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$EVWUDFW
The paper presents a metaheuristic method for solving fuzzy multi-objective combinatorial
optimization problems. It extends the Pareto simulated annealing (PSA) method proposed
originally for the crisp multi-objective combinatorial (MOCO) problems and is called fuzzy
Pareto simulated annealing (FPSA). The method does not transform the original fuzzy
MOCO problem to an auxiliary deterministic problem but works in the original fuzzy
objective space. Its goal is to find a set of approximately efficient solutions being a good
approximation of the whole set of efficient solutions defined in the fuzzy objective space. The
extension of PSA to FPSA requires the definition of the dominance in the fuzzy objective
space, modification of rules for calculating probability of accepting a new solution and
application of a defuzzification operator for updating the average position of a solution in the
objective space. The use of the FPSA method is illustrated by its application to an agricultural
multi-objective project scheduling problem.

.H\�ZRUGV
Fuzzy multi-objective combinatorial optimization, Metaheuristics in fuzzy objective space,
Simulated annealing, Fuzzy multi-objective project scheduling.

�� ,QWURGXFWLRQ
In a recent manifesto on Fuzzy Information Engineering, Dubois, Prade and Yager (1997) are
pointing out three basic semantics associated with the use of fuzzy sets. A first semantics (and
historically the oldest one) is the expression of closeness, proximity, similarity and the like;
this is the usual understanding of fuzzy sets in clustering, recognition and classification tasks.
A second semantics is related to representation of incomplete or vague states of information
under the form of possibility distributions; this view of fuzzy sets enables representation of
imprecise or uncertain information in mathematical models of decision problems considered
in operations research. A third semantics for a fuzzy set expresses preferences concerning
satisfaction of flexible constraints and/or attainment of goals; this is especially important for
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exploiting information in decision making. The gradedness introduced by fuzzy sets refines
the simple binary distinction made by ordinary constraints. It also refines the crisp
specification of goals and “all-or-nothing” decisions.

In this paper, we are focusing our attention on the second semantics. Our interest in it follows
from a long experience in modeling and solving project scheduling problems under
uncertainty concerning time parameters of activities (Hapke et al., 1994). This uncertainty
being of possibilistic character, the best way of handling it is through the use of fuzzy sets.
Precisely, the uncertain time parameters are modeled as fuzzy numbers, i.e. normalized,
convex fuzzy subsets of the real line. To be yet more realistic, we were considering multi-
objective fuzzy project scheduling problems (Hapke et al., 1997). These problems are clearly
fuzzy multi-objective combinatorial optimization (MOCO) problems whose deterministic
equivalents are NP-hard. Due to this complexity, it was advisable to use a metaheuristic
procedure for solving these problems (approximately).

Before developing a metaheuristic procedure for the fuzzy MOCO problems, we formulated
the following postulates it should fulfil:

• it should not aggregate a priori the fuzzy objective functions into a single objective but
generate a representative approximation of the non-dominated set for further exploration
using an interactive procedure,

• it should consider non-dominated points in the original fuzzy objective space and not
non-dominated points in the objective space of an auxiliary deterministic problem (no
defuzzification).

In this paper, we are taking these postulates into account within a Pareto Simulated Annealing
(PSA) procedure previously developed by Czyzak and Jaszkiewicz (1996, 1997) for
deterministic MOCO problems. The main problems which have to be solved when extending
PSA to the fuzzy objective space are:

• definition of the dominance in the fuzzy objective space,

• adaptation of the simulated annealing scheme to fuzzy values of objective functions.

In order to adapt the PSA scheme to fuzzy values of objective functions, one has to test if a
newly generated neighbourhood solution dominates, is non-dominated or is dominated by the
current solution. Furthermore, if the new solution is not dominated by the current one it
should be used to update the set of approximately efficient solutions in the fuzzy objective
space. In order to define the dominance, one has to propose first a way of comparing fuzzy
scores on objective functions. The comparison rule of fuzzy scores should also be used in the
step where a probability of accepting a newly generated solution is calculated. The PSA
procedure extended to handle fuzzy MOCO problems will be called fuzzy Pareto simulated
annealing (FPSA). The comparison rule used in FPSA should be connected with the
semantics of fuzzy numbers.

Existing metaheuristic approaches to fuzzy MOCO problems are quite different in the
following points:

• they use the third semantics of the fuzzy sets characterized above and aggregate the
objective functions a priori, i.e. they use fuzzy goals for objective functions and tend to
maximize the smallest satisfaction degree (Sakawa et al., 1994, 1997),

• they consider defuzzified objectives which are aggregated a priori (Fortemps, 1997),



M. Hapke, A. Jaszkiewicz, R. 6áRZL VNL� �������� 3DUHWR� VLPXODWHG� DQQHDOLQJ� IRU� IX]]\� multi-objective
combinatorial optimization, -RXUQDO�RI�+HXULVWLFV, 6, 3, pp. 329-345.

3

• they aggregate both fuzzy objectives and fuzzy constraints with the meaning of the third
semantics into a single function (Slany, 1996).

The aim of the present paper is to develop a multi-objective metaheuristic procedure working
truly in the fuzzy objective space. The paper is organized as follows. In the next section, we
introduce basic concepts and definitions connected with the fuzzy set modeling of
uncertainty, with the comparison of two fuzzy numbers and with the dominance and fuzzy
MOCO problems. Section 3 presents the metaheuristic FPSA procedure for the fuzzy MOCO
problems. In section 4, the FPSA is applied to an agricultural multi-objective project
scheduling problem. The final section groups conclusions.

�� %DVLF�FRQFHSWV�DQG�GHILQLWLRQV
�����8QFHUWDLQW\�PRGHOLQJ
Set $ in a base set ; can be described by a membership function µ�  : ; → {0,1} with µ� ([)=1

if  [∈$ and µ� ([)=0  if  [∉$. If it is uncertain, whether or not element [ belongs to set $, the
above model can be extended such that the membership function maps into interval [0,1].
A high value of this membership function implies high possibility while a low value a poor
possibility. This leads to the definition of a fuzzy set (Dubois, Prade 1980).

Let ; be a base set and µ� a function from ; into the unit  interval [0,1].

Then the set

%$ = {([� )(~ [�µ )  [∈;} (1)

is called a fuzzy set in ; and � ~µ is called the membership function of %$.

Another useful definition is that of a level set or a level  cut. Let %$  be a fuzzy set in ; and

α∈(0,1]. The α-level set or α-level cut of %$  is the set

%$α  = { [ ∈ ; | )(~ [�µ  ≥ α } (2)

Lower and upper bounds of α-cut %$α are equal to infx∈
� %$α�and supx∈

� %$α, respectively.

Flat fuzzy number is a special kind of a fuzzy set. Precisely, a flat fuzzy number is defined as
a normalized convex fuzzy subset of real line 5� i.e. it is defined according to (1), where
;=ℜ.

The precise form of a fuzzy number can be described by an expert only rarely. A practical
way of getting suitable membership functions of fuzzy data has been proposed by
Romelfanger (1990). He proposes that the expert expresses his/her optimistic and pessimistic
information about parameter uncertainty on some prominent membership levels α, e.g.:

α 1: µ�[�� �1 -means that value [ certainly belongs to the set of possible values,
α=λ: µ�[� > λ -means that the expert estimates that value� [ with µ�[� ≥ λ has a good

chance of belonging to the set of possible values,
α=ε: µ�[� < ε -means that value [ with µ�[� < ε has only a very little chance of belonging

to the set of possible values, i.e. the expert is willing to neglect the
corresponding values of [�with�µ�[��< ε.
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Thus a flat fuzzy number in six-point convention is represented by six real numbers.
Formally, a flat fuzzy number %0  is represented by the following list of symbols:

%0 �=  ( ελλε PPPPPP ,,,,, ) (3)

We assume that λ = 0.6, ε = 0.1. An exemplary flat fuzzy number in the six-point convention
is presented in Figure 1.

)LJXUH����)ODW�IX]]\�QXPEHU� %0 �LQ�VL[�SRLQW�UHSUHVHQWDWLRQ
It is worth pointing out that well-known trapezoidal and triangular fuzzy numbers can be
modeled in this representation as well. The presented approach of acquisition of uncertain
information is well-suited to the second semantics of fuzzy numbers. Membership functions
of fuzzy numbers in the third semantics can be acquired in a different way (see Slany, 1996).

�����)X]]\�DULWKPHWLFV
Let %$ and %%  be fuzzy numbers of the universe ; and <. Let * denote any basic arithmetic
operations (+, −, ×, /). Then any operation %$ * %%  can be described by Zadeh’s extension
principle (Zadeh, 1975):

{ })](),([(minmax)( ~~
*

~~ \[] ��
���

��� µµµ
=

= (4)

In the case of arithmetic operations on fuzzy numbers in piece-wise representation the
equation (4) corresponds to

&~ α = ( %$�*� %% )α = %$α�*� %% α, for any α ∈ (0, 1]. (5)

Above equation shows that the α-cut on a general arithmetic operation on two fuzzy numbers
is equivalent to the arithmetic operation on the respective α-cuts of the two fuzzy numbers.
Both ( %$�*� %% )α and %$α�*� %% α are interval quantities the operations on which can make use of
classical interval analysis (Ross, 1995). Thus one can define the following arithmetic
operations for fuzzy numbers in six-point representation:

( )εελλλλεε EDEDEDEDEDED%$ ++++++=⊕ ,,,,,~~ (6)
%$� � %% ( )εελλλλεε EDEDEDEDEDED −−−−−−= ,,,,, (7)

( )εελλλλεε EDEDEDEDEDED%$ ××××××=× ,,,,,~~ (8)

( )εελλλλεε EDEDEDEDEDED%$ /,/,/,/,/,/~/~ = (9)
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and moreover:

PaD[ ( %$, %% � = (max(D ε
,Eε

), max(Dλ
,Eλ

), max(E ,D ), max(E ,D ), max(E λ ,D λ), max(E ε ,D ε ))(10)

PaL Q ( %$, %% � = (min(D ε
,Eε

), min(Dλ
,Eλ

), min(E ,D ), min(E ,D ), min(E λ ,D λ), min(E ε ,D ε )) (11)

�����&RPSDULVRQ�RI�WZR�IX]]\�QXPEHUV
The definition of dominance and the combinatorial search in a fuzzy objective space require
comparing fuzzy scores on objective functions. As it was stressed in the introduction, the way
of comparing fuzzy scores is connected with the semantics of fuzzy numbers. Indeed, the
fuzzy numbers can be seen as imprecise probability distributions (see Dempster, 1967;
Shafer, 1976). In this perspective, the comparison of two fuzzy numbers can be substituted by
the comparison of their mean values defined consistently with the well-known definition of
expectation in probability theory. The idea exploited by Dubois and Prade (1987) rely on the
mathematical fact that, with respect to a fuzzy number, the possibility measure corresponds to
an upper probability distribution, while the necessity measure, to a lower probability
distribution of the corresponding random variable in the sense of Dempster (1967). Then it is
reasonable to define the mean value of a fuzzy number as a closed interval whose bounds are
expectations of upper and lower probability distributions. The comparison of two fuzzy
numbers boils then down to the comparison of arithmetic means of these bounds, which is
computationally equivalent to another intuitive comparison principle based on the area
compensation determined by the membership functions of two fuzzy numbers being
compared (.RáRG]LHMF]\N, 1986; Chanas, 1987; Roubens, 1990; Fortemps and Roubens,
1996).

The main advantage of the area compensation method is that it answers not only which one of
two fuzzy numbers is greater but also what is the degree to which one fuzzy number is greater
than another one. Working on fuzzy scheduling problems (Hapke et al., 1997) the authors
have used this comparison method under the name weak comparison rule (WCR) in order to
distinguish it from a more restrictive comparison method used to observe precedence
constraint and called strict comparison rule (SCR).

)LJXUH����7KH�FRPSDULVRQ�RI�WZR�IX]]\�QXPEHUV�EDVHG�RQ�DUHD�FRPSHQVDWLRQ
Let %$�� %%  be two fuzzy numbers and 6� ( %$�≥� %% ), 6� ( %$�≥� %% ), S� ( %$�≤� %% ), S� ( %$�≤� %% ) the areas
determined by their membership functions (Figure 2):
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ααα G%$%$6 �

���

�� )inf(inf)~~(
),(

��
∈∈∫ −=≥ (12)

ααα G%$%$6 �

��	

�
 )sup(sup)~~(
),(

��
∈∈∫ −=≥ (13)

where

8� %$�� %% ��= ^ �_ �LQI � `α ε αα α� �$ %∈ ∈≥ ≤ ≤ LQI � (14)

9� %$�� %% ��= ^ �_ �VXS � `α ε αα α� �$ %∈ ∈≥ ≤ ≤� �VXS � (15)

S� ( %$�≤� %% ) and S� ( %$�≤� %% ) are defined analogously.

6� ( %$�≥� %% ) and 6� ( %$�≥ %% ) are the areas that are related to the possibility of $*�≥�%*, where

$*�and�%* are potential realizations of %$�and� %% . The degree &( %$ ≥ %% )�to which %$�≥� %%  is
calculated as a sum of areas in which $*�≥�%* minus a sum of areas in which $*�≤�%*.

'HILQLWLRQ��.  (Weak Comparison Rule - WCR)

According to the WCR, the degree & to which fuzzy number %$ is greater than or equal to� %%
is defined as:

( ) ( ) ( ) ( ) ( ){ }$%6$%6%$6%$6%$& ����
~~~~~~~~

2

1~~ ≥−≥−≥+≥=≥ (16)

Using WCR, one can define three relations between %$ and %% , corresponding to weak
inequality, strict inequality and equivalence between fuzzy numbers, respectively:

%$ ≥ %%  iff &( %$≥ %% ) ≥ 0 (17)
%$ > %%  iff &( %$≥ %% ) > 0 (18)

%$ ∼ %%  iff &( %$≥ %% ) = &( %%≥ %$) = 0 (19)

It is easy to note that &( %$�≥ %% ) =  −&( %% �≥ %$).

The proposed WCR is related to the comparison of  “mean values of fuzzy numbers”
(Fortemps, 1997), as defined in (Dubois and Prade, 1987) in the framework of the Dempster-
Shafer theory. The mean value of a fuzzy number %$ is the interval [E( %$)*, E( %$)*], where
E( %$)* and E( %$)* are the mean values related to the cumulative possibility distribution (left
spread), and to the cumulative necessity distribution (right spread), respectively. The natural
way of defuzzifying such an interval is to calculate the arithmetic mean of its limits. The
defuzzification function ℑ( %$) is defined as follows (Chanas, 1987; Fortemps, 1997):

2

)~()~(
)~(

$($($
∗

∗ +
=ℑ (20)

The following properties of the function ℑ( %$) and of the WCR will be useful.

3URSHUW\��. (Hapke, 1997)

For fuzzy number in the six-point representation, the function ℑ( %$) can be calculated as:
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)~($ℑ ( ) ( ) ( ){ } )(-1)(
14

1 λλελλε λελ
ε

DDDDDDDD +++++++−
−

= (21)

3URSHUW\ �. (Fortemps, 1997)

The degree &( %$�≥ %% ) to which %$ is greater than or equal to� %% , calculated according to the
WCR, can be calculated using ℑ( %$) and ℑ(%~ ) as:

2

)~()~(

2

)~()~(
)~()~()~~(

%(%($($(%$%$&
∗

∗
∗

∗ +−+=ℑ−ℑ=≥ (22)

From properties 1 and 2 immediately follows the formula for &( %$ ≥ %% ) where %$ and %%  are
six-point fuzzy numbers.

�����)X]]\�PXOWL�REMHFWLYH�FRPELQDWRULDO�RSWLPL]DWLRQ�DQG�IX]]\�GRPLQDQFH

'HILQLWLRQ��. (Fuzzy MOCO problem)
The general fuzzy multi-objective combinatorial optimization (fuzzy MOCO) problem is
formulated as:

( ) ( ){ }max
~

,...,
~I I �  1 [ [  s.t. [ ∈' , (23)

where: VROXWLRQ [ = [ [ �� ����� �is a vector of discrete and crisp GHFLVLRQ�YDULDEOHV, ' is a finite

set of feasible solutions, 
aI � ,...,

aI �  are fuzzy objective functions (criteria) which, for given [
take values called IX]]\�VFRUHV.
Thus, the image of solution [ in the objective space is a vector ( ) ( )[ ]~ ~

,...,
~I [ [�

= I I �1

composed of - fuzzy numbers. We will say that 
~I �

 is a IX]]\�SRLQW in the objective space. In
order to define a dominance relation in the objective space we will use the WCR for the fuzzy
scores. The dominance relation defined in this way will be called :&5�GRPLQDQFH�

'HILQLWLRQ��. (WCR dominance)

Fuzzy point 
~I �

 :&5�GRPLQDWHV fuzzy point 
~I �

 iff ( ) ( )~ ~I I M� �[ \≥ ∀  and ( ) ( )~ ~I I� �[ \>  for at

least one M, i.e. iff ( ) ( )( ) MII& 		 ∀≥≥ 0~~ [\  and ( ) ( )( ) 0~~ >≥ [\ 		 II&  for at least one M.

'HILQLWLRQ��. (WCR-non-dominated points and WCR-efficient solutions))

A fuzzy point 
~I 


 is :&5�QRQ�GRPLQDWHG (:&5�3DUHWR�RSWLPDO) if there is no other fuzzy
point 

~I �
 (\∈') that WCR-dominates 

~I . A solution [ is :&5�HIILFLHQW if its image is
WCR-non-dominated. The set of all WCR-efficient solutions will be denoted by 1.

'HILQLWLRQ��. (Fuzzy ideal point)

The fuzzy LGHDO� SRLQW is a fuzzy point 
~*I  in the objective space composed of the best

attainable fuzzy values of objectives, i.e.:
�II[ 		'-M ~~,...,1 * ≥∈∀=∀ .           (24)
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'HILQLWLRQ��. (Fuzzy nadir point)

The fuzzy QDGLU� SRLQW is a fuzzy point 
~

*I  in the objective space composed of the worst
attainable fuzzy values of objectives in the set of WCR-non-dominated points, i.e.

�II[ 		1-M ~~,...,1 * ≤∈∀=∀ .           (25)

In Definitions 5 and 6, the fuzzy scores are compared with WCR.

�� )X]]\�3DUHWR�VLPXODWHG�DQQHDOLQJ���)36$
In order to solve fuzzy MOCO problems we propose to use adaptation of Pareto simulated
annealing (PSA) procedure proposed by Czyzak and Jaszkiewicz (1996, 1997) and extended
in (Jaszkiewicz, 1996) for crisp MOCO problems. The adaptation of PSA to the fuzzy case
will yield a procedure called fuzzy PSA (FPSA).

In the crisp case, PSA generates a set of approximately efficient solutions, considered as an
approximate representation of the whole set of efficient solutions. In the fuzzy case, FPSA
will generate a set of approximately WCR-efficient solutions 1¶. The goal of FPSA is to
generate a set 1¶ that would be a good approximation of the set of all WCR-efficient
solutions 1. The term “good approximation” means that the decision maker (DM) should be
able to find in 1¶ a solution close to the solution that he/she would select if set 1 was known.

Adaptation of PSA to fuzzy case requires:

• the use of WCR-dominance in updating the set of approximately WCR-efficient
solutions,

• calculating the probability of accepting a new solution basing on fuzzy scores,

• updating the average position of a fuzzy point in the objective space.

In each iteration of the procedure, a sample (population) of solutions (fuzzy points in the
objective space), called generating sample, is used. The main idea of FPSA is to assure a
tendency for approaching the set of WCR-efficient solutions as well as for dispersing the
solutions constituting the generating sample over the whole WCR-efficient set 1. The first
tendency is taken into account when calculating the probability of acceptance. The inclination
for dispersing the solutions from the generating sample over the whole set 1� is obtained by
controlling the weights of particular objectives used in an aggregation formula.

In the case of single objective SA a new solution is accepted with probability equal to one if it
is not worse than the current solution. Otherwise, it is accepted with probability less than one.
In the (fuzzy) multi-objective case, one of the following three situations may appear while
comparing a new solution \ with the current solution [:

• \ may (WCR-)dominate [,

• \ may be (WCR-)dominated by [,

• \ and [�may be mutually (WCR-)non-dominated.

In the first situation the new solution may be considered as not worse than the current one and
accepted with probability equal to one. In the second situation the new solution may be
considered as worse than the current one and accepted with probability less than one. Serafini
(1994) and Ulungu (1993) have proposed several multi-objective rules for acceptance
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probability which in different way treat the third situation. In some previous experiments (see
e.g. Czyzak and Jaszkiewicz, 1997) we observed that the following rule gives the best results
in PSA:

( ) ( ) ( )( )


















−=Λ ∑

=

�

�
��� 7II73

1

/exp,1min,,, [\\[ ��
λ , (26)

where [ is one of the generating solutions, \ is a solutions obtained from [ be performing a
randomly selected basic move, 7 is a parameter called temperature, [ ]��� �

λλ ,...,1=Λ  is the

vector of weights associated with generating solution [. In other words, the differences on
particular objectives are locally aggregated with a simple weighted sum (see Figure 3).
Hansen (to appear) has also observed that this kind of local aggregation gives better results
than local aggregation with a weighted Tchebycheff function.

In FPSA the probability of acceptance is calculated as follows:

( ) ( ) ( )( )( )


















≥=Λ ∑

=

�

�
��� 7II&73

1

/~~exp,1min,,, [\\[ ��
λ . (27)

In other words the distance between two fuzzy scores ( )~I � [  and ( )~I � \ �is calculated according

to the WCR. Note that this rule assures that \ is accepted with probability equal to 1 if it
WCR-dominates [.

)LJXUH����$FFHSWDQFH�SUREDELOLW\�3�LQ�EL�REMHFWLYH�FDVH��PD[LPL]HG�REMHFWLYHV
Please note, that the higher the weight associated with a given objective, the lower the
probability of accepting moves that decrease the value on this objective and the lower the
probability of worsening the value of this objective. Consider for example the situation
presented in Figure 4a. In this case 

		
21 λλ > . Observe that probability of acceptance decreases

rapidly when the value of the first objective decreases. So, by controlling the weights one can
control the probability of worsening/improving values of the particular objectives.
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(a) 
		
21 λλ > (b) 

		
21 λλ <

            

)LJXUH����7KH�UROH�RI�ZHLJKWV�LQ�WKH�PXOWL�REMHFWLYH�UXOHV�IRU�DFFHSWDQFH�SUREDELOLW\
The outcome of the procedure is the set of approximately WCR-efficient solutions 1
. At the
beginning of the procedure, set 1
 is empty. In order to update the set, the following
operations are performed, whenever a new solution \ dominating [ is generated:

• remove from set 1
 all solutions WCR-dominated by \,

• add \ to 1
 if it is not WCR-dominated by any solution from this set.

The general scheme of the PSA procedure may be written as follows:

Select a starting sample of generating solutions 6 '⊂
IRU�HDFK [ ∈6  GR

Update set 1¶ of approximately WCR-efficient solutions with [
7 := 7o

UHSHDW
Update the number of the generating solutions
Update weights of all generating solutions

IRU�HDFK [ ∈6  GR
Construct ( )\ [∈9

LI ~I �

 is not WCR-dominated by 
~I � �WKHQ

Update set 1¶ of approximately WCR-efficient solutions with \
[ := \ (accept \) with probability ( )�\[ Λ,,, 73

LI the conditions of changing the temperature are fulfilled WKHQ
decrease 7

XQWLO the stop conditions are fulfilled

where 9([)⊂' is the set of feasible solutions that can be obtained from [ by performing a
single move.

The goal of updating the weights is to assure a dispersion of generating solutions in the
objective space. As, however, position of each generating solution may change significantly
in subsequent iterations, it is more important to assure dispersion of average positions of
generating solutions. The average position of solution [ is a point in the objective space,
denoted by Y �

. In the standard PSA the average positions are calculated by exponential
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smoothing and updated whenever the generating solution is changed (a move is accepted). In
the FPSA the fuzzy scores are defuzzified before applying the exponential smoothing:

( ) ( ) J1,...,j, )~(1: =ℑ−+= [�� ��� IYY ββ ,            (28)

where β < 1 is smoothing factor close to one (e.g. β=0.95).

The algorithm for updating the weights is as follows:

IRU�HDFK [ ∈6  GR
Select solution [’∈6  such that Y ���

 is closest (e.g. according to Euclidean
distance) to Y �

 and such that [ �  and [ are mutualy WCR-non-dominated
LI there is no such solution [’ or it is the first iteration with [ WKHQ

Set random weights such that:

∑ =≥∀
j

1 and 0
�� ���

λλ

HOVH
IRU�HDFK objective I �







<
≥

= ���
���

�

j
’

j

j
’

j

v vif,/

v vif,

αλ
αλ

λ �
�

�

normalize the weights such that ∑ =
j

1
	


λ

where α >� is a constant close to one (e.g. α =1.01).

The size of the sample of the generating solutions is not constant but can be updated in each
iteration. Some non-interesting solutions may be removed from the sample and some
solutions may be duplicated. A solution is removed if in a specified number of iterations it is
dominated by some other generating solutions. A solution is duplicated if in specified number
of iterations it is neither dominated nor dominates any other generating solution. The starting
size of the generating sample is equal to -+1 and typically increases when temperature
decreases.

Please note, that except of weights updating, each of the generating solutions operates
independently, so, the algorithm is naturally parallel.

As FPSA is a metaheuristic procedure, it defines only a general scheme of the calculations.
This general scheme has to be customized for a given MOCO problem. The customization
consists in defining the way a new solution is generated from the neighborhood of the current
solution.

PSA and FPSA have been implemented in standard C++ as two libraries of classes. Both the
implementations share the same set of most classes. FPSA includes classes that are
responsible for comparing, storing, reading and performing mathematical operations on fuzzy
numbers. The main aim of the object-oriented implementation was to assure easy adaptation
to a given problem.

In order to use FPSA library to solve a given problem one is only required to define two new
classes. One of the classes is responsible for reading and storing information about an
instance of a given problem. Another class corresponds to a solution of a given problem. It
should contain fields to store information about a single solution and operations responsible
for finding the first solution, performing basic moves and storing the solutions. More
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information about the implementation can be found at
http://www.cs.put.poznan.pl/~and_j/psa.html.

���$SSOLFDWLRQ�WR�DQ�DJULFXOWXUDO�PXOWL�REMHFWLYH�SURMHFW�VFKHGXOLQJ
SUREOHP

We will illustrate the use of FPSA on a real example of project scheduling taken from an
agricultural concern (see 6áRZL VNL�HW�DO����������7KH�SURMHFW�FRQVLVWV�RI����IDUP�RSHUDWLRQV
subject to precedence and resource constraints. The list of activities of the agricultural project
is given in Table 1. A graphical representation of precedence constraints in the set of
activities is given in Figure 5. The activities require two types of renewable resources:
manpower (R ��� ) and tractors (R ��� ) available in 200 and 150 units, respectively. The only
nonrenewable resource, money (R ��� ), is available in 20000 units at the beginning of the
project. For majority of project activities there are specified three performing modes differing
by resource requirements and duration.

Three following criteria are to be taken into account: the project completion time - 7, the
manpower resource smoothness - 5 (presented as an average deviation from the average
resource usage) and the total project cost - & (the usage of nonrenewable resources). As
durations of most the activities are given as fuzzy numbers, the project completion time is
also a fuzzy number. We assume that a cost of a given activity depends partially on its actual
duration, so it can be expressed as a fuzzy number. Thus, the total project cost is also a fuzzy
number. Resource smoothness is a crisp objective. A more detailed description of the
problem is available from the authors upon request.

1. harrowing wheat 21. tedding grassland
2. harrowing rape 22. raking grassland
3. sowing rape 23. cropping grassland
4. cropping harv. lupin 24. desication potato
5. drying lupine 25. cropping sugar beet
6. cropping of strorer 26. fertilisation lupin
7. cutting down lucerne 27. cropping fodder beet
8. cutting down grass 28. fertilization wheat
9.  tedding grassland 29. ploughing
10. raking grassland 30. skimming lupin
11. cropping grassland 31. harrowing lupin
12. desication potato 32. harrowing wheat
13. harrowing wheat 33. sowing wheat
14. harrowing rape 34. cropping sugar beet
15. sowing rape 35. cropping potato
16. cropping harv. lupin 36. harrowing potato
17. drying lupine 37. ploughing
18. cropping of strorer 38. sowing corn
19. cutting down lucerne 39. fertilisation fodder
20. cutting down grass 40. ploughing corn

7DEOH����/LVW�RI�DFWLYLWLHV�RI�WKH�DJULFXOWXUDO�SURMHFW
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)LJXUH����3UHFHGHQFH�FRQVWUDLQWV�LQ�WKH�VHW�RI�DJULFXOWXUDO�DFWLYLWLHV
After performing 88000 steps of FPSA, the set 1¶ of 364 approximately WCR-efficient
solutions was found.
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)LJXUH����7ZR�GLPHQVLRQDO�SURMHFWLRQV�RI�WKH�VHW�1¶
The approximate fuzzy ideal point calculated form set 1¶ is as follows:

7~ = (116, 116, 117, 117, 120, 121), )~(7ℑ  =117.8,

5 = 9.29,

&~ =(7937, 8028, 8210, 8210, 8302, 8393), )~(&ℑ  =8117.5

while the approximate fuzzy nadir point is as follows:

7~ = (174, 176, 180, 180, 182, 184), )~(7ℑ  =179.3,

5 = 33.56,

&~ =(10000, 10086, 10172, 10172, 10431, 10517), )~(&ℑ  =10234.8.

In Figure 6 three two-dimensional projections of the set 1¶ are presented. Note, that the fuzzy
scores were defuzziefied using formula (21).

Generation of 364 approximately WCR-efficient solutions does not complete the solution
process. The DM should now select from set 1¶ compromise solution that best fits his/her
preferences. As the number of solutions is relatively large, the DM could be supported by an
interactive procedure in the search for the best compromise solution over a set 1¶. Such a
procedure has been described in (Hapke et al. 1997).

Before starting the interactive analysis, the DM may be interested in learning some general
properties of the problem. To this aim, correlations of defuzzified values of the objectives in
the set 1¶ were calculated. The results are presented in Figure 7. One can observe significant
negative correlation between project completion time and project cost. This is caused by the
fact that activity performing modes with short duration are in general more expensive.
Another interesting observation is significant positive correlation between project completion
time and resource smoothness. Such relationship is not trivial and the DM may not expect it.
The information presented in Figure 7 suggests that the DM should not expect a significant
improvement of the project completion time at the expense of resource smoothness and vice
versa. The two objectives, however, can be significantly improved by increasing the project
cost.
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( )7~ℑ

( )&~ℑ R

-0.904

-0.651

0.423

)LJXUH����&RUUHODWLRQV�RI�REMHFWLYHV�LQ�VHW�1¶
In the case of fuzzy objectives the DM may not only be interested in their minimization but
also in finding solutions with low uncertainty.  We have tested a hypothesis that low (good)
values of fuzzy objectives will also correspond to low uncertainty. In order to test it, we
analyzed correlations between defuzzified values of fuzzy objectives and their degree of

fuzziness. The degree of fuzziness of a fuzzy number %0  was expressed as ( )0)] ~ = εε PP − .

The correlation between ( )7~ℑ  and ( )7)] ~  was equal to 0.392, while correlation between

( )&~ℑ  and ( )&)] ~  was equal to 0.432, so, the correlations although significantly above zero
were relatively low. This suggests that the degree of fuzziness of some objectives may be
used as a separate objective to be minimized.

&RQFOXVLRQV
We have proposed an extension of the Pareto simulated annealing multi-objective
metaheuristic procedure to the case of fuzzy MOCO problems. The method does not work in
the objective space of a defuzzified auxiliary problem but in the fuzzy objective space of the
original MOCO problem. The defuzzification operator is used only when fuzzy solutions are
compared or their average positions are updated.

The general concepts used to adapt PSA to the case of fuzzy MOCO problems may also be
used to adapt some other multi-objective metaheuristic procedures to fuzzy MOCO problems.

The use of FPSA have been illustrated by its application to an agricultural project scheduling
problem. It was shown that a simple statistical analysis of the set of approximately
WCR-efficient solution delivers interesting information about correlations of particular
objectives and correlations between mean values of fuzzy objectives and their degree of
fuzziness.
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