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ABSTRACT

This paper examines the following issues related to the 

implementation of local search in hybrid multi-objective 

genetic algorithms: specification of an objective function 

to be optimized by local search, early termination of local 

search before finding a locally optimum solution, choice 

of individuals to which local search is applied, and timing 

of the application of local search. These issues are 

examined through computer simulations on a flowshop 

scheduling problem using a hybrid version of a well-

known multi-objective genetic algorithm: the strength 

Pareto evolutionary algorithm (SPEA). Simulation results 

show that the hybridization with local search degrades the 

search ability of the SPEA when the implementation of 

local search is not appropriate. It is also shown that the 

hybridization has the possibility to improve the 

convergence speed of the SPEA to the Pareto front. 

1. INTRODUCTION 

Since Shaffer’s work [1], genetic algorithms have been 

applied to multi-objective optimization problems in many 

studies [2-4]. One approach to the design of multi-

objective genetic algorithms with high search ability is the 

efficient use of non-dominated solutions stored in a 

secondary population separately from the current 

population [5-8]. Another approach is the hybridization 

with local search [9-11]. Hybridization with local search, 

however, often degrades the global search ability of multi-

objective genetic algorithms when the available 

computation time is limited. This is because almost all the 

available computation time is spent by local search. A 

large number of solutions are examined for finding a 

locally optimum solution by local search from each initial 

(i.e., starting) solution generated by genetic operations.

 For decreasing the computation time spent by local 

search, we examined the following two tricks in our 

former studies [12]: Early termination of local search 

before finding locally optimum solutions and the 

restriction on the number of solutions to which local 

search is applied. Local search, which was applied to only 

a few solutions in the current population, was terminated 

before locally optimum solutions were found. We 

demonstrated the importance of finding a good balance 

between local search and genetic search in hybrid multi-

objective genetic algorithms [12]. In addition to these two 

tricks, we also examine the timing of the application of 

local search in this paper. While local search was usually 

applied to solutions in every generation [9-12], its 

application is executed in every T generations in this paper 

where T is a user-definable parameter.  

 When hybrid algorithms are applied to a multi-

objective optimization problem, we have to specify an 

objective function to be optimized by local search. This 

specification is straightforward in the application to a 

single-objective optimization problem because the single 

objective can be used for both genetic search and local 

search. On the other hand, the specification of an objective 

function for local search is not straightforward in the case 

of multi-objective optimization. A weighed sum of 

multiple objectives was often used for local search in 

hybrid multi-objective genetic algorithms [9-12]. In this 

paper, we examine the following six alternatives: 

(a) The weighted sum of multiple objectives with random 

weights. Initial (i.e., starting) solutions for local search 

are randomly selected from the current population.  

(b) The weighted sum of multiple objectives with random 

weights. An appropriate initial solution is selected 

from the current population for each weight vector. 

(c) The weighted sum of multiple objectives with pseudo 

weights [4]. A pseudo-weight vector is specified for 

each of randomly selected initial solutions based on its 



location in the objective space. 

(d) The direct use of the fitness function in the strength

Pareto evolutionary algorithm (SPEA [5]).

(e) Move to a non-dominated neighbor that is not

dominated by the current solution.

(f) Move to a better neighbor that dominates the current

solution.

In the last two alternatives, no objective function is 

explicitly defined. The objective function in (d), which is

defined by the dominance relation in the primary and 

secondary populations, cannot be simply written. 

In this paper, we first examine the above-mentioned

six alternatives in the implementation of local search.

Then we examine the balance between genetic search and

local search using the three tricks: Early termination of

local search, its application to only a limited number of

solutions, and its application to solutions in every T

generations. Simulation results on a flowshop scheduling

problem clearly show that inappropriate hybridization of

the SPEA with local search significantly degrades its 

global search ability to find a variety of non-dominated

solutions. We also show that a hybrid algorithm with a 

good balance between local search and global search can

outperform the non-hybrid SPEA. 

2. OBJECTIVE FUNCTION FOR LOCAL SEARCH 

For simplicity of explanation, let us consider the following

two-objective optimization problem:

Minimize (f  and . (1))1 x )(2 xf

2.1 Weighted Sum with Random Weights 

While we can use many multi-objective genetic

algorithms in the literature to our two-objective

optimization problem, their hybridization with local

search is not straightforward because local search is an

iterative improvement procedure for optimizing a single

objective function. That is, we have to construct a scalar

objective function to be optimized by local search. 

A simple approach to the implementation of local

search for our two-objective problem in (1) is the use of 

the following weighted sum as an objective function.

, (2))()()( 2211 xxx fwfwf

where  and are non-negative weights satisfying the

following relations:
1w 2w
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The specification of the weight vector w

corresponds to that of the local search direction in the two-

dimensional objective space. For finding a variety of non-

dominated solutions, a different weight vector was used

for each solution in [9,10]. In Fig. 1, the weight vector for

each solution is randomly specified.

),( 21 ww

2.2 Selection of Initial Solutions with Random Weights

As we can see in Fig. 1, a randomly specified local search

direction for each solution is not always appropriate. 

Moreover the application of local search to poor solutions

seems to be mere waste of CPU time. For decreasing the

inefficiency of the random weight specification, local

search was applied to only good solutions in our former

study [12] as shown in Fig. 2. In [12], first a local search

direction was randomly specified. Then an initial solution

was selected from the current population using the

tournament selection of the size four with replacement

where the weighted sum in (2) with the current weight

vector is used for evaluating each individual. 
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Fig. 1  Randomly specified local search directions.
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Fig. 2  Application of local search only to good solutions.

2.3 Use of Pseudo-Weights

In Deb [4], the pseudo-weight w  for the i-th

objective is defined for the current solution x as
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where  and are the maximum and minimum

values of the i-th objective function in the current

population, respectively. The weighted sum in (2) is used

in local search where a pseudo-weight vector is specified

using this formulation for each initial solution randomly

selected from the current population.
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2.4 Direct Use of a Fitness Function

Another approach to the implementation of local

search is the direct use of fitness functions in multi-

objective genetic algorithms. In this paper, we use the

fitness function in the SPEA [5], which is defined by the 

dominance relation among solutions in the primary and

secondary populations. A drawback of this approach is

that longer CPU time is required for evaluating each 

neighbor in local search than the above-mentioned

approaches with the weighted sum of multiple objectives.

2.5 Move to Non-dominated Solutions

For comparison, we examine other alternatives based

on the dominance relation between the current solution

and its neighbors. One implementation of local search is to 

replace the current solution with its neighbor that is not

dominated by the current solution. This approach is 

illustrated in Fig. 3 where the current solution (closed

circle) can be replaced with any neighbor (open circle) in

the shaded region. A drawback of this approach is that the

current solution may be degraded by multiple moves.
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Fig. 3  Move to a non-dominated solution.

2.6 Move to Better Solutions

Another approach is to move to a better neighbor that

dominates the current solution. A drawback of this

approach is that the movable region from the current

solution is very small especially in the case of many

objectives (i.e., in a high-dimensional objective space). 

3. LOCAL SEARCH AND GENETIC SEARCH 

For finding a good balance between local search and 

genetic search, we examine the following three tricks that

can control the CPU time spent by local search. 

3.1 Early termination of local search

In local search of our former studies [9,10,12], a 

neighboring solution was randomly generated from the

current solution. The current solution was replaced with

the generated neighbor if the neighbor was better than the

current solution. When no better solution was found

among randomly generated k neighbors of the current

solution, local search was terminated.

3.2 Restriction on the Number of Initial Solutions

In [12], an initial solution for local search was selected 

from the current population using the tournament selection

based on a randomly specified weight vector. We use the

same idea in the second alternative of the objective

function for local search. In the other alternatives, we

randomly choose a pre-specified number of initial

solutions from the current population. The next population

consists of the improved solutions by local search and the

other solutions in the current population to which local

search is not applied. The number of solutions to which

local search is applied is denoted by N.

3.3 Timing of Local Search 

In this paper, local search is applied to solutions in every T

generations ( T 1 in our former studies [9, 10, 12]).

4. COMPUTER SIMULATIONS 

4.1 Test Problem

As in our former studies [9,10,12], we generated a two-

objective flowshop scheduling problem with 40 jobs and

20 machines. The two objectives are to minimize the

makespan and the maximum tardiness. We used the shift

mutation in local search for generating neighbors of the

current solution. The total number of neighbors for each 

solution is 1521 (i.e., ).3939

4.2 Parameter Specification 

We implemented a hybrid algorithm of the SPEA with

local search where parameter values were specified as



In the above computer simulations, early termination

of local search was realized by the small value of k (i.e.,

5). In Fig. 6, we show simulation results for several

values of k  (i.e., 5,100,1000). The second alternative

of the objective function was used in the computer

simulations. For comparison, we also show simulation

results by the non-hybrid SPEA (i.e., the original SPEA) 

in Fig. 6. From this figure, we can see that much worse

results were obtained from large values of k than the

original SPEA. This means that the search ability of the

SPEA was deteriorated by the hybridization with local

search when we did not use the early termination trick. 

Size of the primary population: 100, 

Size of the secondary population: 100, 

k

k

Crossover rate: 0.9 (two-point order crossover), 

Mutation rate: 0.3 (shift mutation).

We examined several specifications of the parameters in

local search (i.e., k, N and T). The hybrid algorithm was 

terminated when 100,000 solutions were examined.

4.3 Simulation Results 

First we compared the six alternatives for specifying the

objective function to be optimized by local search. The

parameters in local search were specified as k 5, 5

and 1. Non-dominated solutions obtained from five

runs for each alternative are depicted in Fig. 4 and Fig. 5.

From these figures, we can see that slightly better results

were obtained in Fig. 4 with the weighted sum in (2) than

Fig. 5. The average CPU time was about 6 seconds (i.e.,

5.21 ~ 6.88) for the five alternatives except for the direct

use of the fitness function where much longer CPU time

was required (i.e., 17.50 seconds). 

N

T In Fig. 7, we show simulation results for some

combinations of k and N (N: the number of solutions to

which local search is applied in each generation). Good

results could not be obtained when both k and N were

large (also see [12]).
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Fig. 6  Effect of early termination of local search 
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In Fig. 8, we show the effect of the new parameter T

on the performance of the hybrid algorithm. The otherFig. 5  Simulation results by the last three alternatives.



Referencesparameter values were the same as the case of k 5 in Fig.

6. We also show the result of the original SPEA, which

can be viewed as the case of T . This figure shows

that the search ability of the hybrid algorithm can be

improved by appropriately specifying the value of T (i.e.,

the timing of the local search application). We can also 

see from Fig. 8 that slightly better results were obtained

from the hybrid algorithm with T  than the non-hybrid

SPEA with T .
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