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Abstract. This paper examines the effect of mating restriction on the search 
ability of EMO algorithms. First we propose a simple but flexible mating 
restriction scheme where a pair of similar (or dissimilar) individuals is selected 
as parents. In the proposed scheme, one parent is selected from the current 
population by the standard binary tournament selection. Candidates for a mate 
of the selected parent are winners of multiple standard binary tournaments. The 
selection of the mate among multiple candidates is based on the similarity (or 
dissimilarity) to the first parent. The strength of mating restriction is controlled 
by the number of candidates (i.e., the number of tournaments used for choosing 
candidates from the current population). Next we examine the effect of mating 
restriction on the search ability of EMO algorithms to find all Pareto-optimal 
solutions through computational experiments on small test problems using the 
SPEA and the NSGA-II. It is shown that the choice of dissimilar parents 
improves the search ability of the NSGA-II on small test problems. Then we 
further examine the effect of mating restriction using large test problems. It is 
shown that the choice of similar parents improves the search ability of the 
SPEA and the NSGA-II to efficiently find near Pareto-optimal solutions of 
large test problems. Empirical results reported in this paper suggest that the 
proposed mating restriction scheme can improve the performance of EMO 
algorithms for many test problems while its effect is problem-dependent and 
algorithm-dependent. 

1  Introduction 

Since Schaffer’s study [13], evolutionary algorithms have been applied to various 
multiobjective optimization problems for finding their Pareto-optimal solutions (e.g., 
see Coello et al. [1] and Deb [3]). Those algorithms are often referred to as EMO 
(evolutionary multiobjective optimization) algorithms. Recent EMO algorithms 
usually share some common ideas such as elitism, fitness sharing and Pareto ranking. 
While mating restriction has been often discussed in the literature, it has not been 
used in many EMO algorithms as pointed out in some reviews on EMO algorithms [6, 
14, 18]. The aim of this paper is to examine the effect of mating restriction on the 
search ability of EMO algorithms. More specifically, we demonstrate how the search 



 

ability of EMO algorithms to find Pareto-optimal or near Pareto-optimal solutions can 
be improved by mating restriction. 
 Mating restriction was suggested by Goldberg [7] for single-objective genetic 
algorithms. Hajela & Lin [8] and Fonseca & Fleming [5] used it in their EMO 
algorithms. The basic idea of mating restriction is to ban the crossover of dissimilar 
parents from which good offspring are not likely to be generated. In the 
implementation of mating restriction, a user-definable parameter matingσ  called the 
mating radius is usually used for banning the crossover of two parents whose distance 
is larger than matingσ . The distance between two parents is measured in the decision 
space or the objective space. The necessity of mating restriction in EMO algorithms 
was also stressed by Jaszkiewicz [11] and Watanabe et al. [15]. On the other hand, 
Zitzler & Thiele [17] reported that no improvement was achieved by mating 
restriction in their computational experiments. Van Veldhuizen & Lamont [14] 
mentioned that the empirical evidence presented in the literature could be interpreted 
as an argument either for or against the use of mating restriction. Moreover, there was 
also an argument for the selection of dissimilar parents. Horn et al. [9] argued that 
information from very different types of tradeoffs could be combined to yield other 
kinds of good tradeoffs. Schaffer [13] examined the selection of dissimilar parents but 
observed no improvement.  
 In this paper, we examine the effect of mating restriction on the search ability of 
EMO algorithms through computational experiments on multiobjective knapsack and 
permutation flowshop scheduling problems. As EMO algorithms, we use the SPEA 
[18] and the NSGA-II [4] because their high search ability was empirically 
demonstrated in the literature [3, 4, 16, 18]. We first propose a simple but flexible 
mating restriction scheme for implementing the selection of dissimilar parents as well 
as similar parents in a unified framework. Next we examine the effect of mating 
restriction on the search ability of the SPEA and the NSGA-II to find all Pareto-
optimal solutions of small test problems. Then we examine their search ability to 
efficiently find near Pareto-optimal solutions of large test problems. Experimental 
results clearly show that the search ability of those EMO algorithms on some test 
problems can be improved by mating restriction. It is also shown that the effect of 
mating restriction is problem-dependent and algorithm-dependent.  

2  Mating Restriction Scheme without Mating Radius 

In general, an n-objective optimization problem can be written as  

   Optimize ))(...,),(),(()( 21 xxxxf nfff= ,         (1) 
   subject to Xx ∈ ,                 (2) 

where )(xf  is the objective vector, )(xif  is the i-th objective to be minimized or 
maximized, x is the decision vector, and X is the feasible region in the decision space. 



 

Let us denote the distance between two solutions x and y as || yx −  in the decision 
space and |)()(| yfxf −  in the objective space. In this paper, the distance 

|)()(| yfxf −  in the objective space is measured by the Euclidean distance as  

   22
11 |)()(||)()(||)()(| yxyxyfxf nn ffff −+⋅⋅⋅+−=− .    (3) 

On the other hand, the definition of the distance || yx −  in the decision space totally 
depends on the representation of solutions in a particular problem. For example, we 
use the Hamming distance for m-item knapsack problems as  

   |||||| 11 mm yxyx −+⋅⋅⋅+−=− yx ,           (4) 

where x and y are binary strings of the length m: mxxx ⋅⋅⋅= 21x  and myyy ⋅⋅⋅= 21y . 
On the other hand, solutions of permutation flowshop scheduling problems are 
permutations of given jobs. In this case, we use the sum of the distance between the 
positions of each job as the distance of two solutions. The calculation of the distance 
is illustrated in Fig. 1. The distance between the positions of Job 1 (denoted by J1 in 
Fig. 1) is 4 since it is placed in the first position of String 1 and the fifth position of 
String 2. The distance between the positions of the other jobs is calculated in the same 
manner (i.e., 1 for Job 2, 0 for Job 3 and Job 4, and 3 for Job 5). Thus the distance 
between the two strings in Fig. 1 is calculated as 8 (i.e., 30014 ++++ ).  
 

J1 J2 J3 J4 J5

J2 J5 J3 J4 J1

String 1

String 2

J1 J2 J3 J4 J5

J2 J5 J3 J4 J1

String 1

String 2

Fig. 1. Distance between two strings for five-job flowshop scheduling problems. 

 In this paper, we propose a mating restriction scheme for examining the effect of 
mating restriction on the search ability of EMO algorithms. The proposed mating 
restriction scheme is illustrated in Fig. 2 where open circles at the bottom denote 
individuals randomly drawn from the current population with replacement. One 
parent (i.e., Parent A in Fig. 2) is chosen by the standard binary tournament selection. 
In the selection of a mate for Parent A (i.e., Parent B in Fig. 2), first the standard 
binary tournament selection is iterated β  times for finding β  candidates. Each 
candidate is the winner of a tournament. Then a mate is chosen among the β  
candidates by measuring the distance from each candidate to Parent A. The distance is 
measured in the decision or objective space. The most similar (or dissimilar) 
candidate with the minimum (or maximum) distance to Parent A is selected as its 
mate. In this manner, a mate for Parent A is selected through two-stage tournament 
selection. In the first stage, the fitness-based binary tournament selection is iterated 
for finding β  candidates. In the second stage, the distance-based tournament 



 

selection of the tournament size β  is performed for choosing a single individual as a 
mate for Parent A from the β  winners in the first stage. Our mating restriction 
scheme has the following flexibility in its implementation: 

(a) The choice between the decision space and the objective space in which the 
distance is measured. 

(b) The choice between the similarity (i.e., minimum distance) and the dissimilarity 
(i.e., maximum distance) as the mate selection criterion in the distance-based 
tournament selection in the second stage. 

(c) The value of β , i.e., the number of candidates from which a mate is chosen based 
on the mate selection criterion.  

 The user-definable parameter β  can be viewed as the strength of mating 
restriction. That is, the strength of mating restriction is controllable through the value 
of β . When =β 1, our mating restriction scheme is the same as the standard binary 
tournament selection with no mating restriction. As the value of β  increases, more 
similar (or dissimilar) parents are selected and recombined.  

 

1 2
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Fig. 2. Our mating restriction scheme.  

3  Examination of the Effect of Mating Restriction 

In this section, we examine the effect of the proposed mating restriction scheme on 
the performance of EMO algorithms through computational experiments on 
multiobjective knapsack and permutation flowshop scheduling problems. For this 
purpose, we combined our mating restriction scheme with recently developed popular 
EMO algorithms: the SPEA [18] and the NSGA-II [4]. As mentioned in the previous 
section, our mating restriction scheme is the same as the standard binary tournament 
selection when =β 1. Thus the modified SPEA and the modified NSGA-II are the 
same as their original versions when =β 1.  



 

3.1  Test Problems 

In our computational experiments, we used four knapsack problems in Zitzler & 
Thiele [18]: two-objective 250-item, three-objective 250-item, two-objective 500-item, 
and three-objective 500-item test problems. We also generated 10 small test problems 
with two objectives and 30 items in the same manner as [18]. The small test problems 
were used for examining the search ability of the EMO algorithms to find all Pareto-
optimal solutions while the large test problems were used for examining their search 
ability to efficiently find near Pareto-optimal solutions. We also generated 10 two-
objective permutation flowshop scheduling problems with 10 machines and 12 jobs in 
the same manner as Ishibuchi & Murata [10]. The two objectives are the minimization 
of the makespan and the maximum tardiness. As large permutation flowshop 
scheduling problems, we generated four test problems with 20 machines: two-
objective 40-job, three-objective 40-job, two-objective 80-job, and three-objective 80-
job problems. In the three-objective problems, the minimization of the total flow time 
was used in addition to the minimization of the makespan and the maximum tardiness. 

3.2  Parameter Specifications 

We examined all the four combinations related to the distance definition and the mate 
selection criterion in our mating restriction scheme: { decision space, objective space}  
× { minimum distance, maximum distance} . We also examined ten different values of 
β : =β 1,2,3,...,10. The SPEA and the NSGA-II combined with our mating 
restriction scheme were applied to knapsack problems with m items under the 
following parameter specifications: 

   Crossover probability: 0.8, 
   Mutation probability: m/1 , 
   Population size in NSGA-II: 200, 
   Population size in SPEA: 100, 
   Population size of the secondary population in SPEA: 100, 
   Stopping condition: 2000 generations. 

The above specifications of the population size seem to somewhat favor the NSGA-II 
because 200 solutions were examined in each generation of the NSGA-II while 100 
solutions were examined in the SPEA. This is, however, not a serious problem 
because our aim in this paper is to examine the effect of mating restriction on the 
search ability of each algorithm (not to compare them with each other).  
 We also used the same parameter specifications for flowshop scheduling except 
for the mutation probability. The mutation probability was defined for each string as 
0.5 (for details of genetic operations for flowshop scheduling, see [10]). It should be 
noted that the mutation was applied to each string in flowshop scheduling while it was 



 

applied to each bit in knapsack problems.  

3.3  Performance Measures 

Various performance measures have been proposed in the literature for evaluating a 
set of non-dominated solutions. As explained in Knowles & Corne [12], no single 
performance measure can simultaneously evaluate various aspects of a solution set. 
Moreover, some performance measures are not designed for simultaneously 
comparing many solution sets but for comparing two solution sets with each other. 
 For the small test problems (i.e., 30-item knapsack problems and 12-job flowshop 
scheduling problems), we used the ratio of undiscovered Pareto-optimal solutions as a 
performance measure. This ratio is referred to as the undiscovered solution ratio in 
this paper. For calculating this ratio, all Pareto-optimal solutions of the small test 
problems were found by an enumeration method. The average number of the Pareto-
optimal solutions was 17.4 in the knapsack problems and 13.6 in the flowshop 
scheduling problems. For the large test problems, we used the average distance from 
each Pareto-optimal solution to its nearest solution in a solution set as a performance 
measure. This measure was used in Czyzak & Jaszkiewicz [2] and referred to as RD1  
in Knowles & Corne [12]. For any multiobjective optimization problem, it is 
reasonable for the decision maker (DM) to choose a final solution *x  from the 
Pareto-optimal solution set. The final solution *x  is the best solution with respect to 
the DM’s preference. When the true Pareto-optimal solution set is not given, the DM 
will choose a final solution x  from an available solution set. When the available 
solution set is a good approximation of the true Pareto-optimal solution set, the 
chosen solution x  may be close to *x . In this case, the loss due to choosing x  
instead of *x  can be approximately measured by the distance between x  and *x  in 
the objective space. Since x  and *x  are unknown, we cannot directly measure the 
distance. The expected value of the distance, however, can be roughly estimated by 
the average value of the distance from each Pareto-optimal solution to its nearest 
available solution. The RD1  measure corresponds to this approximation. 
 The RD1  measure needs all Pareto-optimal solutions of each test problem. Since 
all Pareto-optimal solutions of the two-objective 250-item and 500-item knapsack 
problems were available from the homepage of the first author of [18], we used them. 
For the three-objective 250-item and 500-item knapsack problems, we found near 
Pareto-optimal solutions using the SPEA and the NSGA-II. These algorithms were 
applied to each test problem using longer CPU time and larger memory storage (i.e., 
30000 generations with the population size 200 and the secondary population of the 
same size in the SPEA, and 30000 generations with the population size 400 in the 
NSGA-II) than the other computational experiments (see Subsection 3.2). We also 
used a single-objective genetic algorithm with a secondary population where all the 
non-dominated solutions were stored with no size limitation. Each of the three 



 

objectives was used in the single-objective genetic algorithm. This algorithm was 
applied to each three-objective test problem 30 times (10 times for each objective 
using the same stopping condition as the NSGA-II: 30000 generations with the 
population size 400). The SPEA and the NSGA-II were also applied to each test 
problem 10 times. Thus we obtained 50 solution sets for each test problem. Then we 
chose non-dominated solutions from the obtained 50 solution sets as near Pareto-
optimal solutions. For 40-job and 80-job flowshop scheduling problems, near Pareto-
optimal solutions were found in the same manner (the stopping condition was 
specified as 50000 generations). The number of Pareto-optimal or near Pareto-optimal 
solutions for each test problem is summarized in Table 1. While each objective of the 
knapsack problems has the same order of magnitude, they are not the same in the 
flowshop scheduling problems. Thus the objective space of each flowshop scheduling 
problem was normalized using the obtained near Pareto-optimal solutions when the 

RD1  measure was calculated. More specifically, the objective space was normalized 
so that the minimum and maximum values of each objective among the near Pareto-
optimal solutions became 0 and 100, respectively.  
 As a performance measure of a solution set (say jS ), we also used the ratio of 
non-dominated solutions ||/|| *

jj SS  where *
jS  is a set of solutions in jS  that are not 

dominated by any other solutions in other solution sets when multiple solution sets are 
compared with each other. 
 

Table 1. The number of Pareto-optimal or near Pareto-optimal solutions. 
 

Knapsack problems Flowshop scheduling problems 

Two-objective Three-objective Two-objective Three-objective 

250-item 500-item 250-item 500-item 40-job 80-job 40-job 80-job 

567 1427 2158 2142 98 87 973 974 

3.4  Results on Small Test Problems 

In Fig. 3 (a), we show the average ratio of undiscovered Pareto-optimal solutions by 
the SPEA with our mating restriction scheme. The average ratio was calculated over 
50 runs of the SPEA with each specification of β  on each of the 10 small knapsack 
problems (i.e., over 500 solution sets in total for each value of β ). The horizontal 
axis of this figure is the value of β . As shown in this figure, =β 1 corresponds to the 
original SPEA. The maximum distance was used in the left half of this figure as the 
mate selection criterion while the minimum distance was used in the right half. That is, 
the most dissimilar solution was selected among β  candidates in the left half while 
the most similar solution was selected in the right half. Open circles and closed circles 
show the results when the distance was measured in the decision space and the 
objective space, respectively. In this figure, we cannot observe any significant 
improvement by mating restriction (by specifying β  as 1>β ). 
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    (a) Results by SPEA.              (b) Results by NSGA-II. 

Fig. 3. Results on the two-objective 30-item knapsack problems. 

 Fig. 3 (b) shows the average ratio of undiscovered Pareto-optimal solutions by the 
NSGA-II with our mating restriction scheme. While the search ability of the SPEA 
was not improved by our mating restriction scheme in Fig. 3 (a), we can observe clear 
improvement in the search ability of the NSGA-II in Fig. 3 (b). Large improvement 
was achieved in a wide range of β  in the left half of Fig. 3 (b) independent of the 
choice between the decision space and the objective space (while somewhat better 
results were obtained from the distance in the decision space than the objective space). 
When the distance was calculated in the decision space, the average ratio of 
undiscovered solutions was improved from 7.05% in the case of =β 1 (i.e., the 
original NSGA-II) to about 3% by our mating restriction scheme (see open circles in 
the left half of Fig. 3 (b)). The improvement is statistically significant with the 99% 
confidence level for the results by ≥β 2 in the decision space and ≥β 3 in the 
objective space (the Mann-Whitney U test). 
 The average ratio of undiscovered Pareto-optimal solutions was also calculated 
over 50 runs of the SPEA and the NSGA-II for each of the ten small flowshop 
scheduling problems. Results by the SPEA and the NSGA-II were shown in Fig. 4 (a) 
and Fig. 4 (b), respectively. In Fig. 4 (a), the search ability of the SPEA was improved 
by our mating restriction scheme when the distance was measured in the decision 
space and dissimilar parents were chosen (i.e., open circles in the left half). The 
improvement is statistically significant with the 95% confidence level for the results 
by =β 5, 6, 7, 8, 9. On the other hand, the search ability of the NSGA-II was 
improved by our mating restriction scheme when the distance was measured in the 
objective space as well as in the decision space in the left half of Fig. 4 (b). The 
improvement is statistically significant with the 99% confidence level for the results 
by ≥β 4 in the decision space and =β 4, 6, 7, 8, 9, 10 in the objective space. 
 The experimental results in this subsection show that the search ability of the 
NSGA-II to find all Pareto-optimal solutions of the small test problems was improved 
by choosing dissimilar parents using our mating restriction scheme. On the other hand, 
the search ability of the SPEA was not improved by our mating restriction scheme 



 

except for the case of the 12-job flowshop scheduling problems where the distance 
was measured in the decision space (i.e., open circles in the left half of Fig. 4 (a)). 
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    (a) Results by SPEA.              (b) Results by NSGA-II. 

Fig. 4. Results on the two-objective 12-job permutation flowshop scheduling problems. 

3.5  Results on Large Test Problems 

We examined the search ability of the SPEA and the NSGA-II to efficiently find near 
Pareto-optimal solutions through computational experiments on larger knapsack 
problems. Each algorithm was applied to each test problem 50 times using each 
specification of β . Due to the page limitation, we only report experimental results for 
the case where the distance was measured in the objective space. In Fig. 5 and Fig. 6, 
we show experimental results for the two-objective problems and the three-objective 
problems, respectively. Similar results to those figures were also obtained when the 
distance was measured in the decision space. 
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    (a) Results on the 250-item problem.    (b) Results on the 500-item problem. 

Fig. 5. Results on the two-objective knapsack problems. 
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    (a) Results on the 250-item problem.    (b) Results on the 500-item problem. 

Fig. 6. Results on the three-objective knapsack problems. 

 

 In Fig. 5 and Fig. 6, we can observe the improvement of the search ability of the 
SPEA and the NSGA-II by choosing similar parents. We examined the statistical 
significance of the improvement from the case of =β 1 (i.e., the original SPEA and 
NSGA-II) to the case of =β 10 (i.e., the right-most open and closed circles in each 
figure) for three confidence levels: 95%, 97.5% and 99%. Confidence levels of the 
improvement are summarized in Table 2 where each knapsack problem is denoted by 
the number of objectives and the number of items. From this table, we can conclude 
that the performance of the SPEA and the NSGA-II for the 250-item and 500-item 
knapsack problems was significantly improved by choosing similar parents. 
 

Table 2. Confidence level of the improvement of each algorithm for each knapsack problem by 
choosing similar parents using our mating restriction scheme with =β 10. 

Problem SPEA NSGA-II 

2/250 99 99 

2/500 99 99 

3/250 99 99 

3/500 97.5 99 

 

 We show experimental results on the flowshop scheduling problems in Fig. 7 and 
Fig. 8 where the search ability of the SPEA was clearly improved by choosing similar 
parents. The improvement for the NSGA-II, however, was not clear. In the same 
manner as Table 2, we examined the statistical significance of the improvement from 
the case of =β 1 to the case of =β 10. Confidence levels of the improvement are 
summarized in Table 3 where each flowshop scheduling problem is denoted by the 
number of objectives and the number of jobs. From this table, we can conclude that 
the performance of the SPEA for the 40-job and 80-job flowshop scheduling 



 

problems was significantly improved by choosing similar parents. On the other hand, 
the performance of the NSGA-II was not significantly improved except for the case of 
the three-objective 80-job test problem. 
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      (a) Results on the 40-job problem.         (b) Results on the 80-job problem. 

Fig. 7.  Results on the two-objective permutation flowshop scheduling problems. 
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      (a) Results on the 40-job problem.         (b) Results on the 80-job problem. 

Fig. 8.  Results on the three-objective permutation flowshop scheduling problems. 

 

Table 3.  Confidence level of the improvement of each algorithm for each flowshop scheduling 
problem by choosing similar parents using our mating restriction scheme with =β 10. 

Problem SPEA NSGA-II 
2/40 99 - 
2/80 99 - 
3/40 99 - 
3/80 99 99 



 

3.6  Discussions on Experimental Results 

The experimental results on the small test problems in Subsection 3.4 suggest that the 
choice of dissimilar parents has a positive effect on the search ability of EMO 
algorithms to find a variety of Pareto-optimal solutions (i.e., a positive effect on the 
diversity of solutions). On the other hand, the experimental results on the large test 
problems in Subsection 3.5 suggest that the choice of similar parents has a positive 
effect on the search ability of EMO algorithms to efficiently find near Pareto-optimal 
solutions (i.e., a positive effect on the convergence speed to the Pareto-front).  
 These positive effects can be more clearly shown by the application to a larger 
permutation flowshop scheduling problem. We applied the SPEA and the NSGA-II to 
a two-objective 100-job permutation flowshop scheduling problem in the same 
manner as Subsection 3.5. We used the three variants of each algorithm: the choice of 
dissimilar parents with =β 10, the original algorithm with =β 1, and the choice of 
similar parents with =β 10. Experimental results by the SPEA and the NSGA-II are 
shown in Fig. 9 and Fig. 10, respectively. Each variant was applied to the 100-job 
permutation flowshop scheduling problem just once. We show a single solution set 
obtained by a single run of each variant in those figures. It should be noted that the 
axes of each figure are not the same because they are adjusted to the range of solution 
sets depicted in each figure. 
 In Fig. 9 (a) and Fig. 10 (a), we can observe both positive and negative effects of 
the choice of dissimilar parents: the increase in the diversity of solutions and the 
deterioration in the convergence speed to the Pareto-front. On the other hand, we can 
observe the positive effect of the choice of similar parents in Fig. 9 (b): the increase in 
the convergence speed to the Pareto-front. Actually, many solutions obtained by the 
original SPEA (i.e., closed circles) are clearly dominated by solutions obtained by the 
modified SPEA with the choice of similar parents (i.e., open circles) in Fig. 9 (b). 
Such improvement is not so clear for the NSGA-II in Fig. 10 (b). 
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   (a) Mating of dissimilar parents with =β 10.  (b) Mating of similar parents with =β 10. 

Fig. 9. Solution sets obtained by the three variants of the SPEA for a 100-job problem. 
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   (a) Mating of dissimilar parents with =β 10.  (b) Mating of similar parents with =β 10. 

Fig. 10.  Solution sets obtained by the three variants of the NSGA-II for a 100-job problem. 

 The negative effect of the choice of dissimilar parents is the deterioration in the 
convergence speed to the Pareto-front as shown in Subsection 3.5, Fig. 9 (a) and Fig. 
10 (a). On the other hand, the negative effect of the choice of similar parents is the 
decrease in the diversity of solutions as shown in Subsection 3.4 for the small test 
problems. This negative effect, however, was not clear for the large test problems.  
 For further examining the effect of our mating restriction scheme on the 
convergence speed to the Pareto-front, we calculated the average ratio of non-
dominated solutions over 50 runs where five variants of each EMO algorithm were 
compared with each other. Experimental results are summarized in Table 4 for the 
SPEA and Table 5 for the NSGA-II. In those tables, K and FS mean knapsack and 
flowshop scheduling, respectively. Five variants in each table were compared with 
one another for calculating the average ratio of non-dominated solutions. From this 
table, we can see that the choice of similar parents increased the convergence speed 
while the choice of dissimilar parents decreased it.  
 

Table 4. Average ratio of non-dominated solutions for each variant of the SPEA (%). 

Dissimilar parents Similar parents 
Problem 

=β 10 =β 5 
SPEA 

=β 1 =β 5 =β 10 
K-2/30 89.5 96.7 99.1 97.7 97.8 
K-2/250 0.2 0.0 17.5 54.7 48.2 
K-2/500 0.0 0.1 25.4 61.2 31.9 
K-3/250 2.4 10.2 59.4 62.4 51.8 
K-3/500 1.1 4.2 67.9 67.0 36.7 
FS-2/12 91.0 92.5 93.4 92.0 92.1 
FS-2/40 5.4 10.9 21.1 43.4 49.6 
FS-2/80 1.7 4.4 33.4 54.5 48.3 
FS-3/40 4.4 9.8 36.7 52.8 54.2 
FS-3/80 0.4 5.0 36.3 49.0 49.7 



 

Table 5. Average ratio of non-dominated solutions for each variant of the NSGA-II (%). 

Dissimilar parents Similar parents 
Problem 

=β 10 =β 5 
NSGA-II 

=β 1 =β 5 =β 10 
K-2/30 98.6 98.4 96.4 94.7 94.7 
K-2/250 0.0 0.0 20.9 53.0 51.0 
K-2/500 0.5 0.4 22.8 59.8 36.8 
K-3/250 1.7 3.7 54.0 61.1 61.6 
K-3/500 0.8 0.7 51.1 68.2 57.2 
FS-2/12 87.8 86.8 87.0 84.5 84.8 
FS-2/40 18.2 24.9 27.5 34.1 30.2 
FS-2/80 10.9 17.3 31.7 33.1 45.2 
FS-3/40 11.4 17.1 45.6 49.5 44.0 
FS-3/80 2.4 6.7 41.5 47.6 50.1 

4  Concluding Remarks 

We examined the effect of mating restriction on the performance of the SPEA and the 
NSGA-II through computational experiments on multiobjective knapsack and 
permutation flowshop scheduling problems. Experimental results showed that the 
performance of these EMO algorithms on many test problems was significantly 
improved by mating restriction. The effect of mating restriction, however, was 
problem-dependent and algorithm-dependent. For example, the search ability of the 
NSGA-II to find all Pareto-optimal solutions of small knapsack problems was 
improved by choosing dissimilar parents while its search ability to efficiently find 
near Pareto-optimal solutions of large knapsack problems was improved by choosing 
similar parents. Experimental results suggest that the positive and negative effects of 
choosing dissimilar parents are the increase in the diversity of solutions and the 
deterioration in the convergence speed to the Pareto-front, respectively. Experimental 
results also suggest that the positive and negative effects of choosing similar parents 
are the increase in the convergence speed and the decrease in the diversity of 
solutions. If we want to improve the performance of an EMO algorithm with respect 
to the convergence speed to the Pareto-front, it may be worth examining the use of the 
proposed mating restriction scheme with the similarity as the mate selection criterion 
in the EMO algorithm. One of future research topics is to devise a mating restriction 
scheme that can improve the convergence speed to the Pareto-front without 
decreasing the diversity of solutions. 
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