Exploiting the trade-off — the benefits of
multiple objectives in data clustering

Julia Handl Joshua Knowles
http://dbk.ch.umist.ac.uk/handl/mock/

School of Chemistry, University of Manchester
Faraday Building, Sackville Street, PO Box 88, Manchester M60 1QD

Abstract. In previous work, we have proposed a novel approach to data
clustering based on the explicit optimization of a partitioning with re-
spect to two complementary clustering objectives [6]. Here, we extend
this idea by describing an advanced multiobjective clustering algorithm,
MOCK, with the capacity to identify good solutions from the Pareto
front, and to automatically determine the number of clusters in a data
set. The algorithm has been subject to a thorough comparison with alter-
native clustering techniques and we briefly summarize these results. We
then present investigations into the mechanisms at the heart of MOCK:
we discuss a simple example demonstrating the synergistic effects at
work in multiobjective clustering, which explain its superiority to single-
objective clustering techniques, and we analyse how MOCK’s Pareto
fronts compare to the performance curves obtained by single-objective
algorithms run with a range of different numbers of clusters specified.
Keywords: Clustering, multiobjective optimization, evolutionary algo-
rithms, automatic determination of the number of clusters.

1 Introduction

Clustering is commonly defined as the task of finding natural groups within a
data set such that data items within the same group are more similar than those
within different groups. This is an intuitive but rather ‘loose’ concept, and it
remains quite difficult to realize in general practice. Evidently, one reason for
the difficulty is that, for many data sets, no unambiguous partitioning of the
data exists, or can be established, even by humans. But even in cases where
an unambiguous partitioning of the data is possible, clustering algorithms can
drastically fail. This is because most existing clustering techniques rely on es-
timating the quality of a particular partitioning by means of just one internal
evaluation function, an objective function that measures intrinsic properties of
a partitioning, such as the spatial separation between clusters or the compact-
ness of clusters. Hence, the internal evaluation function is assumed to reflect
the quality of the partitioning reliably, an assumption that may be violated for
certain data sets.

Given that many objective functions for clustering are complementary, the
simultaneous optimization of several such objectives may help to overcome this

weakness. In previous work [6], we have demonstrated this idea, showing that
the simultaneous optimization of two clustering objectives results in clear perfor-
mance gains with respect to single-objective clustering algorithms. However, the
algorithm presented, VIENNA (Voronoi initialized evolutionary nearest neigh-
bour algorithm), was limited in two respects: its application required knowledge
of the correct number of clusters, and no mechanism was presented to select
good solutions from the Pareto front obtained.

Our new algorithm, MOCK (multiobjective clustering with automatic deter-
mination of the number of clusters), overcomes these weaknesses. It uses a novel,
flexible representation that permits us to efficiently generate clustering solutions
that both correspond to different trade-offs between our two clustering objec-
tives and that contain different numbers of clusters. An automated technique is
employed to select high-quality solutions from the resulting Pareto front, and it
thus simultaneously determines the number of clusters in a data set. We briefly
present the algorithm in this paper and summarize analytical results demon-
strating its robust performance across data sets that exhibit a wide range of
different data properties. A more detailed description and additional analytical
results are provided in [7]. Besides introducing MOCK, a second goal of this
paper is to give more insight into the mechanisms underlying multiobjective
clustering: in particular, we aim to show that MOCK’s good performance arises
as a direct consequence of the simultaneous optimization of several clustering
objectives: an archetypal problem — serving to illustrate the synergistic effects
at work in multiobjective clustering — is used for this purpose. We additionally
underline the differences between single- and multiobjective clustering by com-
paring the shape of MOCK'’s Pareto fronts to the performance curves obtained
for single-objective clustering methods run with a varying number of clusters
specified.

The remainder of this paper is organized as follows. Section 2 briefly sum-
marizes related work on clustering and evolutionary algorithms. This is followed
by a description of our algorithm, MOCK (Section 2.1), and all other contestant
methods used in this study (Section 3). Section 4 presents our experiments and
discusses results, and Section 5 concludes.

2 Related work

Clustering problems arise in a variety of different disciplines, ranging from biol-
ogy to sociology to computer science. Consequently, they have been the subject
of active research for several decades, and a multitude of clustering methods
exist nowadays, which fundamentally differ in their basic principles and in the
properties of the data they can tackle. For an extensive survey of clustering
problems and algorithms the reader is referred to Jain et al. [8].

Evolutionary algorithms (EAs) have a history of being applied to clustering
problems [4,12,13]. However, previous research in this respect has been lim-
ited to the single objective case: k-means’ criterion of intra-cluster variance has
been the objective most commonly employed, as this measure provides smooth

incremental guidance in all parts of the search space. Due to the difficulty of
deriving an encoding and operators that efficiently explore the very large clus-
tering search space, actual hybridizations between EAs and k-means have also
been particularly popular [12,13].

Multiobjective evolutionary algorithms (MOEAs) have repeatedly been used
to perform feature selection for clustering [5,9], but have not previously been
applied to the actual clustering task itself. This is despite the general agreement
that clustering objectives can be conflicting or complementary, and that no sin-
gle clustering objective can deal with every conceivable cluster structure [10]. To
date, attempts to deal with this problem have focused on the retrospective com-
bination of different clustering results by means of ensemble methods [11,16, 18].
In order to construct clustering ensembles, different clustering results are first
generated by repeatedly running the same algorithm (using different initializa-
tions, bootstrapping or a varying number of clusters) or several complementary
methods (e.g. agglomerative algorithms based on diverse linkage criteria such as
single-link and average-link). The resulting solutions are then combined into an
ensemble clustering using graph-based approaches, expectation maximization or
co-association methods.

Results reported in the literature demonstrate that clustering ensembles are
often more robust and yield higher quality results than individual clustering
methods, indicating that the combination of several clustering objectives is
favourable. However, it is our contention that ensemble methods do not fully
exploit the potential of using several objectives, as they are limited to the a pos-
teriori integration of solutions rather than exploring trade-off solutions during
the clustering process. We aim to overcome this limitation by tackling clustering
as a truly multiobjective optimization problem.

2.1 Multiobjective clustering

We based our multiobjective clustering algorithm on the elitist MOEA, PESA-II,
described in detail in [3].

PESA-II Briefly, PESA-II updates, at each generation, a current set of non-
dominated solutions stored in an external population (of non-fixed but limited
size), and uses this to build an internal population of fixed size to undergo re-
production and variation. PESA-IT uses a selection policy designed to give equal
reproduction opportunities to all regions of the current nondominated front;
thus in the clustering application, it should provide a diverse set of solutions
trading off different clustering measures. No critical parameters are associated
with this ‘niched’ selection policy, as it uses an adaptive range equalization and
normalization of the objectives. PESA-II may be used to optimize any number
of objective functions, allowing us to simultaneously optimize several clustering
measures, but in our algorithm MOCK we use just two (conceptually distant)
measures as objectives, described below.

@ Order of connection:

ltol

9 @ 3tol
4t03

2to3

7to4

8to7

5to4

6to5

Genotype:

hG el]

Fig. 1. Construction of the minimum spanning tree and its genotype coding. The data
item with label 1 is first connected to itself, then Prim’s algorithm is used to connect
the other items. In the genotype, each gene (i.e. position in the string) represents the
respective data item, and its allele value represents the item it points to (e.g. gene 2
has allele value 3 because data item 2 points to data item 3). The genotype coding for
the full MST (as shown) is used as the first individual in the EA population.

Genetic representation and operators To apply PESA-II to the clustering
problem, a suitable genetic encoding of a partitioning and one or more genetic
variation operators (e.g. mutation and/or crossover) have to be chosen.

We employ the locus-based adjacency representation proposed in [14]. In
this graph-based encoding (see Figure 1), each individual g consists of N genes
g1, ---, 9N, where N is the size of the data set given, and each gene g; can take
allele values j in the range {1, ..., N}. Thus, a value of j assigned to the ith gene,
is then interpreted as a link between data items ¢ and j: in the resulting clustering
solution they will be in the same cluster. The decoding of this representation
requires the identification of all subgraphs, which can be done in linear time. All
data items belonging to the same subgraph are then assigned to one cluster.

This encoding scheme permits us to keep the number of clusters dynamic
and is well-suited for use with standard crossover operators such as uniform,
one-point or two-point crossover. We choose uniform crossover, and employ a
specialized mutation operator that significantly reduces the size of the search
space: each data item can only be linked to one of its L nearest neighbours.
Hence, g; € {nns,...,nn;r}, where nny, | € 1...L, denotes the [th nearest
neighbour of data item i.

Our initialization routine also exploits the link-based encoding and uses mini-
mum spanning trees (MSTs). For a given data set, we first compute the complete
MST using Prim’s algorithm. The ¢th individual of the initial populations is then
initialized by the MST with the (¢ — 1)th largest links removed (see Figure 1).

Objective functions MOCK’s clustering objectives have been chosen to reflect
two fundamentally different aspects of a good clustering solution: the global
concept of compactness of clusters, and the more local one of connectedness of
data points.

In order to express cluster compactness we calculate the overall deviation of a
partitioning. This is simply computed as the overall summed distances between
data items and their corresponding cluster centre:

DG’U(C) = Z Z 6(i7ll’k)7

CrLeC ieCy

where C' is the set of all clusters, uy is the centre of cluster Cj and 4(.,.) is
the distance function chosen (Euclidean distance in this paper). As an objective,
overall deviation should be minimized.

As an objective reflecting cluster connectedness, we use a measure, connec-
tivity, which evaluates the degree to which neighbouring data-points have been
placed in the same cluster. It is computed as

N L 1 . . .
Lif BCy - i, nni(§) € Cy,

_ } :) _) N B
Conn(C) < Tinni(@) |+ Timni(j) { 0 otherwise,

i=1 \j=

where nn;(j) is the jth nearest neighbour of datum ¢, and L is a parameter de-
termining the number of neighbours that contribute to the connectivity measure.
As an objective, connectivity should be minimized.

2.2 Automatic solution selection

The MOEA described above returns a set of nondominated solutions correspond-
ing to different compromises of the two objectives, and containing different num-
bers of clusters. We next devise an automated method to select a single one of
these solutions as the correct ‘answer’. Unlike previous approaches to identifying
promising solutions from the Pareto front (e.g. [2]), our method is application-
specific. In particular, it makes use of several domain-specific considerations
(inspired by Tibshirani et al.’s Gap statistic [17]) that enable us to derive a
more effective technique for our particular purpose.

Intuitively, we expect the structure of the data to be reflected in the shape of
the Pareto front. From the two objectives employed, overall deviation decreases
with an increasing number of clusters, whereas connectivity increases. Hence, we
can say that, incrementing the number of clusters k, we gain an improvement
in overall deviation §D at the cost of a degradation in connectivity §C. For a
number of clusters k& smaller than the true number, we expect the ratio R = g—g
to be large: the separation of two clusters will trigger a great decrease in overall
deviation, with only a small or no increase in connectivity. When we surpass
the correct number of clusters this ratio will diminish: the decrease in overall
deviation will be less significant but come at a high cost in terms of connectivity
(because a true cluster is being split). Due to the natural bias of both measures,
the solutions in the Pareto front are approximately ordered by the number of
clusters they contain: plotting connectivity on the abscissa and overall deviation
on the ordinate, k gradually increases from left to right. The distinct change in R

occurring for the correct number of clusters can therefore be seen as a ‘knee’. In
order to help us correctly determine this knee, we use uniformly random reference
data: clustering a number of such reference distributions using MOCK provides
us with a set of ‘reference fronts’, which help us to abstract from k-specific biases
in our clustering objectives (see Figure 2).

Low K solutions

l\
Solution
Control -
0.8 -
c
o
& 06}
>
[}
o
S o4l
>
o
0.2 -
0 L L L L \
0 0.2 0.4 0.6 0.8 1 High k solutions

Connectivity

Fig. 2. Solution and control reference fronts for a run of MOCK on the Squarel data
set. The solution with the largest minimum distance to the reference fronts is indicated
by the angled line, and corresponds to the correct k = 4 cluster solution.

Briefly, we then determine good solutions as follows: after a normalization
step, the distances between individual solutions and the attainment surfaces
described by the reference fronts are computed. We plot the resulting attainment
scores as a function of the number of clusters k. The maximum of the resulting
curve provides us with the number of clusters k; also, the solution corresponding
to the highest attainment score for this k is selected as the best solution. A more
detailed motivation and description of this methodology (including pseudo-code)
is provided in [7].

3 Contestant methods

We evaluate MOCK by comparing it to four established single-objective cluster-
ing methods, whose implementations are described below. Three of these contes-
tants are traditional and conceptually different clustering algorithms, namely k-
means, single-link agglomerative clustering and average-link agglomerative clus-
tering. Here, the algorithms k-means and single-link agglomerative clustering
are of particular interest, as each of them uses a clustering objective that is con-
ceptually quite similar to one of MOCK'’s. The fourth algorithm is an advanced
clustering ensemble method by Strehl and Ghosh [16]. All four algorithms are
— differently to MOCK — given the same advantage of being provided with

the correct number of clusters. A comparison of MOCK to a state-of-the-art
method for the determination of the number of clusters, Tibshirani et al.’s Gap
statistic [17], can be found in in [7].

3.1 k-means

Starting from a random partitioning, the k-means algorithm repeatedly (i) com-
putes the current cluster centres (i.e. the average vector of each cluster in data
space) and (ii) reassigns each data item to the cluster whose centre is closest
to it. It terminates when no more reassignments take place. By this means, the
intra-cluster variance, that is, the sum of squares of the differences between data
items and their associated cluster centres, is locally minimized.

Our implementation of the k-means algorithm is based on the batch version
of k-means, that is, cluster centres are only recomputed after the reassignment
of all data items. As k-means can sometimes generate empty clusters, these are
identified in each iteration and are randomly reinitialized. This enforcement of
the correct number of clusters can prevent convergence, and we therefore set the
maximum number of iterations to 100. To reduce suboptimal solutions k-means
is run repeatedly (100 times) using random initialisation (which is known to
be an effective initialization method [15]) and only the best result in terms of
intra-cluster variance is returned.

3.2 Hierarchical clustering

In general, agglomerative clustering algorithms start with the finest partition-
ing possible (i.e. singletons) and, in each iteration, merge the two least distant
clusters. They terminate when the target number of clusters has been obtained.
Single-link and average-link agglomerative clustering only differ in the linkage
metric used. For the linkage metric of average-link, the distance between two
clusters C; and Cj is computed as the average dissimilarity between all possible
pairs of data elements ¢ and j with ¢ € C; and j € Cj. For the linkage metric
of single-link, the distance between two clusters C; and C; is computed as the
smallest dissimilarity between all possible pairs of data elements 7 and j with
ieCiandjEC]-.

3.3 Cluster ensemble

Strehl and Ghosh’s ‘knowledge reuse framework’ employs three conceptually
different ensemble methods namely (1) CSPA (Cluster-based Similarity Parti-
tioning Algorithm), (2) HGPA (Hyper-Graph Partitioning Algorithm) and (3)
MCLA (Meta-Clustering Algorithm). The solutions returned by the individual
combiners then serve as the input to a supra-consensus function, which selects
the best solution in terms of average shared mutual information.

For the implementation of this cluster ensemble we use Strehl and Ghosh’s
original Matlab code with the correct number of clusters provided. In order to

generate the input labels we use the algorithms described above, that is, k-
means, average-link and single-link agglomerative clustering. As ensemble meth-
ods generally benefit from being provided partitionings of higher resolution (i.e.
comprising more clusters), we run each algorithm for all k € {2,...,20}. The
resulting 57 labelings then serve as the input to Strehl and Ghosh’s method.

3.4 Parameter settings for MOCK

Parameter settings for MOCK are given in Table 3.4 and are kept constant over
all experiments.

Table 1. Parameter settings for MOCK, where N is data set size.

Parameter setting

Number of generations 200

External population size 1000

Internal population size max(50, %)
Initialization Minimum spanning tree
Mutation type L nearest neighbours (L = 20)
Mutation rate p.m, 1/N
Recombination Uniform crossover
Recombination rate p, 0.7

Objective functions Overall deviation and connectivity (L = 20)
Constraints ke {1,...,25}, cluster size > 2
Number of reference distributions 5

4 Experiments

The following experimental section is split into two major parts. We first pro-
vide a summary of our comparative study between MOCK and the clustering
methods introduced above. MOCK’s high performance leads us to to investigate
the reasons for the robustness of multiobjective clustering; an archetypal exam-
ple and the visualization of solutions in two-objective space are used for this
purpose.

4.1 Analytical evaluation

In our comparative study, MOCK has been evaluated using a range of synthetic
and real data sets. In this paper, we present results on 19 two-dimensional data
sets that are well-suited to demonstrate MOCK’s performance for different data
properties. The particular properties studied are overlap between clusters (on
the Square and Triangle series), unequally sized clusters (in terms of the number
of data points contained; on the Sizes series) and elongated cluster shapes (on
the Long, Spiral and Smile series). Detailed descriptions and generators for the
data sets are available at [1]. More results, including those for high-dimensional
and real data, can be found in [7].

Table 2. Sample Median and Interquartile Range F-Measure [19] values for 50 runs of
each algorithm on two-dimensional synthetic data sets exhibiting different data prop-
erties. The best value is shown in bold. MOCK is the only consistent method; all other
algorithms have a ‘nemesis’ data set on which they are worst.

Problem |single-link average-link k-means clustering ensemble MOCK
Longl |0.666444 (0.333556) 0.665104 (0.005896) 0.521989 (0.015211) 1.0 (0.0) 1.0 (0.0)
Long2 |0.678444 (0.000178) 0.67714 (0.011155) 0.520026 (0.01683) 0.902 (0.0) 1.0 (0.0)

Long3 |0.777895 (0.000556) 0.77514 (0.009774) 0.566661 (0.017321) 0.730591 (0.001802) 1.0 (0.006)
Sizesl 0.428323 (0.000242) 0.977935 (0.007071) 0.989003 (0.005013) 0.747616 (0.030904) 0.987 (0.006)
Sizes2 |0.522742 (0.000477) 0.981947 (0.009885) 0.987051 (0.004999) 0.633283 (0.002187) 0.988 (0.006)
Sizes3 |0.600841 (0.000782) 0.98502 (0.00905) 0.987114 (0.006899) 0.562078 (0.00984) 0.99 (0.005)
Sizesd |0.658308 (0.000676) 0.983953 (0.005826) 0.985274 (0.006851) 0.506595 (0.261149) 0.989 (0.0041)
Sizes5 |0.702411 (0.001261) 0.986976 (0.007064) 0.984288 (0.005843) 0.487591 (0.311809) 0.9909 (0.0079)

()

()

)

Smilel |1.0 (0.0) 0.753036 (0.0) 0.665609 (0.009407) 1.0 (0.0) 1.0 (0.0)
Smile2 [1.0 (0.0) 0.725156 (0.0) 0.586508 (0.009967) 0.91 (0.0) 1.0 (0.0)
Smile3 |1.0 (0.0) 0.549761 (0.0) 0.505994 (0.007393) 0.776494 (0.001284) 1.0 (0.0)

Spiral |1.0 (0.0) 0.576 (0.0) 0.593 (0.002) 1.0 (0.0) 1.0 (0.0)
Squarel [0.399759 (8e-05) 0.977997 (0.015005) 0.987006 (0.004982) 0.984 (0.008006) 0.985 (0.0051)
Square2 (0.399759 (0.0) 0.961982 (0.009888) 0.976019 (0.007988) 0.97 (0.008002) 0.973 (0.009)
Square3 |0.399759 (8e-05) 0.934935 (0.016238) 0.956933 (0.00802) 0.94599 (0.015982) 0.946 (0.0172)
Squared |0.399759 (8e-05) 0.883035 (0.02214) 0.919999 (0.008024) 0.908 (0.019006) 0.9041 (0.0184)
Square5 [0.399759 (8e-05) 0.720672 (0.107357) 0.86798 (0.014231) 0.842965 (0.033088) 0.8361 (0.0324)
Triangle1|1.0 (0.0) 0.997 (0.004001) 0.98486 (0.00613) 0.999 (0.001) 1.0 (0.0)
Triangle20.45193 (0.116834) 0.986979 (0.013638) 0.957697 (0.011837) 0.810492 (0.068513) 0.995 (0.004)

B oORr N®WAOOO

Fig. 3. A simple three-cluster data set posing difficulties to many clustering methods.

The clustering results of the five different algorithms are compared using an
objective evaluation function, the F-Measure [19], which is an external evaluation
function that requires knowledge of the correct class labels and compares a
generated clustering solution to this ‘gold standard’. The F-Measure can take
on values in the interval [0, 1] and should be maximized.

From the results presented in Table 2 it becomes clear that the single-
objective algorithms all experience trouble for particular data properties. For
k-means and average-link, the problematic data sets are those with arbitrary
shaped or elongated clusters (in the Long, Smile and Spiral series) for single-
link it is those that contain clusters with overlap or noise points (in the Square,
Sizes and Long series). The clustering ensemble fares better, but severely breaks
down for unequally sized clusters (in the Sizes series). Only MOCK shows a very
strong performance for all types of different data properties and is best, or close
to best, on almost all data sets.

4.2 A simple example showing the synergistic effects at work in
MOCK

Given MOCK’s performance, it is worth examining more closely the mecha-
nisms underlying multiobjective clustering. In particular, we would like to show
that MOCK’s access to two conceptually different clustering objectives is not
sufficient to explain its good performance, but that it is their simultaneous op-
timization that is the key to its success.

We first observe that, in an explicit single-objective optimization, it wouldn’t
be possible to keep the number of clusters dynamic (without the introduction
of additional constraints) at all: due to the natural bias of both measures, an
optimization method would, for any data set, necessarily converge to trivial
solutions: these are singleton clusters for overall deviation and a single cluster for
connectivity. Only the simultaneous optimization allows us to effectively explore
interesting solutions, as we can exploit the oppositional trends exhibited by the
two objectives with respect to changes in the number of clusters.

More importantly, even for a fixed number of clusters, there are cases where
both single-objective versions will fail, but a multiobjective approach will work.
In order to demonstrate this, let us consider the scenario shown in Figure 3.
The data set consists of three clusters that contain the same number of data
points and are easily discernible to the human eye. The difficulty of the data set
arises from two facts: (1) the clusters are constituted from data points with very
different densities, and (2) a couple of noise points at the border of the sparse
cluster ‘bridge the gap’ to the smaller two clusters. As a direct result of these
properties the assumptions made by overall deviation and connectivity are both
violated:

— The correct three-cluster solution does not correspond to the minimum in
overall deviation, as splitting of the large cluster results in a much greater
reduction in overall deviation.

— The correct three-cluster solution does not correspond to the minimum in
connectivity, as the separation of the large from the small clusters involves an
increase in connectivity, and the assignment of outliers to their own cluster
therefore becomes preferable.

Consequently, the optimization of any one of the two objectives, will not lead
to the correct solution. Indeed, none of our contestant single-objective algorithms
can solve this data set: they all fail to separate the two smaller clusters — instead,
k-means splits the large cluster in half, and single-link and average-link separate
outliers from this cluster.

MOCK in contrast, which explores the trade-offs between overall deviation
and connectivity, easily manages to detect the correct solution. In particular, in
many cases, MOCK can even discard those solutions that are optimal only under
overall deviation or connectivity, as these evaluate particularly badly under the
respective second objective, and are therefore (due to the natural biases in the
measures) likely to be dominated by clustering solutions with a different number
of clusters. Overall, the performance of MOCK seems to demonstrate that the

quality of the trade-off between our two objectives is in many cases a much
better indicator of clustering quality than the individual objectives themselves.

4.3 Performance curves versus Pareto fronts

In this last section, we aim to visualize the different strategies pursued by single-
objective clustering algorithms and our two-objective version. Towards this end,
we compare the output of MOCK with the solutions obtained by k-means,
average-link and single-link agglomerative clustering, when run for a range of
different numbers of clusters k € 1,...,25. We then evaluate all resulting so-
lutions using overall deviation and connectivity, and visualize, in normalized
two-objective space, the solutions obtained (see Figure 4). For MOCK, the re-
sulting curve is simply its Pareto front and therefore monotonic. For the other
three algorithms the resulting performance plots may contain dominated points,
and may therefore be non-monotonic. This is because each of these algorithms
only optimizes one of the two objectives: thus, solutions that are better in one
objective are not necessarily worse in the other.

A combined analysis of these plots and the F-Measure values provided in
Table 2 confirms that the trade-off between overall deviation and connectivity
is a good indicator of quality on the data sets employed. There appears to be
a distinct correlation between the quality of solutions and their distance to the
‘knee’ in MOCK’s Pareto front. In particular, the algorithms that perform well on
a given data set have at least one solution that comes close to or even dominates
MOCK’s solutions in the ‘knee’ region. This is generally the solution that best
captures the structure of the data set, and also scores highest under the F-
Measure. Straightforward examples of this are the k-means and average-link
solutions on the Square4 and Sizes5 data sets, and the single-link solution on
the Spiral data set. Results for the Long! data set are slightly more involved.
Here, k-means and average-link are clearly both widely off track. The F-Measure
value for single-link indicates that, due to noise points, the algorithm also has
problems to find the correct clustering solution for k£ = 2. This is confirmed by
the fact that, in Figure 4, the k& = 2 solution for single-link is quite far off the
‘knee’. However, the plot also reveals (and F-Measure values confirm) that there
are single-link solutions closer to the optimum: these are the solutions for k = 4
or higher, for which single-link assigns noise points to their own clusters but also
manages to correctly separate the two main clusters present in the data set.

In addition to the above, our visualization demonstrates some general as-
pects of the algorithms’ clustering behaviour. On several data sets, we can ob-
serve single-link’s tendency to gradually separate outliers, without any signifi-
cant decrease in overall deviation (even for high numbers of clusters). Clearly,
this property makes the algorithm very sensitive to noise, which is one of the
reasons why it is rarely applied in practice. k-means, in contrast, quickly re-
duces overall deviation, but pays virtually no attention to the underlying local
data distribution. This becomes evident in a rapid increase and apparent non-
monotonicity (e.g. see Longl) in connectivity. Only average-link agglomerative
clustering shows a more reasonable overall behaviour: its capabilities to satisfy

k=1 Square4 k=1 Sizes5

1.2 T T T T T T 1.2 T T T T T T
/ MOCK / MOCK
Average link Average link
1 42 2 s ssssa g, Single link = 1 1 spny Single link =
Bk k-means o e k-means o
c Control - c ; Control -
S 08¢t S o8} g
8 K
> >
Q O
o 06 1 o 06
s K
Q o
3 o4r 1 3 o4r
02 MOCK: k=25 1 0.2 ®
3 °
Lo Y
0 s . 0
0 0.2 0.4 0.6 0.8 1 1.2 14 0 0.2 0.4 0.6 0.8 1 1.2 1.4
Connectivity Connectivity
k=1 Longl k=1 Spiral
1.2 T T T T T T 1.2 T T T T T T
/ MOCK / MOCK
Average link Average link
1 _— Single link & 4 19 sna, Single link =
! k-means o k-means o
c Control - c Control -
S 08¢t 1 S o8} g
8 k]
> >
I3 @
o 06 1 o 06
s K
g 04 | 1 g 04 *y
e °f
02 o, MocK: k=25 02 h, B
S MOCK: k=25 X °g
0 L L L L ! L 0 L L L L x L
0 0.2 0.4 0.6 0.8 1 1.2 14 0 0.2 0.4 0.6 0.8 1 1.2 1.4
Connectivity Connectivity

Fig. 4. Plots of all solutions, in normalized objective space, for k € [1,...,25] of k-
means, single-link and average-link on the Square4, Sizes5, Longl and Spiral data sets.
Both MOCK’s Pareto front and one of its control fronts are visualized as attainment
surfaces, and arrows indicate the position of the £ = 1 solution (identical for all algo-
rithms) and MOCK’s k = 25 solution. Knees are indicated by circles centred around
the solution identified by MOCK.

both objectives seem somewhat superior to those of k-means and single-link. For
increases in k, it is monotonic in both objectives and its solutions are distributed
more uniformly along the Pareto front.

5 Conclusion

Existing clustering algorithms are limited to optimizing (explicitly or otherwise)
one single clustering objective. This can lead to a lack of robustness with re-
spect to different data properties, a limitation which we have suggested can be
overcome by the use of several complementary objectives. In this paper we have
introduced an advanced multiobjective clustering algorithm, MOCK. A compar-
ative study has shown the robustness of the approach both at finding high quality
solutions and determining the number of clusters. The origins of MOCK’s good
performance have then been investigated further. Using an archetypal problem
we have demonstrated that the identification of trade-off solutions in clustering
can be crucial: the simultaneous optimization of two complementary objectives

may permit the solution of clustering problems that are not solvable by either
of the two objectives individually. The differences between single-objective and
multiobjective clustering have been further underlined by a visual comparison
of the quality of the trade-off solutions generated by single- and multiobjective
algorithms for a range of different numbers of clusters. The software for MOCK
is available on request from the first author.

Acknowledgements: JH gratefully acknowledges support of a scholarship from
the Gottlieb Daimler- and Karl Benz-Foundation, Germany. JK is supported
by a David Phillips Fellowship from the Biotechnology and Biological Sciences
Research Council (BBSRC), UK.

References

1. Supporting material for MOCK. http://dbk.ch.umist.ac.uk/handl/mock/

2. J. Branke, K. Deb, H. Dierolf, and M. Osswald. Finding knees in multi-objective
optimization. In Proceedings of the Eighth International Conference on Parallel
Problem Solving from Nature, pages 722-731. Springer-Verlag, 2004.

3. D. W. Corne, J. D. Knowles, and M. J. Oates. PESA-II: Region-based selection
in evolutionary multiobjective optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 283—-290. Morgan Kaufmann, 2001.

4. E. Falkenauer. Genetic Algorithms and Grouping Problems. John Wiley & Son
Ltd, 1998.

5. G. Fleurya, A. Hero, S. Zareparsi, and A. Swaroop. Gene discovery using Pareto
depth sampling distributions. Special Number on Genomics, Signal Processing and
Statistics, Journal of the Franklin Institute, 341(1-2):55-75, 2004.

6. J. Handl and J. Knowles. Evolutionary multiobjective clustering. In Proceedings
of the Eighth International Conference on Parallel Problem Solving from Nature,
pages 1081-1091. Springer-Verlag, 2004.

7. J. Handl and J. Knowles. Multiobjective clustering with automatic determination
of the number of clusters. Technical Report COMPYSYBIO-TR-2004-02, Depart-
ment of Chemistry, UMIST, UK, August 2004.

8. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM
Computing Surveys, 31(3):264-323, 1999.

9. Y. Kim, W. N. Street, and F. Menczer. Evolutionary model selection in unsuper-
vised learning. Intelligent Data Analysis, 6:531-556, 2002.

10. J. Kleinberg. An impossibility theorem for clustering. In Proceedings
of the 15th Conference on Neural Information Processing Systems, 2002.
http://www.cs.cornell.edu/home/kleinber /nipsl5.ps.

11. M. H.C Law. Multiobjective data clustering. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 424-430.
IEEE Press, 2004.

12. U. Maulik and S. Bandyopadhyay. Genetic algorithm-based clustering technique.
Pattern Recognition, 33:1455-1465, 2000.

13. H. Pan, J. Zhu, and D. Han. Genetic algorithms applied to multi-class clustering
for gene expression data. Genomics, Proteomics & Bioinformatics, 1(4), 2003.

14. Y.-J. Park and M.-S. Song. A genetic algorithm for clustering problems. In Pro-
ceedings of the Third Annual Conference on Genetic Programming, pages 568-575.
Morgan Kaufmann, 1998.

15. J. M. Pena, J. A. Lozana, and P. Larranaga. An empirical comparison of four
initialization methods for the k -means algorithm. Pattern Recognition Letters,
20(10):1027-1040, 1999.

16. A. Strehl and J. Ghosh. Cluster ensembles — a knowledge reuse framework for
combining multiple partitions. Journal on Machine Learning Research, 3:583-617,
2002.

17. R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in
a dataset via the Gap statistic. Technical Report 208, Department of Statistics,
Stanford University, USA, 2000.

18. A. Topchy, A. K. Jain, and W. Punch. Clustering ensembles: Models of consensus
and weak partitions. Submitted to IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2004.

19. C. van Rijsbergen. Information Retrieval, 2nd edition. Butterworths, 1979.

