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Abstract. In this paper, we experiment with a combination of innova-
tive approaches to rule induction to encourage the production of interest-
ing sets of classification rules. These include multi-objective metaheuris-
tics to induce the rules; measures of rule dissimilarity to encourage the
production of dissimilar rules; and rule clustering algorithms to evaluate
the results obtained.

Our previous implementation of NSGA-II for rule induction produces a
set of cc-optimal rules (coverage-confidence optimal rules). Among the
set of rules produced there may be rules that are very similar. We ex-
plore the concept of rule similarity and experiment with a number of
modifications of the crowding distance to increasing the diversity of the
partial classification rules produced by the multi-objective algorithm.

1 Introduction

Data mining is concerned with the extraction of patterns from large databases.
One particular task of data mining which is attracting increased research atten-
tion is the extraction of classification rules. Partial classification, also known as
nugget discovery, involves the production of accurate yet simple rules (nuggets)
that describe subsets of interest within a database.

Recently, we have developed a multi-objective metaheuristic algorithm for
the extraction of partial classification rules [7]. The problem of nugget discovery
was formulated as a multi-objective optimisation problem by using some of the
frequently used measures of interest, namely confidence and coverage of a nugget,
as objectives to be optimised. NSGA-IT was then used to perform the search for
Pareto-optimal rules according to the defined objectives.

The approach was evaluated by comparison to another algorithm, ARAC [18]
which is guaranteed to find all cc-optimal rules subject to certain constraints.
The constraints may affect the number of attribute tests that are allowed in the
antecedent of the rule, or the maximum cardinality allowed for any attribute
that participates in a test. For small datasets, where constraints do not have
to be applied, ARAC can deliver all the cc-optimal (i.e. Pareto-optimal) rules
efficiently, so it provides a perfect point of comparison.

Results showed the strength of the new multi-objective approach for finding a
good approximation to the Pareto front in a number of datasets. For the larger



datasets, the multi-objective approach showed real advantage as it could find
good sets of solutions in a fraction of the time, with predictable termination
times, and without having to apply any restrictions to the number of attributes
or their cardinality.

One question raised was whether the set of rules delivered may contain very
similar rules or rules that appear to be different but match similar records.
There may also be rules that are interesting because they cover different subsets
of records, but which are dominated in terms of coverage and confidence and
are, therefore, never found.

In this paper we investigate the quality of the rule sets obtained. In particular,
we investigate various options for refining the quality of the rule sets obtained
in order to deliver an interesting set of rules or nuggets. Defining interest in
rule induction has been an area of research for some time. Most methods of
measuring individual rule interest use a combination of confidence and support
for the rule [14]. Considerations about rule novelty or surprise for individual rules
are sometimes included [9,10]. We study the novelty of the rules in relation to
other rules within the set; that is, we would like to deliver a set of rules of high
quality in terms of confidence and coverage, but also where rules are as diverse
as possible with respect to other rules in the same set. This should increase the
interest of the rule set, as opposed to the interest of the individual rules. We
examine the interest of the rule sets obtained with our previous approach and
attempt various modifications to improve our rule sets.

Section 2 covers the basic concepts and terminology used in the paper. Sec-
tion 3 describes briefly the original multi-objective nugget discovery algorithm.
Section 4 describes measures of rule dissimilarity and their applicability to the
algorithm and introduces the concept of clustering rules for better interpretation
of results. We describe some initial experimentation in section 5 and give our
conclusions and ideas for further work in section 6.

2 Concepts and terminology

2.1 Nugget Discovery

The task of partial classification [1] is also known as nugget discovery; it seeks
to find patterns that represent “strong” descriptions of a specified class, even
when that class has few representative cases in the data. For example, in in-
surance data, groups of people that constitute an unacceptably high risk are in
a minority. However, if an insurer can identify such groups, with their defining
characteristics, they may gain a competitive advantage.

Let @ be a finite set of attributes where each ¢ € () has an associated
domain, Dom(g). Then a record specifies values for each attribute in Q). A tabular
database, D, is defined to be a finite set of such records. A classification tabular
dataset is one in which a class attribute is present.

Rules that represent a partial classification are of the general form



antecedent = consequent

where the antecedent and consequent are predicates that are used to define
subsets of records from the database D and the rule underlines an association be-
tween these subsets. In nugget discovery, the antecedent comprises a conjunction
of Attribute Tests, ATs, and the consequent comprises a single AT represent-
ing the class description. The strength of the rule may be expressed by various
measures, as described in section 2.2

Attributes may be described as ordinal or nominal (categorical). An ordinal
attribute is defined as an attribute that has some explicit or implicit ordering,
so numeric attributes are usually ordinal. Nominal attributes are those that are
not ordinal, i.e. they have no implied ordering.

For a database with n attributes, the ATs for nominal attributes can be
expressed in any of the following forms:

Simple value: AT; = v, where v is a value from the domain of ATj;, Dom;, for
some 1 < j < n. A record z satisfies this test if 2[AT}] = v.

Subset of values: ATj € {vi,..., v}, where {vy,..., v} is a subset of values
in the domain of ATj, for some 1 < j < n. A record z satisfies this test if
.’L'[AT]] € {1)1, - ,Uk}.

Inequality test: AT; # v, for some 1 < j < n. A record x satisfies this test if
z[ATj] # v.

For a numeric attribute, ATs can take the following form:

Simple value: AT; =wv, 1 < j <n, as for categorical attributes.

Binary partition: AT; < v or AT; > v, for some 1 < j < n, v € Dom;. A
record z satisfies these tests if 2[AT;] < v or z[AT}] > v respectively.

Range of values: v; < AT; < vy or AT} € [vi,v2], for some 1 < j < n and
v1,v2 € Dom;. A record z satisfies this test if v; < z[AT}] < va.

Decision tree induction [4,15] and rule induction algorithms [5,6] are often
used to extract partial classification rules. However, decision trees often have
thousands of rules, with each rule covering only a few cases; hence their use
as descriptive patterns is limited. Also, both decision tree and rule induction
algorithms often fail to produce patterns for minority classes. Association rule
algorithms have been adapted to find patterns in classification data [2,3], but
they are predominantly developed for categorical data and often apply restric-
tions to the syntax of the rules to keep the search feasible. They deliver all rules
underlying a database, which can result in output of overwhelming size.

2.2 Strength of a rule

Given a record, ¢, antecedent(t) (represented by a conjunction of ATs in nugget
discovery) is true if ¢ satisfies the predicate, antecedent. Similarly consequent(t)
is true if ¢ satisfies the predicate, consequent. Then the subsets defined by the
antecedent or consequent are the sets of records for which the relevant predicate
is true.



For a rule r, we define three sets of records.

A(r) = {t € D|antecedent(t)}, (i-e. the set of records defined by the antecedent)
B(r) = {t € D|consequent(t)} (i.e. the set of records defined by the consequent)
C(r) = {t € D|antecedent(t) A consequeni(t)}.

The support, sup(M), for any conjunction, M, of ATs, is the number of
records which satisfy M. Given a rule, r, we designate the antecedent of the
rule 7% and the consequent r¢. Then, the support for the antecedent, sup(r®) =
|A(r)] = a and the support for the consequent, sup(r®) = |B(r)| = b (i.e. the
cardinality of the target class).

The support for r, sup(r), is defined as sup(r® Ar°) = |C(r)| = c.

The confidence (also known as accuracy) of r, conf(r), is defined as

conf (r) = sup(r) =<

sup(rt) a

The support for a rule may be expressed as a proportion of the support for
the consequent, this measure is referred to as coverage. In nugget discovery, it is
often convenient and more intuitive to use this measure in place of rule support
as we are interested in rules that represent a strong description of a predefined
class.

The coverage of r, cov(r), is defined as

sup(r) ¢

sup(re) b

cov(r) =

A strong rule may be defined as one that meets certain confidence and cov-
erage thresholds. Those thresholds are normally set by the user (or the data
owner) and are based on domain or expert knowledge about the data. Strong
rules may be considered interesting if they are found to be novel and useful.

2.3 CC-optimality

The complete set of strong rules that underlie a database may be very large and
many rules may be very similar. In order to address this problem and present a
concise set of rules, the cc-optimal (coverage-confidence optimal) subset of rules
was proposed in [3]. The cc-optimal set is a set of rules where each rule is optimal
with respect to coverage and confidence.

A partial ordering, <.. , is defined on rules where r; <. 2 if and only if:

Condition A- cov(ry) < cov(ra) A conf(r1) < conf(rsa),
Condition B- cov(r1) < cov(ra) A conf(r1) < conf (r2).

Also, r1 =¢c 2 in the partial ordering if cov(r1) = cov(r2) A conf (r1) = conf (r2).



It is easy to see how the concept of cc-optimality fits in with a multi-objective
approach as the cc-optimal set of rules are those that lie in the Pareto optimal
front when the objectives to be optimised are confidence and coverage. In other
words, if r; <. 12, rule rs is said to dominate ;. ry is said to be Pareto optimal
(or cc-optimal) if and only if there is no other rule, r; that dominates r5.

Hence, we can use a number of algorithms, including multi-objective meta-
heuristics, to search the space of all possible rules and extract those that are
cc-optimal, or close to cc-optimality.

The problem with cc-optimality as a criterion to choose rules is that, if two
rules have the same confidence and coverage, only one of them may be kept in the
cc-optimal set. However, the two rules could be very different either in attribute
space or they could describe a different subset of records. In such cases it could
be argued that the cc-optimal rule set may not be suitably representative of the
most interesting rules underlying the database. In this paper, we investigate this
claim, since that has been a doubt cast over our previous research. Intuitively, if
this is the case, one would expect to find at least some rules of similar coverage
and accuracy which cover different sets of records in the final Pareto front.

3 NSGA-II for nugget discovery

The algorithm NSGA-II [8] was applied to the problem of finding cc-optimal
rules [7]. NSGA-II uses non-dominated sorting as a mechanism for introducing
elitism in the search. It also uses a crowding operator to ensure diversity of
solutions within the Pareto front.

A population of solutions is created and sorted into fronts according to non-
domination with respect to the multiple objective functions. Solutions within
the same front are then sorted according to crowding distance. Solutions that
are non-dominated (i.e. those that belong to the first front) are given priority
for reproduction. If two solutions are non-dominated, the solution that is least
crowded has a higher priority for reproduction. The cycle of selection and repro-
duction using crossover and mutation creates a new pool which is merged with
the initial pool, and the process is repeated again over a number of generations.

3.1 Implementation details

The solution to be represented is a conjunctive rule or nugget following the
syntax described in section 2.1. A binary string is used for this as follows. The
first part of the string is used to represent the numeric fields or attributes. Each
numeric attribute is represented by a set of Gray-coded lower and upper limits,
where each limit is allocated a user-defined number of bits, p (p = 10 is the
default). There is a scaling procedure that transforms any number in the range
of possible values using p bits [0,2P — 1] to a number in the range of values that
the attribute can take.

The second part of the string represents categorical attributes, with each
attribute having v number of bits, where v is the number of distinct values (or



the number of labels) that the categorical attribute can take. If a bit assigned
to a categorical attribute is set to 0 then the corresponding label is included as
an inequality in one of the conjuncts.

In this work, we assume that the consequent of the rule is fixed and of the
form of an attribute test, AT, on the class label, hence it does not need to be
represented as part of the rule.

Random initialisation proved ineffective in a number of experiments. A more
effective approach for this kind of problem is to use mutated forms of the default
rule as initial solutions. The default is the rule in which all limits are maximally
spaced and all labels are included. In other words, it predicts the class without
any pre-conditions. This is the approach used in all experiments reported here,
with a mutation probability of 1% which was set after parameter experimenta-
tion.

To evaluate a solution, the bit string is first decoded into a rule, and the
data in the database, which has been previously loaded in memory, is scanned.
For each record the values of the fields are compared against the rule, and the
class is also compared. The counts of ¢ (support for the rule) and a (support
for the antecedent) are updated accordingly. The counts of b (support for the
consequent) and d (cardinality of the database) are known from the data load-
ing stage. Once all data has been examined, the measures of strength used as
the objectives, in this case the coverage and confidence, are calculated for each
nugget.

Parameter experimentation established the use of one-point crossover, with
a crossover rate of 80%. The size of the population was set at 100 solutions.

The output of this algorithm can either be the best solutions found through
the search (of which we keep a copy) or the final parents.

The rules obtained by this approach are a subset of the rules underlying
the database and should be a good representation of the cc-optimal set. There
is, of course, no way of guaranteeing optimality with any heuristic technique.
In practical experimentation, however, when the implementation was tested on
a number of standard databases against an algorithm (ARAC [18]) capable of
finding all rules in the cc-optimal set, it performed very well and was shown
to find a good approximation to the Pareto front of this set in each database
tested (for details see [7]). The spread of solutions in the Pareto optimal front
with respect to the objectives to be optimised appeared to be good, but it was
difficult to know how close some of those rules may have been to one another
in real terms, and which other rules (perhaps interesting rules) may have been
side-stepped in the search for cc-optimal rules. In order to assess these factors,
the set of rules produced by the algorithm needs to be analysed in terms of
similarity of rules within the set.

4 Rule Dissimilarity

Rule dissimilarity can be measured in a number of ways. First, one could look
at the specific syntactic difference between two rules, i.e. the difference in at-



tribute space. This may be considered as testing the appearance of two rules.
Rules that appear to be different in attribute space may represent interesting
concepts for the user. For example, they may represent different (alternative)
characterisations of the same subset of records, perhaps by using attributes that
are correlated.

On the other hand, we can simply examine the subset of records that is char-
acterised by a rule. Rules that characterise different (non-overlapping) subsets
of records may be considered dissimilar.

In the case of nugget discovery, we may be interested in encouraging diversity
of solutions in terms of both their appearance and the population they charac-
terise. However, the first concern must be to characterise as much of the target
class as possible, so we will start by looking at dissimilarity in the sets of records
that ‘match’ different rules. We leave rule appearance as an issue for further
research.

4.1 Dissimilarity measure

When trying to define the set of records that match a particular rule, it is
possible to use A(r), i.e. the set of records that match the antecedent of the rule
r. Another possibility is to use C(r), i.e. the set of records that match both the
antecedent and consequent of the rule r. In all experimentation conducted we use
the set C(r) to calculate rule dissimilarity. In terms of their use for calculating
distances, they are interchangeable by replacing C' by A in the equation below.

If 71 and 79 are two arbitrary rules, we can define a dissimilarity measure as

d(r1,r2) = |C(r1) U C(r2)| = |C(r1) N C(r2)]
=|C(r1) — C(ra)| +|C(r2) — C(r1))]

This initial measure provides a count of records matching one and only one
of the two rules. Dividing this measure by the number of records in the database,
|D| gives the simple matching coefficient [12].

Alternatively, we can use the Jaccard coefficient [11] on the sets of support
for the rules and define

n(ry,re) = d(r1,r2)/|C(r1) U C(r2)|.

Intuitively, two rules that are mutually supported by a thousand records and
differ over only six are more similar than two rules that are mutually supported
by no records and differ over five. Hence the Jaccard coefficient may be a better
measure of rule dissimilarity for our purposes.

4.2 Clustering of rules

In order to understand the results of applying distance metrics to the rules
obtained by the NSGA-II algorithm, we proceed to apply a clustering algorithm
to cluster similar rules together. This should help in the presentation of results.



Our recent research on suitable approaches to clustering rules presented a
number of possible clustering algorithms [16,17] for rule clustering. Here, we use
two of the algorithms: Partitioning Around Medoids (PAM) and AGlomerative
NESting (AGNES). Both algorithms work on a pre-prepared dissimilarity ma-
trix which contains the distance between each pair of rules calculated using the
Jaccard coefficient. The resulting clusters are based on these distances between
rules, hence rules that appear in the same cluster should apply to the same or
overlapping subsets of records.

5 Experimentation

For our experimentation, we are using the Adult dataset from the UCI repository
[13]. Initial experiments used a set of rules produced by the NSGA-II algorithm
for nugget discovery. The algorithm was applied to produce rules to describe
the class “Income > 50 k”. The AGNES clustering algorithm was applied to
cluster the best rules found through the search. The clustering used the Jaccard
coefficients on the sets of support for the rules. The hierarchy of rules produced
was then cut at a point that lead to 8 clusters. The PAM clustering algorithm
was also used to cluster the best rules obtained. The results are presented in
figures 1 and 2 respectively. Both graphs show that rules that are close in terms
of the values of their objective functions (coverage and confidence) are also close
in terms of the set of records that support them. The clustering tends to be
neatly distributed on the Pareto front, with little overlap of clusters within the
front. Hence in the majority of cases, selecting sets of rules with similar coverage
and confidence tends to deliver similar rules that describe a similar subsets of
records. As we examine rules of different coverage/confidence we are likely to
be finding rules that describe different subsets of records. A similar exercise was
performed to cluster the rules in the final parent population, and this exhibited
exactly the same characteristics. Other sets of rules produced from different
databases provided similar clustering behavior.

5.1 Encouraging diversity in terms of support sets

It may be possible to encourage diversity of the rule set by using some mea-
sure of dissimilarity of rules as a third criterion to be optimised. However, since
dissimilarity can only be measured in the context of other rules in the set, this
will result in a less efficient evaluation procedure. Also, the application of dis-
similarity to the non-dominated sorting may result in a new partial ordering of
rules which does not reflect the requirements of nugget discovery. We consider
diversity of rules in terms of support sets as a “second priority” objective, to be
achieved once we can guarantee a pool of strong rules.

For our purpose, we decided to experiment with the crowding measure of
NSGA-II [8]. The crowding measure in normal operation ensures that the pop-
ulation within the Pareto optimal front is as diverse as possible, so it acts as a
secondary criterion for ordering rules. We first analysed the effect of not using a



Coverage

Coverage

1+ *» \
0.9 1
& Cluster 1
0.8 - M Cluster 2
& Cluster 3
0.71 X Cluster 4
06 1 L0 ACluster 5
Q’X OCluster 6
0.5 A + Cluster 7
® Cluster 8
0.4 4
0.3 1
0.2
0.1+
0 . . . . . . . )
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Confidence

Fig. 1. Clustering of rules for Adult dataset using AGNES - 8 clusters

14 m %
0.9 |
O Cluster 1
0.8 4 OCluster 2
0.7 & Cluster 3
] X Cluster 4
0.6 1 W A Cluster 5
\ ® Cluster 6
0.5 A %Hﬂil- + Cluster 7
".],h_ OCluster 8
0.4 4
0.3 -
0.2 4 x> %
0.1 1
0 T T T T T T T 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Confidence

Fig. 2. Clustering of rules for Adult dataset using PAM - 8 clusters



crowding measure for this application of NSGA-II for rule induction, so within
the algorithm all rules where considered to be equally crowded at all times. The
Pareto front obtained by running our algorithm on the Adult data with equal
crowding is shown in figure 3. In this section, we show the solutions in the fi-
nal population as well as the best solutions found during the search. To aid the
analysis of results, the approximation to the Pareto front obtained by the ARAC
algorithm is also plotted as a line. ARAC had to impose some restrictions on
the search due to the size of this database, hence it can only give us an approxi-
mation to the true Pareto front. However, the 976 rules found by this algorithm
represent the best basis for comparison of results.

A similar graph showing the results of using the crowding measure as de-
scribed in the original NSGA-II algorithm is also presented in figure 4.
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It can be seen that using the standard crowding measure proposed by the
NSGA-II algorithm produces a much better spread of solutions in the Pareto
optimal front, both in terms of the best solutions found as well as in terms of
the final parents.

A number of approaches were tried to adapt the crowding measure to en-
courage diversity within the rule set in terms of support sets. We only discuss
the most successful approach here.

The Jaccard dissimilarity measure was calculated for each pair of rules using
the support set, C, for calculations. The crowding measure was then modified to
be a count of the number of rules within a certain threshold distance, T, from
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the rule being examined, according to the Jaccard dissimilarity measure. Three
values were tried for this distance threshold: 0.1, 0.2, 0.5. In the standard crowd-
ing measure, the crowding distance is calculated by using solutions within the
same front. In our proposed approach it is possible to use the whole population
to calculate the new crowding distance, as well as the solutions within the same
front only. We experimented with both options.

The results are shown in figure 5. The left hand column of graphs shows the
results using crowding based on the distance of the solutions in the front only,
whereas the right column represents the results using the whole population. The
first row of graphs represents the threshold value T' = 0.5; for the second row
T = 0.2; for the final row T' = 0.1.

When crowding is calculated using threshold distances of 0.2 and 0.1 the
spread of best found solutions seems to cover most of the Pareto front. However,
the final parent solutions show less coverage of the front. A threshold of 0.5 pro-
duces poor coverage of the Pareto front. Some of these observations are expected:
since we are no longer encouraging diversity as per the objective functions, some
of that diversity will be lost in the population.

For each of the sets of final parents created with different crowding mecha-
nisms (since there are always the same number of parents in each set), we calcu-
late the sum of distances between rules. This is reported in table 1. The sum of
distances increases in all cases with the new crowding mechanism with respect
to standard crowding. The sum of distances also increases for equal crowding
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Table 1. Sum of distances between rules using different crowding mechanisms

Approach Sum

Approach Sum

Standard 4,570.51

Equal  5,057.4

Crowding based on
distances by front

Crowding based on
distances by population|

0.1 5,081 0.1 5,510.52
0.2 5,007.25 0.2 5,301.09
0.5 5,776.27 0.5 5,784.05

but the coverage of the front is poorer, with some areas not represented in the
final parent population.

To further assess the increase in diversity of solutions in terms of support
sets, we use PAM to cluster some of the rules produced and observe the degree of
overlap. For this purpose, we choose the rules produced using the new crowding
measure with the whole population and a threshold of 0.2. We use the support
set, C, for dissimilarity calculations and clustering. We feed the clustering algo-
rithm the set of best rules found. As before, we aim to produce 8 clusters for
comparative purposes. The results of this process are shown in figure 6. There
is some overlap now in clusters 5 and 2, so in the high confidence / low coverage
area of the Pareto front we have managed to increase the diversity of solutions
according to support sets. It seems reasonable that this is the area in which we
have created diversity with our approach, as high coverage rules would apply to a
high percentage of records within the population, and therefore finding alterna-
tive high coverage rules that apply to different sets of records is unlikely. Within
the low coverage rules, there is obviously more scope for creating diversity as
we have managed to encourage this with our new crowding measures. Hence we
may now be able to present a set of rules which includes more diverse (in terms
of support sets) rules of high accuracy.

6 Conclusions and further Research

In this paper we have combined a number of innovative approaches to rule induc-
tion, exploiting the power of multi-objective metaheuristics to obtain interesting
rule sets. In particular, we have experimented with the crowding mechanism in
NSGA-II to improve the quality of rule sets obtained. We have also assessed
the quality of rule sets obtained by using innovative approaches to cluster rules
according to dissimilarity measures. This combined approach, when fully tested,
may become a very powerful tool for rule induction.

We have shown that the rule sets obtained by NSGA-II in the standard
implementation do not contain many cases of rules that are close in the objective
space but far apart in terms of their support sets.
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We have created a modification of NSGA-II by introducing the concept of
rule dissimilarity in the crowding measure. This has allowed us to increase the
diversity of rules in some areas of the Pareto front in terms of support sets.

The work presented here is only in its initial stages, and there is scope for ex-
tending it and improving in a number of ways. More experimentation is required
to draw conclusive results. As further work, other measures of rule dissimilarity
may be used to encourage diversity of the rule set. This may include considering
the appearance of rules. Modifications of the NSGA-II algorithm to include our
criteria may not be limited to the crowding measure, but may be more drastic
using different selection criteria altogether. Experimentation with other multi-
objective metaheuristics may also be beneficial.
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