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Abstract- Radial basis function (RBF) network is well
known as a good performance approach to nonlinear
system modeling. Though structure selection of RBF
network is an important issue, the framework of this
problem has not been established. In this paper, we pro-
pose multi–objective structure selection method for RBF
networks based on MOGA (multi–objective genetic al-
gorithm). The structure of RBF networks is encoded to
the chromosomes in GA, then evolved toward to Pareto–
optimum for multi–objective functions concerned with
model accuracy and complexity. Some numerical simu-
lation results indicate the applicability of the proposed
approach.

1 Introduction

The black box modeling for unknown systems based on the
observed input and output data set is called system identi-
fication [ljung99]. System identification has an important
role in a lot of engineering problems including control sys-
tem design, model based fault detection and diagnosis, sig-
nal processing, time series prediction and so on. Hence
many identification algorithms have been developed in or-
der to give a good model of actual systems. A great deal
of research in system identification concerns an algorithm
that gives the best model under a priori provided criterion.
However, since there are occasionally several demands to a
system model, a model optimized under the specific crite-
rion may not necessarily be the optimal model. For exam-
ple, the models should be simple and well explainable for
the observation data, but these properties are mutually ex-
clusive [hatanaka02] [ukai01].
On the other hand, several approaches to nonlinear system
modeling using artificial neural networks have been pro-
posed in the last two decades [oliver01] [yang98]. But a
general method to determine the structure of neural network
has not been established. The problem of static nonlinear
system modeling using RBF (Radial Basis Function) net-

work, which is a kind of neural network, was considered
and structure selection of the RBF network for nonlinear
system modeling has been studied from the point of view
of selection of suitable information criteria [hatanaka01].
With RBF network, if number of the basis functions is deter-
mined, the parameters of RBF networks, i.e. widths and the
center of each basis functions and each weights of network,
can be calculated with the training data. Then the estimate
of system outputs can be calculated as a linear sum of basis
functions. This parameter settings make great influence on
the accuracy of function approximation. Though a model-
ing method which has capability to select a model according
to the specific purpose is desirable, in existing methods, it is
not taken into consideration that they provide the flexibility
of such model selection.
From this point of view, we consider structure selection
problem of RBF network as a multi–objective optimization
problem of a complexity of structure and a description ca-
pability and propose a method of obtaining the candidates
of model as a Pareto–optimal set based on MOGA (multi–
objective genetic algorithm). Then we demonstrate its ap-
plicability by numerical simulation examples.
In the section 2, outlines of the mechanism of GA and
MOGA, and genetic operations using in this study are de-
scribed. Then, proposed basis function selection algorithm
for RBF network is introduced in the section 3. Some
numerical study results including 2 dimensional case are
shown in the section 4 and concluding remarks are given
at the last section.

2 Multi–Objective GA

Genetic algorithm (GA) is search or optimization algorithm
which is invented based on genetics and evolution. Initially,
the initial population of individuals which have a binary
digit string as the “chromosome” is generated at random.
Each bit of chromosome is called “gene” [back96]. The “fit-
ness”, which is a measure of adaptation to environment, is



calculated for each individual. Then, “ selection” operation
leaving individuals to next generation is performed based on
fitness value, and then “ crossover” and “ mutation” are per-
formed on the selected individuals to generate new popula-
tion by transforming parent’s chromosomes into offspring’s
ones. This procedure is continued until the end condition
is satisfied. This algorithm is conforming to the mechanism
of evolution, in which the genetic information changes for
every generation and the individuals which adapt to envi-
ronment better survive preferentially.

2.1 Multi–Objective GA

In the multi–objective optimization problems, two concept,
“ domination” and the “ Pareto–optimum” , are considered.
First, x1 is said to “ dominate” x2 if

∀i = 1,2, . . . ,n, fi(x1) ≤ fi(x2)

and
∃ j = 1,2, . . . ,n, f j(x1) < f j(x2).

And x0 which is not dominated by any other x is called
the “ Pareto–optimal solution” [deb01] [fonseca93]. Pareto–
optimal solution is considered to be the best solution com-
prehensively. And many Pareto–optimal solutions exist
generally. Considering trade–off among the objective func-
tions, on multi–objective optimization problems it is im-
portant to obtain a Pareto–optimal solution set. A param-
eter rank is introduced in order to apply the concepts of
domination and Pareto–optimum to GA. Though there are
some ranking methods, this study adopts Fonseca’s rank-
ing method [fonseca93]. According to Fonseca’s ranking
method, a rank of an individual xi on a generation t is:

rank(xi, t) = 1+ p(t)
i

where pi is the total number of individuals which dominate
xi. By calculating this rank for each individual and select-
ing based on it, a population can evolve toward a Pareto–
optimal solution set.

2.2 Genetic operations

We explain genetic operations used in this study.

• selection
The tournament selection is used for the selection op-
eration. The tournament selection is an operation that
extracts some individuals from parent population at
random and leaves an individual of the highest rank to

the next generation. This is continued until the popu-
lation of next generation is filled.

• crossover
The uniform crossover is used as the crossover opera-
tion. Let the crossover probability pc. First, a random
binary string(mask) which has 1 at the probability of
pc is created. Then for each locus,if the mask is 1,the
gene of parent 1 becomes the gene of offspring 1, and
the gene of parent 2 becomes the gene of offspring 2.
It becomes reverse if the mask is 0.

• mutation
The bit reversal mutation is used for the mutation op-
eration. It reverses the bit of each locus at the muta-
tion probability pm.

parent 1 offspring 1
0011011010 mask 0010000011

1100100110
parent 2 −→ offspring 2

1010100111 1011111110

Figure 1: An example of the uniform crossover

3 Structure Selection of RBF Network

3.1 RBF Network

RBF (Radial Basis Function) network has basis functions
as typified by Gauss function. Basis function φ j(x) in this
study is defined by Gaussian,

φ j(x) = exp

(

−
∑d

i=1(xi − ci j)
2

2σ2
j

)

. (1)

Here, x is input variable, c j is center vector, and σ2
j is a

parameter which decides function width. Using this φ j(x),
RBF network is constructed as:

u(x) = w0 +
m

∑
j=1

w jφ j(x) (2)

Here, m is the number of hidden units, i.e., the basis func-
tions, and w j is the weight on each basis function. If m,
c j and σ2

j are set, then all of w j are set by least-squares
method.



Figure 2: RBF network:The input data are distributed to
hidden layer. In the hidden layers the basis functions are
calculated. Then the approximation function which is linear
sum of basis functions is obtained as output.

3.2 Selection of basis functions by GA

In this study, GA is used for setting of the number of basis
functions and their centers . Each basis function’s center is
put on input variable space at regular intervals. And they
are assigned gene of GA respectively. Then if a gene is 1
the basis function which corresponds to it is used, or if a
gene is 0 the basis function which corresponds to it is not
used. By this, the number of basis functions and its centers
are determined for each individual in the GA population.
On all basis function the width parameters are fixed to the
same value , for simplicity. Then the weights on each basis
function are calculated by least-squares method. Thereafter,
approximating function is obtained. After obtained approx-

Figure 3: Chromosome:Each basis function’s center is put
on input variable space at regular intervals. And they are
assigned gene of GA respectively. Then if a gene is 1 the
basis function which corresponds to it is used, or if a gene
is 0 the basis function which corresponds to it is not used.

imating function, following MSE(Mean Squared Error) is

calculated for each individual:

MSE =
1
n

n

∑
i=1

{yi −u(xi)}
2 (3)

MSE is expressing the extent of a fit of an approximation
function to the training data. By the concept of multi–
objective optimization problem , in which two fitnesses are
to be minimized, rank is assigned for each individual. The
first fitness is MSE , and the second fitness is the number
of basis function. Then Pareto–optimal population will be
obtained by calculating based on rank in accordance with
MOGA algorithm.

4 Numerical Simulations

In the simulation, xi is the input variable and yi is the output
variable, and training data set is obtained by

yi = v(xi)+ εi, εi ∼ N(0,σ2), i = 1,2, . . . ,n (4)

where v(xi) is the true function of the system. xi is pro-
duced by uniform random number of a certain interval. The
error term εi is produced under σ2 = 0.04. The parameters
of GA are shown in Table.1

Table 1: parameter settings for GA in the simulation 1

population size 50
tournament size 2
crossover rate 0.7
mutation rate 0.01

4.1 Simulation 1

Let the true function be:

v(xi) = sin(5πxi), (5)

where xi, i = 1,2, · · · , are sampled from uniform distribu-
tion over [0,1]. At first, the number of training data is set
to 100, the width parameter σ2

j is set to 0.01, and the size
of chromosome is set to 50. The simulations calculating
until 300 generation are performed 20 times. The Pareto–
optimal individuals which are obtained on each simulation
are shown in Table 2. For illustration, Pareto–optimal in-
dividuals obtained in the 7th simulation run are showed in
Table 3. Examples of obtained approximation functions by
RBF networks are shown in Figure 5,6 and 7, respectively.
For each individual in the Pareto–front given by MOGA,



Figure 4: True function of simulation 1

Table 2: Number of individual in the Pareto–front

simulation number of simulation number

run Pareto run Pareto

1 9 11 11
2 13 12 10
3 14 13 13
4 11 14 10
5 13 15 13
6 12 16 12
7 14 17 11
8 10 18 14
9 13 19 10

10 10 20 11

MSE value for test data is evaluated by 20 times simulation
runs and its results are shown in Figure 8. Next, the number
of generation is changed to 1000 and the similar simulations
are performed 10 times. Consequently, 13.5 Pareto–optimal
individuals are obtained on the average.

4.2 Simulation 2

In this case we assume that the true function is following
two dimensional function:

v(x) = sin(πx1)+ cos(2πx2) (6)

where x is produced by uniform random number of [0,2].
The length of chromosome is set to 100. About the basis
functions, a plain of x is divided into 100, then the centers
of each basis function are distributed into their centers. If
each gene is assigned a number as 1,2, . . . from the left, each
gene is assigned the basis function ,as shown in Figure 1.
At first, the number of training data is set to 400, the width

Figure 5: Model validation for selected individuals: Hor-
izontal axis indicates index of individuals and MSEs are
plotted for 20 runs of validation

Figure 6: Individual 3 : The structure of this approximation
function is very simple, but it doesn’t fit to observed data
much well.

parameter σ2
j is set to 0.04. The simulations calculating

until 300 generation are performed. For illustration, Pareto–
optimal individuals which are obtained in this implements
are showed below:

4.3 Discussion

If the diversity of Pareto individuals is high, much fl exibility
on selection of the approximating function is made. We dis-
cuss the results from that point of view. When the number
of generation is great, the number of Pareto individuals is
also great. Therefore, it is expectable that the more various
Pareto individual are obtained, so that the number of gen-
eration increases. However, since the computational burden
of GA is large, it is required that various individuals in the
Preto front are obtained at smaller generation.
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Table 3: An example of chromsomes in the Pareto–front

individual chromosome number of basis MSE
1 01000000000000000000100000000000000000000000010000 3 0.281465
2 00000000000000000000000000100000000000010100100000 4 0.201757
3 00000000000000011000010000000001100000000001000000 6 0.038217
4 00000011000100000000000000110000000000001100000000 7 0.005819
5 00000001100000000001000000101000000000001100010100 9 0.004182
6 00000001100000000001000000101000000010001100010100 10 0.004124
7 00000001010000010000010001110001100000000101000000 11 0.003785
8 00000001100001000011001000001000000000101100010100 12 0.003715
9 00000001010001010001100000010001000000111100000100 13 0.003704
10 00000011110001000001100000010001000000111100000001 14 0.003697
11 00000001000000011010000010110000100010110101100100 15 0.003536
12 00000111010000010011111000110001000000100100100100 17 0.003473
13 00000011110000010011010001110011100000111100100100 20 0.003417
14 00010011100001000011100000111001100000111100101101 21 0.003350

Figure 7: Individual 6 : This approximation function fits to
observed data well, but its structure is complex.

5 Conclusions

We have proposed a novel approach to the structure selec-
tion problem of RBF network from a viewpoint of multi–
objective optimization. By applying the proposed algo-
rithm, wide variety of RBF network structures, in the sense
of the pareto optimum solution, are obtained and the avail-
ability of the proposed approach is shown by numerical sim-
ulation results. Though this method has to be improved in
some respects such as uniformly property of the Pareto set,
convergence speed of GA, and applications to the actual
system modeling, and these are now under investigation.

Figure 8: Individual 14 : This approximation function fits
to observed data very well, but its structure becomes more
complex than individual 6.
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