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Abstract. The capability of multi-objective evolutionary algorithms (MOEAs) to 
handle premature convergence is critically important when applied to real-world 
problems. Their highly multi-modal and discrete search space often makes the re-
quired performance out of reach to current MOEAs. Examining the fundamental 
cause of premature convergence in evolutionary search has led to proposing of a 
generic framework, called HEMO, for evolutionary multi-objective optimization. 
HEMO is characterized by its simultaneous maintenance of individuals of all de-
grees of evolution in hierarchically organized repositories, by its continuous inflow 
of random individuals at the base repository, by its intrinsic hierarchical elitism 
and hyper-grid-based density estimation. Two experiments demonstrate its search 
robustness and its capability to provide sustainable evolutionary search for difficult 
multi-modal problems. HEMO makes it possible to do reliable multi-objective 
search without risk of premature convergence. The paradigmatic transition of 
HEMO to handle premature convergence is that instead of trying to escape local 
optima from converged high fitness populations, it tries to maintain the opportunity 
for new optima to emerge from the bottom up as enabled by its hierarchical organi-
zation of individuals of different fitnesses. 

1 Introduction  

After a decade of intensive study on evolutionary multi-objective optimization (EMO), 
extensive insight has been obtained regarding convergence and the diversity of the Pareto 
front. Several successful multi-objective EAs have emerged, such as PESA [1], NSGA-II 
[4], and SPEA2 [14]. However, the capability to handle premature convergence for diffi-
cult multi-modal optimization problems has attracted insufficient attention. The per-
formances of modern MOGAs are usually compared on some easy continuous test prob-



lems [5]. The scalability of MOEAs is focused on the scalability over the objective di-
mension rather than over the problem difficulty [11]. Unfortunately, many real-world 
problems are characterized as highly multi-modal in highly discrete search spaces. With-
out careful attention to the premature convergence issues, modern MOGAs will easily 
fail to find the true Pareto fronts for these problems [3] and the performance comparison 
results will be misleading for MOGA practitioners.  

Based on the research on dealing with premature convergence of single-objective EA 
search [9], a sustainable multi-objective optimization framework called HEMO (Hierar-
chical Evolutionary Multi-objective Optimization) is proposed in this paper. In addition 
to the external Pareto archive commonly found in PESA and SPEA, HEMO features  
hierarchically organized archives of individuals with different fitness ranks, a “work-
shop” subpopulation associated with each archive, and a random individual generator 
that continually feeds raw genetic material into the lowest-level archive. By incorporat-
ing favorable features from PESA [1], SPEA [12], and HFC (Hierarchical Fair Competi-
tion) EA model [9, 10], and extending ideas from the improved NSGA-II [3], this frame-
work promises to have strong capability to avoid premature convergence in EMO and 
thus to constitute a sustainable search procedure for solving difficult real-world prob-
lems.  

2 Convergence, Diversity and Premature Convergence in EMO 

From the first generation of modern MOGAs such as NSGA, SPEA, and PAES to the 
improved versions like NSGA-II, SPEA2 and PESA, much attention is allocated to di-
versity maintenance of the Pareto front by estimating the density of individuals along the 
Pareto front (SPEA2, NSGA-II, PESA), ensuring sufficient selection pressure in special 
cases (SPEA2), utilization of elitism (NSGA-II), and other efforts to obtain computa-
tional efficiency. However, the diversity along the Pareto front is different from the di-
versity required for avoiding premature convergence, which is labeled as lateral diversity 
in [3]. The capability to maintain lateral diversity varies widely among MOGAs, which 
contributes much to the performance differences for different test problems.  

2.1 Performance Comparison of Modern MOGAs 

In terms of lateral diversity maintenance, PESA, NSGA-II, and SPEA2 have different 
strategies, which largely determine their advantages and disadvantages. Among the 
three, PESA is the greediest algorithm. By selecting the mating pool only from the cur-
rently discovered Pareto front, it is on one extreme of elitism and depends strongly on the 
mutation operator for exploration. As a result, PESA has the fastest convergence speed, 
but is only good for continuous, relatively simple problems. It is shown to be inferior on 
the T4 test function, for example, which is a continuous multi-modal problem [1]. It can 
be expected that the uncontrolled, extreme elitism of PESA will make PESA unusable for 
highly discrete multi-modal problems.  

By maintaining a constant size of the archive (parent) population, SPEA2 and NSGA-
II allow the persistence of dominated individuals in cases in which the non-dominated 



individuals do not fill the archive population. So for some continuous multimodal test 
functions such as QV and KUR [14], SPEA2 and NSGA-II are shown to be able to 
achieve good performance. However, for other multimodal problems in which there are 
too many non-dominated individuals, SPEA2 and NSGA-II will always select mating 
individuals from the current Pareto front, in effect degrading to the extreme elitism case 
of PESA. This uncontrolled elitism makes NSGA-II without mutation perform poorly on 
difficult multimodal problems such as ZDT4, ZDT6, and Griewank [3]. As high muta-
tion rate is not the solution to premature convergence, even with mutation, NSGA-II will 
fail on other difficult multimodal problems. To explicitly maintain the dominated indi-
viduals to promote lateral diversity, Deb and Goel [3] proposed the controlled elitism 
NSGA-II, which turns out to be very successful. The basic idea is to allocate a predefined 
distribution of individuals to each current Pareto front in NSGA-II. However, as the 
fronts in NSGA-II usually move in clusters to better regions of the objective space based 
on limited evaluations (for minimization problems), there is increasing risk that all 
fronts get trapped in local Pareto fronts, and gradually, the exploratory capability will be 
lost. This is attributable to the fitness assignment scheme of NSGA-II, which is based on 
the relative fronts, and on the convergent nature of conventional GAs.  

2.2 Premature Convergence and the Issue of Exploitation vs. Exploration 

To a large extent, the premature convergence problem in EMO is similar to of the situa-
tion in single-objective EAs. Most previous studies attributed the cause of premature 
convergence to the loss of diversity of the population and proposed various diversity-
oriented approaches to increase the population diversity by “brute force.” Representative 
methods include increasing the mutation rate; introducing random individuals into 
highly converged populations, and using diversity-detection and increasing techniques. 
All these methods are shown to ameliorate only partially the premature convergence 
problem. For example, in genetic programming, a high mutation rate usually destroys the 
good solutions evolved and, despite the diversity of the population, no progress can be 
made with this “brute-force” diversity maintenance.  

Actually, the loss of diversity is only a symptom of premature convergence. The more 
fundamental reason is, instead, the loss of exploratory capability. In single-objective 
EAs, the absolute average fitness of the whole population is constantly increasing as the 
result of fitness-biased selection. The consequence is that “new explorer” individuals 
(i.e., early individuals in a new region of the search space), whether the offspring of 
mutation or crossover or randomly generated, find it increasingly hard to survive, since 
these explorer individuals usually have low fitness until sufficient exploration in the new 
search region is conducted. Rare high-fitness “explorer” individuals, due to their sparse-
ness, will also have high risk of getting lost as the result of sampling bias in parent selec-
tion toward more crowded areas, similar to the analysis in [2]. To fight against this “un-
fair competition” among highly evolved individuals and new “explorers”, there must be 
some mechanism to protect new explorers. This is achieved to some extent by widely 
used approaches such as fitness sharing and crowding. However, using horizontal expan-
sion in the genetic space, these techniques usually suffer from the problem of balancing a 



limited population size against a huge number of local optima in difficult multi-modal 
problems.  

Another perspective on premature convergence can be obtained by examining building 
block concepts. The evolution process is widely seen as a process in which different 
building blocks become co-adapted to achieve higher and higher fitness by mixing and 
mutation. The higher the fitness of an individual, the stronger the coupling of its sub-
components, and the more difficult to make large modification of the highly evolved 
individual without destroying the co-adaptation relationship. So the exploratory capabil-
ity decreases with increasing fitness of the population. It is similar to the Cambrian ex-
plosion in the evolution of living organisms, during which most existing species (body 
plan innovations) were created. However, by allocating all the search effort to highly 
evolved individuals, without control, conventional EAs essentially discard the low-fitness 
evolution stages after limited mixing experiments, and thus are essentially convergent 
algorithms.  

NSGA-II, with its controlled elitism [3], is one of the first algorithms that pays special 
attention to dominated inferior individuals. However, while derived from the conven-
tional EA framework, the improved NSGA-II still suffers from the tendency that all indi-
viduals in the fronts are moving toward the best yet-discovered regions of the objective 
space, based on limited mixing experiments, and the components are increasingly co-
adapted to each other (Fig. 1). As the result, the exploratory capability of the population 
is gradually lost and premature convergence occurs. The distribution of individuals to the 
relatively diverse fronts is insufficient to avoid this kind of premature convergence.  

Based on the analysis above, it turns out to be important to maintain intermediate in-
dividuals and to make the building block mixing process occur at all fitness levels. This 
naturally provides a mechanism to ensure fair competition and protects “explorer” indi-
viduals. At the same time, to reduce the large population size requirement [7] for diffi-
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Fig. 1. The population of NSGA-II moves in clusters leaving the initial low objective value 
space and converging to the promising space. Even the maintenance of a predefined propor-
tion of population into all fronts, but in the whole these fronts are converging to local areas, 
thus making it incapable to maintain the explorative capability in the long run. 



cult problems, it is desirable to continuously introduce random individuals into the low-
est fitness levels to provide the required building blocks, rather than depending on a 
large initial population to identify them, as is done in messy GA [8]. This suggests the 
assembly line structure of the subpopulations in the HFC framework proposed in [9]. The 
HEMO framework is thus an extension of HFC to multi-objective optimization, incorpo-
rating ideas from SPEA, PESA and the improved NSGA-II.  

2.3 Combining Ideas in SPEA, PESA, and the Improved NSGA-II 

The different performances of SPEA, PESA and NSGA-II over different test functions 
reflect the unique, positive features of each approach.  HEMO will attempt to capture 
some features of each of these. Specifically, the maintenance of an external Pareto ar-
chive and the breeding population first proposed in SPEA [12] is employed in the HEMO 
framework, but extended so that both the Pareto archive and archives of intermediate 
individuals are maintained. The elitism in the Pareto front update is supported by low-
level HFC archives, as explained in the next section. For density estimation, the grid-
based methods in PESA [1] are used, which are naturally suited for the absolute division 
of the objective space as required by the HEMO framework. This grid-based method is 
also demonstrated to have excellent performance in maintaining Pareto front diversity 
[11]. The distribution of individuals into all fronts in the improved NSGA-II is extended 
to all fitness levels. 
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Fig. 2. The assembly line structure of the HEMO Framework. In HEMO, repositories are 
organized in a hierarchy with ascending fitness level (or rank level in the objective space as 
employed in this paper). Each level accommodates individuals within a certain fitness 
range (or belonging to a given rank level) as determined by the admission criteria. 



3 HEMO: Hierarchical Evolutionary Multiobjective Optimization 

Based on the analysis of the fundamental cause of premature convergence and drawing 
ingenious ideas from previous successful MOGAs, we propose the HEMO framework for 
difficult multi-objective problems in which the avoidance of premature convergence is of 
great concern. Essentially, it is an extension of PESA enhanced with the continuing 
search capability of HFC. In addition to the Pareto archive and the Pareto workshop 
population, a succession of archives for maintaining individuals of different fitness levels 
is added to allow mixing of lower- and intermediate-level building blocks. A random 
individual generator is located at the bottom to feed raw genetic material into this build-
ing block mixing machine continually. The structure of HEMO is illustrated in Fig. 2:   

The HEMO algorithm proceeds as follows: 
1) Initialization 
� Determine the number of levels (nLevel) into which to divide the objective space for 

each objective dimension. Determine the grid divisions (nGrid) as in PESA. Note 
that nLevel is different from nGrid. The first one is used to organize intermediate 
individuals into the hierarchical archives, while the latter is used to estimate the 
density of individuals.  

� Determine the population sizes of the Pareto archive, HFC archive and correspond-
ing workshop demes. The distribution of population sizes among archives (workshop 
demes) can be determined separately or using some special distribution scheme like 
the geometric distribution in (Deb and Goel, 2000).  

� Initialize the workshop demes with random individuals. The archives are empty at 
the beginning.  

� Evaluate all individuals and calculate the crowding factor of each individual accord-
ing to the hyper-grid approach in PESA.  

� Calculate the fitness range of each objective dimension for all individuals in the 
whole population: 

min max[ , ]i if f  where  0,..., 1i ObjDim= −  
� Divide the fitness range into nLevel Levels. For all individuals, calculate the objec-

tive ranks for each objective dimension, , 0,..., 1r i ObjDimi = − , [0, 1]r nLeveli ∈ − ;   
� For each individual, calculate its fitness rank = the average rank over all objective 

dimensions of each individual.  
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� Migrate (move out) individuals in the workshop demes to the corresponding HFC 
archives according to their fitness ranks 

fr . Then add all non-dominated individu-
als of each workshop deme to the Pareto archive. There are two cases possible dur-
ing these migrations. If the target archive is full, we will replace a selected individ-
ual according to the Pareto archive and HFC archive update procedures described 
below; else, we simply add the migrating individual into the target repository.    

2) Loop until meeting stopping criterion 



A steady state evolutionary model is used in the HEMO framework. First, 
� Compute the breeding probability of each workshop deme of the HFC rank levels. 

This is calculated as follows: 

1

1

l
nLevel

k

Popsizeof workshopdemeof level l
pBreed

Popsizeof workshopdemeof level k
−

=

= �  

These probabilities can instead be dynamically adjusted  irrespective of the workshop 
deme sizes. These probabilities determine the allocation of search effort to each level, 
thus determining the greediness of the algorithm.  

� Decide whether to do Pareto workshop breeding or HFC workshop deme breeding by 
probability pParetoBreed . If setting pParetoBreed =1, then HEMO reduces to an 
algorithm similar to PESA. This parameter is used to control the greediness of the 
Pareto search. 

 If Pareto workshop breeding is to be done: 
• Decide whether or not to do crossover according to its probability. Mutate each 

gene of the offspring with probability pGeneMutate. 
• Select parents from the Pareto archive using tournament selection based on the 

crowding factors of individuals. The less crowded, the more chance an individual 
will get selected. When selecting parents for crossover or mutation, the probability 
to select only from the Pareto archive is pSelectFromPareto. The probability to se-
lect a second parent from the rank 0 HFC Archive is 1- pSelectFromPareto. When 
there is only one individual in the Pareto archive, the second parent for crossover is 
selected from the highest HFC archive.   

• Create an offspring (two in crossover) and add it to the Pareto workshop deme. If 
the Pareto workshop deme is not full, simply add the new candidate to it; else, trig-
ger the Pareto Archive Update Procedure. Then a migration process will move in-
dividuals of each HFC archive to their new qualified HFC archives because of the 
update of the objective ranges.    

If  HFC workshop deme breeding is to be done: 

• Decide at which level (L) breeding will occur according to the probability lpBreed  

• Decide whether or not to do crossover according to its probability. Mutate each 
gene of the offspring with probability pGeneMutate. 

• Select parents from the HFC archive of level L by tournament selection based on 
the crowding factors. The lower the crowding factor, the higher the probability to 
be selected. If there is only one parent in the current HFC archive, then the second 
parent will be selected from the next lower archive. 

• Create an offspring (two in crossover) and add it to the workshop deme. If the 
workshop deme is not full, simply add to the end; else, trigger the HFC Archive 
Update Procedure and the Pareto Archive Update Procedure. 

� With low probabilitypRandomImport , update perRandomIn percent of the indi-
viduals of the lowest HFC archive with random individuals. 



Pareto Archive Update Procedure ( ) 
� Screen out the non-dominated individuals in the workshop deme.  
� Update the objective ranges of the whole population with the non-dominated individu-

als. 
� Recalculate the crowding factors of all individuals of the selected non-dominated 

individuals and the individuals in the Pareto archive.  
� Update the Pareto archive with the selected non-dominated individuals. If the Pareto 

archive is full, truncate it by removing individuals with higher crowding factors.  
� Empty the Pareto workshop deme. 

HFC Archive Update Procedure ( ) 
� Update the objective ranges of the whole population and recalculate the fitness ranks 

of all individuals in the workshop demes.  
� Migrate individuals in the current HFC archives into their corresponding new levels. 

If the target HFC archive is full, replace an individual selected by tournament selec-
tion. The more offspring an individual produces, the higher the probability it will be 
replaced.  

� Update the HFC archives with the individuals in the workshop deme. If the target 
HFC archive is full, replace an individual selected by tournament selection. The big-
ger the crowding factor is, the higher probability it will have to be replaced. Note that 
only higher archives are updated with the current workshop deme (uni-directional mi-
gration policy) 

4 Experiments and Results 

In this section, two test functions are selected to demonstrate the exploratory capability of 
HEMO to avoid premature convergence. Here, HEMO is only compared to PESA, since 
HEMO is most closely derived from PESA.  
1) Multi-objective Rastrigin’s problem (ZDT4) 
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2) Multiobjective Griewangk Problem (GWK) 
GWK problem is constructed by replacing g (x) in 1) with Griewangk’s function, where   

Fig. 3 illustrates the distribution of individuals of HEMO during the evolutionary proc-
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ess. It is clear that HEMO works by trying to expand the individuals in its repositories 
evenly across the objective space, rather than by converging to the early-discovered high-
fitness areas. This provides the necessary fitness gradient for new optima to emerge in a 

bottom-up way, from the bottom level HFC archive and workshop subpopulations.  
The robustness of PESA and that of HEMO are compared by examining the relationship 
of performance and the mutation rates applied to each type double gene after crossover. 
We use the statistical comparison method of [1] to compare the Pareto fronts obtained 
with different mutation rates by PESA and HEMO (Table 1). Cells in the upper right 
triangle of the table hold the comparison results of different mutation rates for HEMO, 
while the lower left (shaded cells) are for PESA. The first entry in each cell represents 
the percentage of Pareto front solutions obtained with the row’s mutation rate that are 
non-dominated, with 95% confidence, by the solutions obtained with the column’s muta-
tion rate.  The second entry in each cell, similarly, shows the percentage of Pareto front 
solutions obtained with the column’s mutation rate that are non-dominated, with 95% 
confidence, by the solutions obtained with the row’s mutation rate.  From [3], we know 
that for test function ZDT4, NSGA-II fails to find the true Pareto front. This is also the 
case for PESA, as illustrated in the first column.  PESA without mutation is worse than 
any PESA configuration with mutation. It is also suggestive that for PESA, the perform-
ance varies greatly with different mutation rates, achieving best performance here with a 
mutation rate of 0.12. In contrast, HEMO is more robust over mutation rates. The per-
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Fig. 3. Distribution of individuals over the objective space of GWK in HEMO after 1000 
evaluations. Compared with Fig. 1. of  NSGA-II, the difference is that the archive popula-
tion of NSGA-II is drifting and has the risk of converging to a local area.  HEMO has less 
tendency to converge, since it maintains representative individuals at many levels in the 
objective function space and continuously introduces new genetic material, thus providing 
the fitness gradient for new optima emerge in a bottom-up way. 



formance difference with no mutation is not much different from that with mutation rate 
0.16.  

We also compared the best performance of PESA (mutation rate 0.12) with that of 
HEMO (mutation rate 0.16) for the same number (10,000) of evaluations (Table 2) . For 
ZDT4, the Pareto front found by HEMO was much better than PESA found. In the case 
of GWK, HEMO had limited advantage over PESA. The reason is that the statistical 
comparison procedure used here [6,1] compares the merged Pareto fronts found during 
20 runs. PESA with different random seeds may converge to different points in the objec-

tive space, which on the whole comprise a good Pareto front. However, PESA is a poor 
opportunist in the sense that for both the ZDT4 and GWK functions, PESA converges to 
only one or two Pareto solutions in 6 or 7 runs of a total of 20. In contrast, HEMO always 
obtains diversified solutions in the Pareto archive. 

5 Conclusions and Future Work 

Current MOEAs still suffer from their convergent nature inherited from the conven-
tional EA framework. The loss of population diversity turns out to be only a symptom of 

Mutation 
Rate 

0.00 0.04 0.08 0.12 0.16 

0.00  99  100 99.5 100 99.7 100 97.5 100 
0.04 100  50  99.8 100 99.9 100 0.5   100 
0.8 100  7.3   100  99.7   100  100 2.4   99.7 
0.12 100  3.2   100  50.0  100  70.6   2.4   99.9 
0.16 100  7.3   100  50.1  98.7  100   100  100  

Table 1.  Comparison of the robustness of PESA (in shaded cells) and HEMO with test 
function ZDT4. First entry in each cell is percentage of solutions obtained with row’s 
mutation rate that are not dominated by those obtained with the column’s mutation 
rate, and vice versa for the second entry.  PESA can be seen to depend strongly on 
mutation to maintain its exploratory capability. It is very sensitive to the mutation rate, 
for which the optimal value is hard to know in advance. HEMO is much less sensitive 
to the mutation rate, since it doesn’t depend on mutation to maintain the explorative 
capability.  

Test Function ZDT4 GWK 
 PESA HEMO PESA HEMO 

% Non-Dominated Pareto 
Solutions in 20-Run Ensem-

ble 

0.3% 
by HEMO 

   100% 
by PESA 

    47.3% 
by HEMO 

    53.7% 
by PESA 

Premature Convergence 
Frequency 

6/20    0/20    7/20     0/20 

Table 2. Opportunistic PESA and robust HEMO. HEMO obtains a much better Pareto front 
for ZDT4 and a small advantage for GWK. However, for each independent run, the frequency 
(in last row) with which PESA converges to one or two Pareto solutions is around 33%, while 



the phenomenon of premature convergence. Maintenance of exploratory capability is 
central to ensuring sustainable evolutionary search. A new evolutionary multi-objective 
framework named HEMO is introduced, featuring:  a hierarchical organization of reposi-
tories of individuals of different fitness levels (defined as the composite objective ranks in 
the divided objective space), the continual introduction of raw genetic material at the 
bottom evolutionary level, and hyper-grid-based density estimation. Two experiments are 
reported to show the sustainable search capability of HEMO, demonstrated along with its 
robustness over a variety of mutation rates, as compared to PESA. The paradigmatic 
transition in handling premature convergence from HEMO is:  instead of trying to escape 
local optima from within converged, high-fitness populations, the continuing EA frame-
work (as represented, for example, by HFC and HEMO here) ensure the opportunity for 
new optima to emerge from the bottom up, enabled by the hierarchical organization of 
individuals by fitness.   

By combining features from PESA and SPEA and extending the ideas in the NSGA-II 
with controlled elitism, and including the HFC organization, HEMO is expected to be 
well suited for difficult multi-modal real-world problems in which premature conver-
gence is of great concern. We also expect that HEMO will be especially advantageous in 
multi-objective genetic programming, where the highly multi-modal and discrete fitness 
landscape often makes modern MOEAs such as PESA fail by converging prematurely to 
a local Pareto front. It is interesting to sort the MOEAs by their capabilities to handle 
premature convergence. From the lowest to highest, we have PESA� SPEA2 �  NSGA-
II �  NSGA-II with controlled elitism �  HEMO, each improving the previous one by 
paying more attention to the non-inferior dominated individuals. However, HEMO dif-
fers from all the others in its continuing search nature without premature convergence, 
while the others are all based on the traditional, convergent EA framework.  

As a generic framework, HEMO is easily applicable to other modern MOEAs such as 
SPEA-2 and NSGA-II. To improve running efficiency, a better density estimation 
method is needed. The scheme for organizing individuals by rank levels can also be 
improved. In addition, to distribute the individuals of the repositories more evenly in the 
objective space, the HFC archive update scheme needs further refinement. Especially, 
extensive comparative experiments with NSGA-II with controlled elitism and other 
MOEAs are required to fully demonstrate the potential of HEMO.  
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