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Abstract- It is known from single-objective

optimization that hybrid variants of local search 

algorithms and evolutionary algorithms can

outperform their pure counterparts. This holds, in

particular, in continuous search spaces and for 

differentiable fitness functions. The same should be

true in multi-objective optimization. This approach is

started in this paper. An efficient gradient-based local

algorithm, sequential quadratic programming (SQP)

is combined with two well-known multi-objective

evolutionary algorithms, strength Pareto evolutionary

algorithm (SPEA) and non-dominated sorting genetic 

algorithm (NSGA-II) respectively, by means of a

modified -constraint method. The resulting two

hybrid algorithms demonstrate great success over two

sets of well-chosen functions regarding the 

convergence rate. In addition, from the simulation 

studies, the hybridization approach also enhances, at

least does not ruin, the diversity of the solutions. 

1 Introduction 

Real-world optimization problems often involve

multiple, competing objectives in a highly complex search

space. Multi-objective optimization problems (MOOPs) 

distinguish themselves from single-objective optimization

problems (SOOPs) in that when preference information is

absent no optimal solution is clearly defined but rather a

set of alternative trade-off solutions exist. At present, the

evolutionary algorithm (EA) is assumed to be one of the

most promising approaches to solve the MOOPs. Among

various characteristics of the EAs, the obvious one is that

these algorithms operate on a set of solutions (or

population), which caters for the need of finding a set of 

�optima� for the MOOPs, i.e. Pareto solutions. Much

work has been done in this field since the work of 

Schaffer in 1984 [1], which is recognized as the first real

implementation of a multi-objective evolutionary

algorithm, named vector evaluated genetic algorithm or

VEGA.  After nearly a decade, Goldberg suggested a

revolutionary 10-line sketch of a new non-dominated

sorting procedure [2]. Followed his suggestion, at least

three different versions of multi-objective evolutionary

algorithms (MOEAs), MOGA [3], NPGA [4], and NSGA 

[5], were derived. During the last two yeas of last century,

by eliminating the fitness sharing factor and introducing

the elitism, more effective MOEAs were formed, such as 

Zitzler and Thiele�s SPEA [6], Knowles and Corne�s

PAES [7], and Deb et al�s NSGA-II [8][9]. More recent 

development including Corne et al�s PESA [10], Deb and

Goel�s NSGA-II with controlled elitism [11], and Zitzler

et al�s SPEA2 [12].

Though these MOEAs have shown great success on

many complex problems, there exists some problem, one

of which is that they often require a lot of objective

evaluations. As the computational cost for evaluating a 

solution becomes surprisingly high, it will be tedious or

even impossible to apply them to such problems. It is the

inherent weakness of EAs that results in the

embarrassment. EAs are stochastic algorithms, and a

small number of samplings in the decision space are 

insufficient to assure the proper results. In order to

overcome such a deficiency, EA workers have suggested

various approaches to accelerate the algorithms�

convergence rate, among which one of the most common

and effective techniques is to incorporate local search 

approaches into EAs. It is based on the conception that

EAs will guide the search direction into the right region

(global area) and local search approaches then will find

the accurate optimum there quickly because of their

speedy convergences. Such a conception may be adopted

by the MOEAs, too. But most local algorithms can only

optimize SOOPs, while the optimum for multi-objective

optimization problems is a set of solutions, which is

termed Pareto-optimal set or Pareto-optimal front. Hence,

some specifications must be made before the idea is

applied to the MOEAs.

A direct and simple technique is to combine the 

MOEAs and -constraint method, using the local

algorithms to optimize one of the objectives, while

restricting other objectives within specified values. Ritzel 

et al discussed a naive approach to combine the -

constraint method with GA [13]. Through a process of

running the GA numerous times with different values of 

the constrained objectives, say, with different  values, a

trade-off surface can be developed. It is the fundamental

conception of the CMEA invented by Ranjithan et al [14].

But this approach has insufficient intelligence in

searching for the suitable vector. What�s more, it is 

easy to imagine the high computational complexity. Ritzel 

et al rejected the approach in their paper [13]. In this

study, we use a modified -constraint method to



incorporate an efficient gradient-based local search 

method, sequential quadratic programming (SQP), into 

two well known MOEAs, SPEA and NSGA-II. The focus 

will be placed on the convergence rate of the resultant 

hybrid MOEAs and the diversity as well as globality of 

the obtained solutions. 

2 Mathematical Prelude 

Some key definitions in relation to the multi-objective 

optimization used in this paper are stated below. For 

detailed information about them, please refer to [15]. 

Definition 1 (Multi-Objective Optimization 
Problem)
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Without loss of generality, all the objectives are 

assumed to be minimized in this paper. 

Definition 2 (Domination) Solution  is said to 
dominate the other solution  if both conditions below 
are true: 
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Definition 3 (Non-dominated Set and Pareto-

optimal set) Among a set of solutions P, the non-

dominated set of solutions are those that are not 

dominated by any other member of the set P.  

is also called the non-dominated front of P. 

If set P is the entire feasible search space, the non-

dominated set is called the Pareto-optimal set. 

Definition 4 (Global Pareto-optimal set) The non-

dominated set of the entire feasible search space is the 

global Pareto-optimal set. 

Definition 5 (Local Pareto-optimal set) If for every 

member x in a set P there exists no solution y (in the 

neighborhood of x such that xy , where  is a 

small positive number) dominating any member of the set 

P, then solutions belonging to the set P constitute a local 

Pareto-optimal set.  

And the two main goals in a multi-objective 

optimization are: 

To find a set of solutions as close as possible to the 
true Pareto-optimal front. 

To find a set of solutions as diverse as possible. 

3 SPEA and NSGA-II 

It has been indicated at the very beginning of section 1 

that evolutionary algorithms are leading methods in the 

multi-objective optimization field nowadays. Many 

salient MOEAs have emerged during last decades. 

Among those, Zitzler et al�s SPEA [6] and Deb et al�s 

NSGA-II [8][9] are most famous. This section will 

describe them briefly in that they are to be used as the 

frameworks of the hybrid MOEAs discussed in the next 

section. 

The algorithm, strength Pareto EA (SPEA), introduces 

elitism by explicitly maintaining an external population 

t . This population stores a fixed number of the non-

dominated solutions that are found until the beginning of 

a simulation. At every generation, newly found non-

dominated solutions are compared with the existing 

external population and the resulting non-dominated 

solutions are preserved.  The size of Et is bounded to a 

limit 

E

N . When the size exceeds N , elites which are less 

crowded in the non-dominated front are kept. (It is to 

attain the second goal of multi-objective optimization.) In 

addition, the SPEA does more than just preserving the 

elites; it also uses these elites to participate in the genetic 

operations along with the current population in the hope 

of influencing the population to steer towards good 

regions in the search space. It combines the main 

population t  of size N and Et of size P N  together (into 

an Rt population) and performs a fitness assignment 

procedure, which emphases the elite members. Then, the 

conventional binary tournament selection operator as well 

as the crossover and mutation operators is implemented 

orderly to create a new population 1  of size N.Pt

In NSGA-II, the offspring population Qt is first 

created by using the parent population Pt. The two 

populations are then combined together to form Rt of size 

2N. A non-dominated sorting is used to classify the entire 

population Rt. Once the non-dominated sorting is over, 

the new population  is filled by solutions of different 

non-dominated fronts, one front at a time. The different 

non-dominated fronts of a set of solutions can be obtained 

by gradually disregarding the fronts previously found and 

identifying the new front of the resulting set of solutions. 

The filling starts with the best non-dominated front and 

continues with solutions of the second non-dominated 

front, followed by the third non-dominated front, and so 

on. Since the overall population size of Rt is 2N, not all 

fronts may be accommodated in N slots available in the 

new population. All fronts which could not be 

accommodated are simply deleted. When the last allowed 

front is being considered, there may exist more solutions 

in the last front than the remaining slots in the new 

population. Instead of arbitrarily discarding some 

members from the last front, it would be wise to use the 

niching strategy to choose the more crowded members of 

the last front. Then the selection, crossover and mutation 

operators are used to create an offspring population 

of size N from . The authors define a new 

selection operator, termed crowded tournament operator,

which considers the solutions� dominance and diversity 

simultaneously.  

1tP

1tQ 1tP

It should be mentioned that both of the two algorithms 

attempt to attain the second main goal of multi-objective 

optimization indicated in section 2 by techniques 



requiring no additional parameters compared to a more 

often used technique, sharing function model [15][16]. 

The NSGA-II defines a crowding distance of each 

solution to do the work and the SPEA suggests a 

clustering method.  

More detailed descriptions of the two algorithms can 

be found in the papers mentioned in this section, however, 

the flow charts of the hybrid MOEAs presented in section 

4.4 also serve for help to understand the two original 

MOEAs. 

4 Hybrid MOEAs 

4.1 Motivation for Hybridization 

It is well known that EAs are probability-based 

algorithms. Though they have strong ability to converge 

to the true global optimum, the process is always slow 

compared to some local search algorithms. It is often a 

promising direction to combine the local algorithms and 

global algorithms considering the merits and deficiencies 

of each. Much work has been done in terms of single 

objective optimization. But for MOOPs, still much effort 

needs to be made.  

It is worth arguing that the incorporation of EAs and 

local approaches for multi-objective optimization has an 

additional advantage than for single objective 

optimization, in that if there exist no local traps in the 

MOOP search space, the local technique will dramatically 

accelerate the MOEAs� convergence rate. Furthermore, 

there is no doubt for the necessity of the evolutionary 

algorithms in such a case. As it has been mentioned 

earlier, EAs have the ability to return a set of solutions, 

which is essential for MOOPs. Nevertheless, if such 

condition is true for single objective optimization, the 

EAs are nearly unnecessary.

But how to incorporate the local search procedure into 

the MOEAs is a problem since most local algorithms can 

only handle SOOPs. It may be wise to combine it with the 

-constraint method. So, let us discuss the -constraint 

method. 

4.2 Modified -Constraint Method 

Haimes et al. [17] suggested reformulating the MOOP 

by just keeping one of the objectives, say, main objective,

and restricting the rest objectives within user-specified 

values. The problem stated in Eq. (1) is modified as 

follows: 
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The parameter represents an upper bound of the 

value of . In terms of a two objective problem, assume 

that we retain 

m

mf

f2 as an objective and treat f1 as a constraint: 

1 . Fig. 1 shows three scenarios with different 

 values. If , the resulting problem with this 

constraint divides the original feasible objective space 

into two portions:  and . The left 

portion becomes the feasible solutions of the resulting 

problem stated in Eq. (2). From fig. 1, it is clear that the 

minimum solution is �B�. In this way, intermediate Pareto-

optimal solutions can be obtained in the case of 

nonconvex objective space problems. This is the 

conspicuous advantage of the -constraint method 

distinguishing it from the classical weighted methods.  

1 )(f x

1

b

11

bf 11

bf 11

Figure 1. The -constraint method 

But the results largely depend on the chosen vector.

It must be chosen so that it lies within the minimum or 

maximum values of the (M-1) objective function. If 

in fig. 1, there exists no feasible solution to the 

stated problem. On the other hand, if is chosen, the 

entire search space is feasible and the method will always 

find the unique optimum �C�. Moreover, as the number of 

objectives increases, there exist more elements in the 

vector, thereby requiring more information from the 

user. Even it is combined with EAs, leaving the choice to 

be decided by the computer, how to avoid such a dilemma 

is confusing. Maybe, through a number of simulation runs 

the suitable vector would not be achieved.  

a

11

c

1

In this study, instead of changing  values for a fixed 

solution with a fixed main objective for different 

simulation runs, we change the solutions as well as their 

main objectives continuously in one simulation run. The 

process is as follows: 

1) Several members of the current EA population are 

randomly selected. 

2) For each selected solution, randomly chose a main 

objective to optimize, while restricting the remaining (M-

1) objectives less than or equal to the solution�s current 

corresponding objective values.  

It is to say, if that selected solution from the 

population is , then in Eq. (2), 0x )( 0xmm f

( mMm   ;,,2,1 ). In this manner, the vector is 

constant and can be easily decided. This approach is 



termed a modified -constraint method. After the 

execution of this method on the current population, the 

resulting several optimized solutions substitute the 

original solutions in the population, and serve as good

seeds in the population to accelerate the process towards 

the Pareto-optimal front. 

This has at least two merits. The first one is obvious 

that the vector will never be false. In fig. 1, the ,

say, , will never got the value  or  since the 

solution x

0

1

x

)( 01 xf
a

1

c

1

0 is always in the feasible space. The other merit 

is that, since the solutions and their main objectives are 

selected randomly, no objective of the problem is biased. 

Therefore it maintains, or even improves the diversity of 

the solutions considering the local algorithms� fast 

convergence to each objective�s optimum.  

4.3 Sequential Quadratic Programming 

In terms of the continuous problems, gradient-based 

algorithms are always the fastest method for searching for 

the optimum though they may only find the local 

optimum. And among those, Sequential Quadratic 

Programming (SQP) represents state-of-the-art in 

nonlinear programming methods. Schittowski [18], for 

example, has implemented and tested a version that out 

performs every other tested method in terms of efficiency, 

accuracy, and percentage of successful solutions, over a 

large number of test problems. At each major iteration an 

approximation is made of the Hessian of the Lagrangian 

function using a quasi-Newton updating method (in this 

study, BFGS method is used). This is then used to 

generate a QP sub-problem whose solution is used to 

form a search direction for a line search procedure. Since 

this method has been fully developed in some sense, the 

paper does not intend to discuss the details of SQP. An 

overview of SQP is found in Fletcher [19], Gill et al [20]. 

4.4 Hybrid NSGA and Hybrid SPEA

Based on the discussion above, two hybrid MOEAs 

named hybrid SPEA (or SPEA-SQP) and hybrid NSGA 

(or NSGA-SQP) are derived from the original SPEA and 

NSGA1 outlined in section 3. The SQP algorithm is used 

to accelerate the convergence rate by means of the 

modified -constraint method. Fig. 2 shows the positions 

where the SQP procedures are inserted into the processes 

of SPEA and NSGA. The SQP procedures are both 

performed on the current populations. 

 It should be noted that in order to reduce the 

calculation, SQP is started with several individuals 

instead of the whole population, and at the interval

generation instead of each generation. For each randomly 

selected solution, randomly select an objective to 

optimize using SQP.  

Fig. 2 also briefly illustrates the processes of the 

original SPEA and NSGA. 

                                                          
1 It means NSGA-II. From now on, we will substitute �NSGA� 

for �NSGA-II� for convenience. 

Figure 2. Two hybrid MOEAs (left: SPEA-SQP, 

right: NSGA-SQP) 

5 Simulation Studies 

In this section, two sets of unconstraint problems are 

used to test the new algorithms� performances. 

5.1 The First set of Test Problems 

Zitzler et al. framed six problems (ZDT1 to ZDT6) 

[23], which have been further studied by other researchers. 

The problems have the same structure as follows: 
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All the problems are presented here except the ZDT5 

since its variables are discrete and hence it is not suitable 

for the SQP procedure. 
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Here, n=30 and all variables lie in the range [0, 1]. 

The Pareto-optimal region corresponds to  and 

, for i=2, 3, , 30. 
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n=30. All variables lie in the range [0, 1]. The Pareto-

optimal region corresponds to  and , for 

i=2, 3, , 30. This Pareto-optimal region is nonconvex. 

10 *

1x 0*

ix

ZDT3:

)10sin()/(/1),(

1

9
1)(

)(

1111

2

11

fgfgfgfh

x
n

g

xf

n

i ix

x

           (6) 

n=30. All variables lie in the range [0, 1]. The Pareto-

optimal region corresponds to  and , for 

i=2, 3, , 30, and not all points satisfying  lie 

on the Pareto-optimal front, which is discontinuous. 
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n=10. The variable 1  lies in the range [0, 1] but all 

others lie in [-5, 5]. The global Pareto-optimal front 

corresponds to  and , for i=2, 3, , 10. 

There exists 21

x

10 *

1x 0*

ix
9 local Pareto-optimal fronts.  

ZDT6:
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n=10. All variables lie in the range [0, 1]. The Pareto-

optimal region corresponds to  and , for 

i=2, 3, , 10. The Pareto-optimal front is nonconvex. But 

the most complexity is that the density of solutions across 

the Pareto-optimal region is highly non-uniform and the 

density towards the Pareto-optimal front is also thin. 
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1x 0*
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For all algorithms, a real-coded genetic algorithm with 

arithmetic crossover operator and non-uniform mutation

operator [15][21] is used. And the following parameter 

values are the same: 

Population size:   50 

Crossover rate:    0.6 

Mutation rate:     0.1 

For the SPEA and SPEA-SQP, the regular EA 

population size is 40 and the external population is 10. 

Both SPEA and NSGA run maximum number of 

generation 500 for all the problems but 2000 for ZDT4. 

ZDT4 is extremely difficult for its numerous local traps. 

The two hybrid algorithms, SPEA-SQP and NSGA-SQP, 

each runs total 20 generations and performs the SQP 

procedure every 5 generations for ZDT1, ZDT2 and 

ZDT6. For ZDT3, they total number of generations is 50 

and the SQP interval number of EA generations is 5. 

While for ZDT4, the two parameters are set to 500 and 10, 

respectively. The proportion of the solutions to perform 

the SQP procedure to the whole EA regular population is 

1/5.  

For all studies the outputs are the non-dominated 

solutions in the final population (NSGA or NSGA-SQP) 

or the final EA population combined with the external 

population (SPEA or SPEA-SQP). Fig. 3 to Fig. 7 

illustrate the results of the algorithms in the objective 

spaces, and Table 1 lists the detailed number of objective 

evaluations2 and the CPU time for each the test problem. 

Figure 3. Non-dominated solutions of ZDT1 

Figure 4. Non-dominated solutions of ZDT2 

                                                          
2 1 evaluation means one evaluation for each objecitve. 



Figure 5. Non-dominated solutions of ZDT3 

Figure 6. Non-dominated solutions of ZDT4 

Figure 7. Non-dominated solutions of ZDT6 

From Fig. 3 to Fig 7, we can see that the hybrid 

MOEAs have a better convergence to the Pareto-optimal 

front than the original MOEAs for all of the five problems. 

This point can be easily got from Fig. 3, Fig. 4, Fig. 5 and 

Fig. 7. Let�s discuss Fig. 6 in detail. The ZDT4 has 219

local Pareto-optimal solutions and consequently makes a 

total of 100 distinct Pareto-optimal fronts including the 

global one. In Fig. 6, each continuous curve represents a 

local Pareto-optimal front and the lowest one represents 

the global front. This figure only shows a partial search 

region in the objective space. It can be seen that a very 

few of solutions of SPEA get to the true front, and some 

solutions of NSGA reside in the local fronts; while most 

solutions of SPEA-SQP and NSGA-SQP are global 

Pareto-optimal solutions. However, the diversity of the 

NSGA-SQP solutions is worse than that of the NSGA 

solutions. 

Table 1. Objective evaluations and CPU time for 

ZDT1-ZDT6 (evaluations/CPU time) 

SPEA NSGA SPEA-SQP
NSGA-

SQP

ZDT1 20000/447 25050/170 4063/19 4290/21

ZDT2 20000/259 25050/162 3296/12 3746/16

ZDT3 20000/256 25050/163 11483/53 11794/68

ZDT4 80000/268 100050/546 76778/216 93643/254

ZDT6 20000/141 25050/161 2042/8 2115/9

Table 1 remembers us that the results of the two 

hybrid MOEAs are obtained through far fewer objective 

evaluations as well as far less CPU time than the original 

MOEAs do for most problems. ZDT6 is an example. For 

this problem, SPEA-SQP evaluates the objectives nearly 

one tenth times as the SPEA does, and NSGA-SQP runs 

for nearly one-eighteenth CPU time as NSGA does, but 

both SPEA-SQP and NSGA-SQP get better solutions than 

SPEA and NSGA.

It can be also observed that the solutions of the SPEA-

SQP represent a better diversity than that of the pure 

SPEA for all the five problems through Fig. 3 to Fig.7. 

And it should be mentioned that for ZDT6, which is 

designed to cause non-uniform density difficulty, neither 

blocks the NSGA nor blocks the NSGA-SQP in terms of 

the solutions� diversity.. 

5.2 The Second set of Test Problems 

Although Zitzler et al�s five functions represent 

different features and levels of difficulty, the first 

objective f1 is always a simple function solely of the first 

decision parameter x1. Consequently optimization chiefly 

consists of minimizing f2, rather than the combined 

minimization of both objectives. For the purpose of 

searching for the extent of the Pareto front, five new test 

problems named HU1 to HU5 are introduced. All five are 

combinations of the following five base functions.  
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Where n=10, and . These base functions are 

the modified versions of Fieldsend et al�s [22]. This set of 

test functions are presented below: 

]1,0[ix

2,11 BBHU

4,32 BBHU

5,3,23 BBBHU

5,4,14 BBBHU

5,4,3,15 BBBBHU

The EA parameter settings such as Population size,

Crossover rate and Mutation rate, are the same as before. 

The SPEA-SQP and NSGA-SQP run both 20 generations 

and perform the SQP procedure every 5 generations. 

Record down the number of objective evaluations 

respectively for the two hybrid MOEAs and then run 

SPEA and NSGA some generations ensuring that the 

number of evaluations of SPEA and SPEA-SQP are close, 

and so are the number of evaluations of NSGA and 

NSGA-SQP. Such an approach guarantees the fairness to 

some extent for comparison.  

Two metrics are adopted to evaluate the convergence 

and diversity: C metric for the former and J1 metric for 

the latter. C metric is defined as follows [15]: 

B
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),(                          (14) 

It calculates the proportion of solutions in B, which 

are weakly dominated by solutions of A. =1

means all members of B are weakly dominated by A. On 

the other hand, =0 means no member of B is 

weakly dominated by A.

),( BAC

),( BAC

The J1 metric [22]: 
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This metric is an average ratio of the extents of two 

fronts in each objective dimension, where each objective 

is normalized by the extent of the front in B. If 

=1, the two fronts are on average proportionately 

equal in extent, whereas >1 means that on 

average the extent of A is greater than the extent of B. We 

use this metric because that the extent of the front is one 

of the important factors for evaluating the solutions� 

diversity and that it is a simple measure, though it does 

not provide all the information about the diversity.  

),(1 BAJ

),(1 BAJ

The comparison results are shown in Table 2 and 

Table 3 (S and HS represent the non-dominated solutions 

obtained by SPEA and hybrid SPEA (SPEA-SQP), while 

N and HN represent the non-dominated solutions by 

NSGA and hybrid NSGA (NSGA-SQP), respectively). 

Since neither the C metric nor the J1 metric is a symmetric 

operator, it is necessary to calculate all the values: 

, ,  and . From Table 2, 

again, we can see that the solutions obtained by the hybrid 

SPEA have a better convergence to the Pareto-optimal 

front than the solutions by the pure SPEA on all the 

problems except HU5. This superiority of the hybrid 

NSGA to pure NSGA is demonstrated on the HU1, HU2, 

and HU3. As far as the average extent of the front in the 

objective space is concerned (shown in Table 3), the 

hybrid SPEA outperforms the pure SPEA on all problems; 

though there is no obvious proof that whether the hybrid 

NSGA is better than the NSGA or not. 

),( BAC ),( ABC ),(1 BAJ ),(1 ABJ

Table 2.  C metric values of the algorithms for 

HU1-HU5

HU1 HU2 HU3 HU4 HU5

),( HSSC 0 0 0 0 0

),( SHSC 1 0.44 1 0.49 0

),( HNNC 0 0.02 0 0 0

),( NHNC 0.82 0.58 0.34 0.02 0.02

Table 3. 1  metric values of the algorithms 

for HU1-HU5 

J

HU1 HU2 HU3 HU4 HU5

),(1 HSSJ 0.29 0.17 0.13 0.15 0.17

),(1 SHSJ 3.48 5.96 9.93 7.67 8.92

),(1 HNNJ 0.83 1.36 0.87 1.26 1.04

),(1 NHNJ 1.23 0.83 1.18 0.80 1.18

6 Conclusions 

In this study, the local search algorithm, sequential 

quadratic programming, is incorporated into two well-

known multi-objective optimization algorithms by means 

of a modified -constraint method. The idea is simple but 

successful. To summarize the conclusions:  

If there are no local traps in the search space, the 
newly developed hybrid MOEAs have much faster 
convergence towards the Pareto front than the 
original MOEAs, either the objective evaluations or 
the CPU time is concerned. 

If there are local optima, the hybrid algorithms also 
have more powerful ability than the original MOEAs 
to identify the true Pareto-optimal front. 

The hybridization technique does not decrease the 
solutions� diversity evidently from our simulations. 
For some problems, it even enhances the extent of the 
Pareto front.

The hybridization technique can be applied to other 
MOEAs besides SPEA and NSGA, and can be easily 
extended to solve the constraint MOOPs. 

However, the local search algorithm adopted here is a 

gradient-based algorithm, which limits the applications of 

the hybrid MOEAs. If non-gradient-based algorithms will 

also do the work and still have so well effects is our next 

consideration. 
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