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ABSTRACT

In this paper, we propose a new scheme of asynchronous
migration of the island parallel GAs for multi-objective op-
timization problems. We investigate the feature of our algo-
rithms by applying to four test problems which have variety
shapes of pareto-optimal front.

1. INTRODUCTION

Multi-objective optimization problem (MOP) has plural ob-
jective functions and requires to search a set of solutions
called pareto-optimal solutions. Since Genetic Algorithm
(GA) searches multi-point simultaneously, GA is suitable
for MOP. Multi-objective optimization using GA is called
Multi-objective GA (MOGA). The difference between MOGA
and single objective optimization GA (SOGA) is that SOGA
allows a set of solutions converging to an attractor around
the optimal solution, but MOGA requires a set of solutions
distributing widely on pareto-optimal front. So MOGA has
to maintain the diversity of its population to the end of the
search.

The island parallel GA is one of parallelization method
of GA which divides a population into plural subpopula-
tions and assigns them to processing elements on a paral-
lel computer. Each subpopulation searches for optimal so-
lution independently, and maintains diversity of genes by
exchanging individuals periodically with certain conditions
called migration . The setting of migration operation is
the most important for the island parallel GA. To imple-
ment this migration operation, there are two possibilities,
synchronously exchange individuals, synchronous migra-
tion model [6], and asynchronously exchange individuals,
asynchronous migration model [5, 4]. Syncronous migra-
tion operation is started among subpopulations simultane-
ously according to fixed interval called migration interval.
If individuals called migrants are introduced before the search
converged, it is difficult to generate superior schemata be-
cause good schemata will be destructed. Thus it is effective
to introduce individuals after the search converged. How-
ever the progress of the search situation differs both the ob-
jective problems and every subpopulation, and it makes dif-

ficult to set optimal migration interval. So we expect that
asynchronous migration is more effective than synchronous
migration. In this paper, we propose asynchronous migra-
tion operation suitable for Multi-objective optimization prob-
lems.

2. ASYNCHRONOUS MIGRATION OF ISLAND
PARALLELIZATION OF MOGA

2.1. Implementation

In this research, we unify the conditions of genetic oper-
ations exept migration operation. Individuals’ genes are
coded by real value coding. Crossover operation is BLX-α
[2]. Selection operation is tournament selection. Individ-
ual’s fitness value is assigned by Fonseca’s Pareto Ranking
[3].

2.2. Asynchronous Migration

Asynchronous migration operation is started at each sub-
population respectively according to some conditions. We
propose that each subpopulation starts migration operation
when the searching in itself converged. Moreover, in order
to recover the diversity of the subpopulation and to promote
generating good schemata, migrants are introduced from the
subpopulation which has the most different individuals. We
expect that when the search converged the subpopulation
would have some good schemata, and the other different
subpopulation would have the other good schemata. Intro-
ducing the other good schemata promote to generate higher
order schemata by connecting low order good schemata.
Then we face the problem. We need scales to grasp the
search situation and to measure the difference among sub-
populations. Our proposal is as follows.

2.2.1. How to grasp the convergence of the search

We can grasp the search situation using the fitness values’
average and standard deviation at the single objective opti-
mization [5]. However in case of the multiobjective opti-
mization, we have to consider the correlation among objec-



tive functions. As a solution for this problem we propose to
use Generalized Variance: GV of covariance matrix. Multi-
variate data of covariance matrix is constructed by individu-
als’ objective functions. GV indicate the scale of concentra-
tion of individuals around the center of balance of individu-
als. The reduction of GV value indicates the concentration
of individuals.

Here, when GV in a subpopulation is smaller than a
threshold value KGV , the subpopulation judges convergence
of the search. Then the subpopulation starts migration op-
eration and requires introducing of migrants from the other
subpopulation. In our algorithm, Generalized Valiance GV
is calculated as follows.
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where m is the number of objective functions and n is
the size of population. (fi1, fi2, . . . , fim), i = 1, 2, . . . , n
is individual i’s objective functions. E(Fj) is the average of
objective function value Fj , j = 1, 2, . . . , m. D2(Fj) is the
variance. D(FjFk) is the covariance. Generalized Variance
GV is a determinant |Σ| of a covariance matrix Σ whose
elements are the above covariance.
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GV = |Σ| (3)

where σjk = D(FjFk), σjj = D2(Fj).

2.2.2. How to grasp the difference between subpopula-
tions

In our algorithm, subpopulation introduces migrants in or-
der to recover the diversity. The difference between sub-
populations is measured by the Euclidean distance between
the centers of balance of individuals in each subpopula-
tion. When the subpopulation starts migration operation,
the subpopulation calculates the distances among itself and
the other subpopulations. Then the subpopulation intro-
duces migrants from the farthest subpopulation.

The distance d between the subpopulation A and B ac-
cording to the individual’s genotype x

A and x
B is calcu-

lated by the following equation.

d = m

√

√

√

√

m
∑

j=1

(

1

n

n
∑

i=1

xA
ij −

1

n

n
∑

i=1

xB
ij

)2

(4)

where n is the population size, m is the number of vari-
able.

3. PREPARATION FOR EXPERIMENTS

3.1. Test Functions

In order to evaluate our algorithms, we apply to four test
problems which have variety features proposed by Deb and
Zitzler et al.

Deb proposed a construction method of test problem [1].
The test problem is two objective optimization problem with
m variables. The construction method sets the shape of the
pareto-optimal front and the search space at will. The defi-
nition of the test problem is as follows.

Minimize T (x) = (f1(x1), f2(x))
subjectto f2(x) = g(x)h(f1, g)
where x = (x1, . . . , xm)

(5)

Zitzler et al. defined test functions for multi-objective
optimization using the above definition [7]. We use four test
functions constructed by Zitzler et al. Four test problems are
defined as follows.

• The test problem T1 has a convex pareto-optimal front.

f1(x1) = x1

g(x) = 1 + 9 ·
∑m

i=2
xi/(m − 1)

h(f1, g) = 1 −
√

f1/g
(6)

where m = 30, and xi ∈ [0, 1]. The pareto-optimal
front is formed with g(x) = 1.

• The test problem T2 has a nonconvex pareto-optimal
front.

f1(x1) = x1

g(x) = 1 + 9 ·
∑m

i=2
xi/(m − 1)

h(f1, g) = 1 − (f1/g)2
(7)

where m = 30, and xi ∈ [0, 1]. The pareto-optimal
front is formed with g(x) = 1.

• The test problem T3’s pareto-optimal front consists of
several noncontiguous convex parts.

f1(x1) = x1

g(x) = 1 + 9 ·
∑m

i=2
xi/(m − 1)

h(f1, g) = 1 −
√

f1/g − (f1/g) sin(10πf1)
(8)

where m = 30, and xi ∈ [0, 1]. The pareto-optimal
front is formed with g(x) = 1.



• The test function T4 has 219 local pareto-optimal fronts.

f1(x1) = x1

g(x) = 1 + 10(m− 1)
+
∑m

i=2
(x2

i − 10 cos(4πxi))

h(f1, g) = 1 −
√

f1/g

(9)

where m = 10, x1 ∈ [0, 1], and x2, . . . , xm ∈ [−5, 5].
The true pareto-optimal front is formed with g(x) =
1, the best local pareto-optimal front is formed with
g(x) = 1.25.

3.2. Evaluation Method

Multiobjective optimization problem requires to find pareto-
optimal solutions on the pareto-optimal front extensively.
Therefore, we evaluate the algorithms using Average Error
and Cover Rate.

Average Error is the average remainder between the func-
tion value of the obtained pareto-optimal solutions f and
the function value of corresponding optimal solutions f opt

on the true pareto-optimal front.

Error =
1

m

m
∑

i=1
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where m is the number of the obtained pareto-optimal
solutions.

Cover Rate (CR) indicates the extent of solutions at pareto-
optimal front. Cover Rate measures the extent of the pareto-
optimal solutions on the pareto-optimal front by dividing
the pareto-optimal front into optional number of areas at
each objective function and counting the percentage of areas
that solution exists. In this research, we divide the pareto-
optimal front into 50 areas. CR is calculated as follows.

CR =
1

n

n
∑

i=1

cri (11)

where n is the number of objective functions.
Fig.1 shows the example of CR calculation at two ob-

jective functions. Pareto-optimal front is devided into five
areas at each objective function. Cover Rate is calculated as
0.5.

CR =
1

2
(0.4 + 0.6) = 0.5

4. EXPERIMENTS

4.1. Comparison among Migration Methods

4.1.1. Experimental Condition

We compare Asynchronous Island Parallel GA (Async) and
Synchronous Island Parallel GA (Sync). The algorithms are
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Figure 1: An Example of Cover Rate: CR=0.5

Table 1: EXPERIMENTAL CONDITION

Sync Async
Total Population 512

# of Subpopulation 8
Mutation Rate 0.01

Migrats Selection neighbor farthest population
Migration Interval 10 generations asynchronous

Migration Rate 0.25
Gene Cording Real Cording

Crossover BLX-α,α = 0.5

implemented on a PC-Cluster system. The experimental
condition of these algorithms is showed in TABLE 1 and
TABLE 2. The results are evaluated by the average of 10
times trials at each condition.

4.1.2. Experimental Results

At the results of T1, T2 and T3, there were not significant
differences between Async and Sync. Both of Async and
Sync obtained the pareto-optimal fronts easily. But at the
result of T4, there was significant difference. As space is
limited, we show the results only at T4. Fig.2 shows the
average error of obtained pareto-optimal solutions. In case
of Sync, the reduction of the average error stops after the
350th generation. But in case of Async, the reduction of the

Table 2: SETTING OF KGV AND FINAL GENERATION

KGV Final Generation
T1 0.002 200
T2 0.001 200
T3 0.005 500
T4 0.05 500



average error continues while searching. This result indi-
cates the effectiveness of asynchronou migration. Introduc-
ing migrants from different subpopulation promotes com-
bining lower schemata into higher schemata. Fig.3 shows
the cover rate in total population and Fig.4 shows the aver-
age of cover rate in each subpopulations. This result indi-
cates the feature of island parallelization. At the 500th gen-
eration, the cover rate in total population is 0.7 to 0.8 and the
cover rate in each subpopulation is 0.4 to 0.5. Each subpop-
ulation searches for solutions locally, but covers the wide
area in total. Fig.5 and 6 plot the obtained pareto-optimal
solutions at 10 times trials by Async and Sync. Async ob-
tains better pareto-optimal set than Sync.

5. DISCUSSION

We discuss the effectiveness of asynchronous migration. In
the point of the necessity of preliminary setting of migration
parameter, synchronous migration and asynchrnous migra-
tion are the same. However, in case of synchronous migra-
tion, since the progress of the search differs both the prob-
lem and every subpopulation, any number of trials are nec-
essary to set the optimal migration parameter. On the other
hand in case of asynchronous migration, when the problem
and the size of subpopulations are the same, GV indicates
the same value as the convergence of the search. In this
research, we set the threshold KGV by observing the GV
in the subpopulation at one trial with no migration. Fig.7
shows an example of GV in two subpopulations in case of
no migration. Converged generation is different between
subpopulation A and B, but the indication of GV at con-
verged generation is almost the same. The stability of the
search of Async is better than that of Sync.

6. CONCLUSION

In this paper, we propose an asynchronous migration method
of the island parallel GA for multi-objective optimization
problem. Our asynchrnonous migration is started when the
diversity of subpopulation is lost. The loss of diversity is
observed by generalized valiance of covariance matrix of
which multi-variate data is constructed by individuals’ ob-
jective functions. Migrants are introduced from the other
subpopulation which has different genetic construction. The
differences of genetic construction among subpopulations
are detected by the Euclidean distance between the cen-
ters of balance of individuals in each subpopulation. Asyn-
chronous migration model was compared with synchronous
migration model using Zitzler’s test functions. At the prob-
lem which has 219 local pareto-optimal fronts, asynchronous
migration model obtains better pareto-optimal set than syn-
chronous migration model. This result suggests the effec-
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Figure 2: T4’s Error

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

C
ov

er
 R

at
e

GENERATION

Async
Sync

Figure 3: T4’s Cover Rate in Total Population

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

C
ov

er
 R

at
e

GENERATION

Async
Sync

Figure 4: T4’s Average Cover Rate in Each Subpopulation
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Figure 5: T4’s Pareto-optimal Solutions by Async
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Figure 6: T4’s Pareto-optimal Solutions by Sync
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Figure 7: Examples of Generalized Variance in Two Sub-
populations

tiveness of our algorithms for multi-modal problems at multi-
objective optimization.
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