended. Moreover,
we deal with a discrete search space. If the improvement in one criterion implies the
worsening in another objective, as happens with the constrained mass and the number
of different cross-section types, which are our two minimising objective functions, a
multiobjective optimization is required. Because of the requirement of a global, dis-
crete and multiobjective optimization method, the evolutionary multicriteria optimi-
zation methods are suitable. Among the most recent algorithms, those which include
elitism and parameter independence are outstanding. For our study, the SPEA2 [34]
and NSGA-II [9] have been selected. An improved adaptation of the truncation op-
erator in SPEA2 specially suited for two dimensional multicriteria problems, pro-
posed in [17] is implemented. It takes advantage of the linearity of the distribution of
the non-dominated solutions in the bicriteria case.

Two metrics are considered, defined on objective space, concerning about accuracy
and coverage of the front. They are averaged from thirty independent runs of each al-
gorithm.

The first metric (approximation to the front) is the M1* metric of Zitzler, repre-
sentative of the approximation to the optimal Pareto front. To evaluate this metric,
belonging to the scalable metrics type, the best Pareto front should be known. Its ex-
pression is [33]:
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where U = f(A) c Y (being A a set of decision vectors, Y the objective space and
Yp referred to the Pareto set).

The second metric handles with the coverage of the front. The adopted criteria is
using the number of solutions of the best non-dominated front achieved in each gen-
eration, because of the nature of our second fitness function: the number of different
cross-section types, which produce a discrete non-dominated front with limited
maximum number of solutions. For this reason, also there is no necessity for evalu-
ating the smoothness of the spread of solutions along the front, because we have a
discrete one, and apparently, there is no difficulty in obtaining one non-dominated
solution for each number of different cross-section types between the extreme solu-
tions of each generation.

Thirty independent runs have been considered for each algorithm (NSGAII and
SPEA2) and codification case. A population size of 100 individuals and uniform
crossover have been used. Three different values of the mutation rate: 0.4%, 0.8% and
1.5% are studied, comparing the binary and Gray coding.

3.1 Gray Coding for Multicriteria Optimization

The discrete nature of the search space of our problem, compound of the cross-section
type of each bar, can be benefit from the discrete coding of binary coding, opposed to
a less properly real coding in this particular case.

Traditionally, the more number of schemata per information unit among all the
possible codifications has been claimed for binary coding [12], because of its low
cardinality, being beneficial for the building blocks propagation. However, the im-
plicit parallelism of genetic algorithms is not exclusive of the binary representation,
existing for other alphabetic cardinalities of codification.

However, Binary coding suffers from not being homogeneous respect to its deci-
mal numeric equivalent, which is normally used in its decoding. For example, the
number 7 is followed by 8, but their binary representations are respectively 0111 and
1000, where every allele diverges from another. This is known as Hamming CIliff. In
the phenotypic space both are consecutive values, but in the genotypic space both dif-
fer completely. It seems to be desirable a representation that maintains analogous
smoothness in the phenotypic and genotypic spaces.

A Gray code is defined as a representation with 1s and Os that permits a bijective
equivalence between phenotype and genotype for consecutive integers differing only
in one bit between them. It can be seen in table 1 a comparison between binary and
Gray codes. It has been remarked in italics the values of the differing bits between
two consecutive integers. It can be observed how in the case of Gray code, only one
bit differ, but a more chaotic behaviour of the binary code.

Experimental studies over many kind of single objective test functions widely used
in genetic algorithms show an improved behaviour of using Gray code versus the
standard binary code [2][22][25].

There is an analogous theorem of the ‘No Free Lunch’ Theorem [32] of direct ap-
plication in the comparison of binary / Gray representation [26]: ‘All algorithms are
equivalent compared over all possible representations’. Whitley [30] claims in this
case as an example of contradiction between theory and practice, and shows that the



coding influences the number of optimum that the phenotype generates for the same
genotype. Gray coding can reduce this number of optima. However, it does not imply
necessarily that with fewer optima the problem is solved easier, as is shown in [3]: a
coding with greater optima can have less expected convergence time. There is also
shown that the efficiency of the coding is dependent of the search operators. Gray
coding is still an open question, as can be seen recently in [27].

Table 1. Gray Code versus Binary Code in a 4 bit string for structural optimization

Binary Code Gray Code
Area Moment IPE String | Equivalent | String IPE Area Moment
cm? of inertia Integer cm’ of inertia

cm* cm*
7.64 80.1 80 0000 0 0000 80 7.64 80.1
10.3 171 100 0001 1 000/ 100 10.3 171
16.4 541 140 0010 2 00/1 120 13.2 318
13.2 318 120 0011 3 0010 140 16.4 541
334 2770 220 0100 4 0/10 160 20.1 869
28.5 1940 200 0101 5 0117 180 239 1320
20.1 869 160 0170 6 0101 200 28.5 1940
239 1320 180 011/ 7 0100 220 33.4 2770
116.0 48200 500 1000 8 1100 240 39.1 3890
98.8 33740 450 100/ 9 110/ 270 45.9 5790
72.7 16270 360 1070 10 11/1 300 53.8 8360
84.5 23130 400 101/ 11 1110 330 62.6 11770
39.1 3890 240 1100 12 1010 360 72.7 16270
45.9 5790 270 1101 13 101/ 400 84.5 23130
62.6 11770 330 1170 14 1001 450 98.8 33740
53.8 8360 300 1117 15 1000 500 116.0 48200
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Fig. 1. Area and Moment of Inertia of IPE cross-section type database order using binary
and Gray codes.

Gray coding is not unique, and there are as many possibilities as combinations are
allowed to establish a continuous mapping of the genotypic and phenotypic spaces.
We have implemented the Standard Binary Reflected Gray Code [25]. The suggestion
of [31] has been adopted, forming the Gray code from a right displacement of the bi-
nary vector and performing a XOR with the resulting vector and the original binary



one. The resulting vector is the Gray code of the binary vector. It can be implemented
in C++ language easily.

The influence of the coding in the database order and its correspondence with the
included cross-section types can be viewed simultaneously in table 1 and figure 1.
The above cited homogeneous correspondence between phenotype and genotype is
shown, in terms of two of the geometric magnitudes of the cross-section types: area
and moment of inertia of the first sixteen cross-section types of the IPE series (from
IPE-80 until IPE-500). Analogous figures are obtainable for the other geometric mag-
nitudes (modulus of section, web area, etc), and for other cross-section types series
(HEB, etc).

The use of Gray coding has been proven advantageous in the single criteria optimi-
zation problem of constrained mass [16]. Here is proposed an analysis of Gray code
versus binary code in a discrete frame structural multicriteria optimization problem,
emphasizing its use in multiobjective optimisation.

4 Test Case

4.1 Description

The test case is represented in figure 2, based on a reference problem in [20]. The fig-
ure includes the numbering of the bars, and the precise loads in Tons. Moreover, in
every beam there is a uniform load of 39945 N/m. The lengths of the beams are 5.6 m
and the heights of the columns are 2.80 m. The columns belong to the HEB cross-
section type series, and the beams belong to the IPE cross-section type series; being
the admissible stresses of 200 MPa. and 220 MPa. respectively. The maximum verti-
cal displacement in the middle point of each beam is established in 1/300 = 1.86:107
m. The density and elasticity modulus are the typical values of steel: 7850 kg/m’ and
2.1'10° MPa., respectively.
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Fig. 2. Frame Test Case



4.2 Optimal Solutions

The cross-section type database is composed of the first sixteen IPE cross-section
types (from IPE-80, 100, 120, 140, 160, 180, 200, 220, 240, 270, 300, 330, 360, 400,
450 to IPE-500) for the beams and the first sixteen HEB cross-section types (from
HEB-100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 400 to
HEB-450) for the columns. Extended to the 55 bar-sized test case (and four bits per
bar), this implies a search space of 2°°™*=2""~ 1.7:10%. The optimum Pareto Front is
not known for this problem, and we report here the best front we have found so far,
which is the reference for the metrics comparison. It is represented in figure 3, and its
solutions are detailed in table 2 (detailed numerical values of solutions), table 3
(cross-section types of columns) and table 4 (cross-section types of beams).

Table 2. Pareto Set Values of Test Case

Constrained Mass (kg) (F1) | 10130.04 | 10212.07 | 10318.95 | 10517.65 | 10865.28 | 11394.45
Constraint (kg) 2.75 5.65 0.00 0.00 213.55 272.13
Mass (kg) 10127.29 | 10206.41 | 10318.95 | 10517.65 | 10651.73 | 11122.32
Number of different
CST (F2) 8 7 6 5 4 3

Table 3. Pareto Set Detailed Cross-Section Types (CST) of Columns of Test Case

Number of different

CST (F2) 8 7 6 5 4 3

Bar n° 26 HEB160 HEB160 HEB160 HEB160 HEB220 HEB220
Bar n® 27 HEB180 HEB180 HEB200 HEB200 HEB220 HEB220
Bar n°® 28 HEB160 HEB160 HEB160 HEB160 HEB220 HEB220
Barn® 29 HEB140 HEB140 HEB140 HEB160 HEB140 HEB180
Bar n° 30 HEB180 HEB180 HEB200 HEB200 HEB200 HEB220
Barn® 31 HEB220 HEB220 HEB220 HEB220 HEB220 HEB220
Barn® 32 HEB200 HEB200 HEB200 HEB200 HEB200 HEB220
Bar n° 33 HEB180 HEB180 HEB200 HEB200 HEB200 HEB180
Bar n° 34 HEB160 HEB160 HEB160 HEB160 HEB140 HEB180
Bar n° 35 HEB120 HEB140 HEB140 HEB160 HEB140 HEB180
Bar n°® 36 HEB200 HEB200 HEB200 HEB200 HEB220 HEB220
Barn® 37 HEB200 HEB200 HEB200 HEB200 HEB200 HEB220
Bar n° 38 HEB160 HEB160 HEB160 HEB160 HEB200 HEB180
Bar n® 39 HEB140 HEB140 HEB140 HEB160 HEB140 HEB180
Bar n° 40 HEB120 HEB140 HEB140 HEB160 HEB140 HEB180
Barn® 41 HEB220 HEB220 HEB220 HEB220 HEB220 HEB220
Bar n® 42 HEB200 HEB200 HEB200 HEB200 HEB200 HEB220
Bar n° 43 HEB160 HEB160 HEB160 HEB160 HEB200 HEB180
Barn® 44 HEB140 HEB140 HEB140 HEB160 HEB140 HEB180
Bar n° 45 HEBI120 HEB140 HEB140 HEB160 HEB140 HEB180
Bar n° 46 HEB220 HEB220 HEB220 HEB220 HEB220 HEB220
Bar n° 47 HEB200 HEB200 HEB200 HEB200 HEB200 HEB220
Bar n°® 48 HEB160 HEB160 HEB160 HEB160 HEB200 HEB220
Barn® 49 HEB140 HEB140 HEB140 HEB160 HEB140 HEB180
Bar n° 50 HEB120 HEB140 HEB140 HEB160 HEB140 HEB180
Barn® 51 HEB180 HEB180 HEB200 HEB200 HEB220 HEB220
Barn® 52 HEB200 HEB200 HEB200 HEB200 HEB220 HEB220
Bar n° 53 HEB200 HEB200 HEB200 HEB200 HEB200 HEB180
Bar n°® 54 HEB160 HEB160 HEB160 HEB160 HEB220 HEB180
Bar n° 55 HEB200 HEB200 HEB200 HEB200 HEB200 HEB220




Table 4. Pareto Set Detailed Cross-Section Types (CST) of Beams of Test Case

Number of different

CST (F2) 8 7 6 5 4 3

Barn® 1 IPE330 IPE330 IPE330 IPE330 IPE300 IPE300
Barn®2 IPE330 IPE330 IPE330 IPE330 IPE300 IPE300
Barn°3 IPE330 IPE330 IPE330 IPE330 IPE300 IPE300
Barn° 4 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn°5 IPE330 IPE330 IPE330 IPE330 IPE300 IPE300
Barn° 6 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn®7 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn®8 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn°®9 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn° 10 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn® 11 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn® 12 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn® 13 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn® 14 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn® 15 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn® 16 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn® 17 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn® 18 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn® 19 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Bar n° 20 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn®21 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn®22 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn°®23 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Barn°® 24 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
Bar n°® 25 IPE300 IPE300 IPE300 IPE300 IPE300 IPE300
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5 Results and Discussion

The obtained results for the SPEA2 are represented in figures from 4 to 9, where the
black line corresponds to the Gray code and the grey line corresponds to the binary
code. The left graph of each figure shows the mean over 30 independent runs and the
right graph represents the typical deviation of the metric. Because in multiobjective
optimization the search has to cope with multiple requirements, figures are organized
in two groups, in order to analyse the effects of Gray code independently: approxima-
tion and coverage to the optimum front. Figures from 4 to 6 resume the results of the
convergence to optimum front metric (varying mutation rate from 0.4% to 1.5%),
whereas figures from 7 to 9 resume the results of the coverage front metric (varying
mutation rate from 0.4% to 1.5%), as described in section 3. The x-axis corresponds
to the number of evaluations of the fitness function. Also some results of the NSGAII
have been included, for the mutation rate of 0.4% (figures 10 and 11).

5.1 Analysing the Approximation to the Optimum Front Metric

The nearest the value of this metric is to zero, the better. From the observation of fig-
ures 4 to 6, it can be seen a common behaviour for all the mutation rates tested. The
Gray code mean metric achieves not only a better final value in all the cases (ap-
proximately half of the binary code metric value), but also during the whole conver-
gence process it shows lower values and an initial steeper slope. It also outperforms
the binary code with lower typical deviations in all cases. The variation of the muta-
tion rate does not seem to alter the performance of this metric mean for both codings,
whereas affects the performance of the typical deviation of the binary one, increasing
it with the increase of the mutation rate. Similar qualitative results are also obtained
using the NSGAII algorithm, as can be seen in figure 10.

5.2 Analysing the Coverage of the Front Metric

If we observe figure 3, where the optimum reference front is shown, it is noticeable
that the best value of the coverage of the front using the metric described in section 3
is 6. So, the nearest the final value of the metric is to 6, the better. From the observa-
tion of figures 7 to 9, it can be seen a common behaviour for all the mutation rates
tested. In the initial evaluations, high oscillations are present in this metric, which de-
crease significantly from 20000 evaluations. The Gray code metric achieves a final
better value (around 4, versus binary, whose value is below 3.5) in all the cases, indi-
cating a better coverage of the best non-dominated front (the most difficult solutions
to reach are the right lower ones represented in figure 3). Its value is also greater dur-
ing the whole convergence process, what means a wider front that increases the diver-
sity of the non-dominated solution set. The typical deviation of Gray code is also
smaller than the binary code metric, showing an enhanced robustness. The variation
of the mutation rate does not seem to alter significantly the Gray code performance of
this metric mean, whereas affects the binary one. It is noteworthy that similar qualita-
tive results are also obtained using the NSGAII algorithm, as can be seen in figure 11.
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Fig. 9 Metric Front Coverage: Mean and Typical Deviation over 30 independent runs of
SPEA?2 and Mutation rate 1.5%.
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Fig. 10 Metric Approximation to Optimum Front: Mean and Typical Deviation over 30 inde-
pendent runs of NSGAII and Mutation rate 0.4%.
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Fig. 11 Metric Front Coverage: Mean and Typical Deviation over 30 independent runs of
NSGAII and Mutation rate 0.4%.

6 Conclusions

It has been analysed a discrete frame structural multiobjective optimisation problem
with the point of view of the coding, through a 55-sized test case. Gray coding has
been compared with binary coding considering both approximation to the optimum
front and coverage of the front.

From the results exposed in section 5, it can be concluded that independently of the
mutation rate used, and also of the algorithm (SPEA2 and NSGAII have been tested
with similar results), the use of Gray code allows a faster approximation to the non-
dominated front (more vertical slope), and more accurate (lower value of the metric),
as seen in left graphs of figures 4 to 6 and 10. Moreover, the amplitude of coverage of
the non-dominated front for each mutation rate used, and also for each algorithm, as
seen in left graphs of figures 7 to 9 and 11, is greater when using Gray code, indicat-
ing that a more complete front is obtained. Looking at the right graphs of figures 4 to



11, where the typical deviation of the metrics are displayed, for all cases it is lower
with the Gray code, revealing a higher robustness of this codification in this test case.

So, the theoretical advantages that the Gray code has due to its greater homogene-
ity in the correspondence between the genotypic and phenotypic spaces, and that other
application studies of single criteria optimisation claimed, are also corroborated in
this work by means of the obtained experimental results, in a multiobjective optimi-
sation problem. Results show that the use of Gray code allows to obtain fast and more
accurate solutions, more coverage of non-dominated fronts; both with improved ro-
bustness in frame structural multiobjective optimum design.

A generalization of this study in other multiobjective design optimisation applica-
tions, where the coding implies a phenotypic correspondence with a database ordering
resulting in a more homogeneous and easier resolution, could provide more light
about the empirical performance of Gray coding in multicriteria optimization.
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