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Abstract - Multiobjective 0/1 knapsack problems have 

been used for examining the performance of EMO 

(evolutionary multiobjective optimization) algorithms 

in the literature. In this paper, we demonstrate that 

their performance on such a test problem strongly 

depends on the choice of a repair procedure. We show 

through computational experiments that much better 

results are obtained from greedy repair based on a 

weighted scalar fitness function than the maximum 

profit/weight ratio, which has been often used for 

ordering items in many studies. This observation 

explains several reported results in comparative studies 

about the superiority of EMO algorithms with a 

weighted scalar fitness function. It is also shown that 

the performance of EMO algorithms based on Pareto 

ranking is significantly improved by the use of the 

weighted scalar fitness function in repair procedures. 

We also examine randomized greedy repair where 

items are ordered based on the profit/weight ratio with 

respect to a randomly selected knapsack.

1. Introduction 

Evolutionary multiobjective optimization (EMO) is a very 

active research area in the field of evolutionary 

computation (see, for example, Deb [1] and Coello et al. 

[2]). Since the study of Zitzler & Thiele [3], multiobjective 

0/1 knapsack problems have been frequently used in 

computational experiments for examining the performance 

of various EMO algorithms (e.g., Knowles & Corne [4], 

[5], Zitzler et al. [6], Jaszkiewicz [7], [8], Ishibuchi et al. 

[9], [10]). When EMO algorithms are applied to knapsack 

problems, unfeasible solutions are often generated by 

genetic operations. That is, generated solutions do not 

always satisfy constraint conditions. Thus repair 

procedures were used in the above-mentioned studies [3]-

[10] for deriving feasible solutions from unfeasible ones.  

 Zitzler & Thiele [3] used a greedy repair procedure 

where items were removed in the increasing order of the 

maximum profit/weight ratio over all knapsacks. This 

repair procedure was also used in Knowles & Corne [4], 

[5], Zitzler et al. [6] and Ishibuchi et al. [9]. Knowles & 

Corne [5] showed in their computational experiments that 

their memetic Pareto archived evolution strategy (M-

PAES) outperformed the multiobjective genetic local 

search (MOGLS) algorithm of Jaszkiewicz [11] when both 

algorithms used this repair procedure. On the other hand, 

Jaszkiewicz [7], [8] used a more sophisticated greedy 

repair procedure based on a weighted scalar fitness 

function in his MOGLS algorithm. It was shown in his 

comparative studies [7], [8] that his MOGLS algorithm 

with the repair procedure based on the weighted scalar 

fitness function outperformed the M-PAES based on the 

maximum profit/weight ratio. In our former study [10], we 

examined the performance of the MOGLS and the M-

PAES using these two greedy repair procedures.  

 In this paper, we compare the following three greedy 

repair procedures through computational experiments on 

multiobjective 0/1 knapsack problems: 

1. Maximum ratio repair: This is the greedy repair based 

on the maximum profit/weight ratio. 

2. Random ratio repair: In this procedure, items are 

removed in the increasing order of the profit/weight 

ratio with respect to a randomly chosen knapsack. A 

different knapsack is randomly chosen for the repair of 

each unfeasible solution.

3. Weighted scalar repair: In this procedure, items are 

removed in the increasing order of the profit/weight 

ratio with respect to the weighted scalar fitness function 

with a random weight vector. A different weight vector 

is randomly specified for the repair of each unfeasible 

solution. 

In the maximum ratio repair, the same order of items is 

used for the repair of all unfeasible solutions. On the other 

hand, a different order of items is used for each unfeasible 

solution in the other repair procedures. We show in this 

paper that such a different order of items has a positive 

effect on the diversity of obtained solutions by EMO 

algorithms. 

 We use four well-known powerful EMO algorithms in 

our computational experiments. They are the strength 

Pareto evolutionary algorithm (SPEA) of Zitzler & Thiele 

[3], the elitist non-dominated sorting genetic algorithm 

(NSGA-II) of Deb et al. [12], the M-PAES of Knowles & 

Corne [4], and the MOGLS of Jaszkiewicz [11]. The first 



three algorithms use Pareto ranking for evaluating each 

solution while the last one is based on a weighted scalar

fitness function. Thus it is not straightforward to

incorporate the weighted scalar repair into those EMO 

algorithms except for the MOGLS of Jaszkiewicz [11]. 

The SPEA and the NSGA-II are pure EMO algorithms

while the M-PAES and the MOGLS are hybrid algorithms

often called memetic algorithms.

In this paper, we first describe the three repair

procedures in Section 2. Then we demonstrate through

computational experiments that the performance of the

four EMO algorithms strongly depends on the choice of a

repair procedure in Section 3. In Section 4, we further

discuss characteristic features of each repair procedure.

Finally Section 5 concludes this paper.

2. Multiobjective 0/1 Knapsack Problems 

2.1 Problem Formulation

Multiobjective 0/1 knapsack problems with k knapsacks

(i.e., k objectives) and n items in Zitzler & Thiele [3] can 

be written as follows:
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In this formulation, x is an n-dimensional binary vector

(i.e., ), is the profit of item j

according to knapsack i, is the weight of item j

according to knapsack i, and c is the capacity of 

knapsack i.
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Each solution is handled as a binary string of the length

n in EMO algorithms. When new solutions are generated

by genetic operations, they are often unfeasible. For

deriving feasible solutions from unfeasible ones, repair

procedures have been used in the literature. In the

following subsections, we briefly explain three greedy

repair procedures. 

2.2 Maximum Ratio Repair

Zitzler & Thiele [3] used a greedy repair procedure where

items were removed in the increasing order of the 

maximum profit/weight ratio  over all knapsacks:jq

},...,2,1|max{ kiwpq ijijj , . (4) nj ,...,2,1

This maximum ratio repair has been used in many studies

on EMO algorithms [3]-[6], [9].

2.3 Random Ratio Repair

In the maximum ratio repair, items are always removed in 

the same order defined by q in (4). This may have a

negative effect on the diversity of obtained solutions by

EMO algorithms. For increasing the diversity of obtained

solutions, we examine the use of a randomized greedy

repair procedure where items are removed in the

increasing order of the profit/weight ratio (i.e., p )

with respect to a randomly selected knapsack j. A different

knapsack is randomly selected for the repair of each

unfeasible solution in this random ratio repair.

j
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2.4 Weighted Scalar Repair

While Pareto ranking was used for evaluating solutions in 

many EMO algorithms, the following weighted scalar 

fitness function was used in some MOGLS algorithms

(e.g., Jaszkiewicz [7], [8], [11] and Ishibuchi et al. [13],

[14]):
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In the MOGLS of Jaszkiewicz [11], the weighted

scalar fitness function in (5) was used in the following

manner. When a pair of parent solutions is to be selected,

first the weight vector )...,,( 1 k  is randomly

specified. Next the best K solutions are selected from the 

current population (CS) with respect to the scalar fitness

function with the current weight vector. Then a pair of

parent solutions is randomly chosen from those K

solutions in order to generate offspring by genetic

operations from the selected pair. A local search procedure

is applied to the generated offspring using the scalar

fitness function with the current weight vector. The same

weighted scalar fitness function was also used in a greedy

repair procedure where items were removed in the

increasing order of the following ratio:

k
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It should be noted that this greedy repair procedure is 

directly applicable only to EMO algorithms with the

weighted scalar fitness function. In other EMO algorithms,

we use this greedy repair procedure by randomly updating

the weight vector )...,,( 1 k for each unfeasible 

solution. That is, a randomly specified different weight

vector is assigned to each unfeasible solution. 

3. Computational Experiments 

3.1 Test Problems

In our computational experiments, we use the nine

multiobjective 0/1 knapsack problems of Zitzler & Thiele

[3]. Each test problem has two, three or four objectives

and 250, 500 or 750 items. We refer to each test problem

as a k-n problem where k is the number of objectives and n

is the number of items (see their general form in (1)-(3)).



Table 1: Parameter values in our computational experiments. 

Population Size

Main Population Secondary Initial
K l_fails l_opt

Problems

SPEA NSGA-II M-PAES MOGLS SPEA MOGLS MOGLS M-PAES & MOGLS 

max_evals

2-250 120 150 30 3,000 38 150 20 20 100 75,000

2-500 160 200 40 4,000 50 200 20 20 100 100,000

2-750 200 250 50 5,000 63 250 20 5 20 125,000

3-250 160 200 40 4,000 50 200 20 20 50 100,000

3-500 200 250 50 5,000 63 250 20 20 50 125,000

3-750 240 300 60 6,000 75 300 20 5 20 150,000

4-250 200 250 50 5,000 63 250 20 20 50 125,000

4-500 240 300 60 6,000 75 300 20 20 50 150,000

4-750 280 350 70 7,000 88 350 20 5 20 175,000

3.2 EMO Algorithms

In our computational experiments, we use the following

four EMO algorithms:

SPEA of Zitzler & Thiele [3]

NSGA-II of Deb et al. [12]

M-PAES of Knowles & Corne [4]

MOGLS of Jaszkiewicz [11]

The SPEA and the NSGA-II are well-known pure EMO

algorithms while the M-PAES and the MOGLS are hybrid

EMO algorithms often called memetic algorithms. Only

the MOGLS uses the weighted scalar fitness function in 

(5) for solution evaluation. In the other algorithms, Pareto 

ranking together with some form of crowding is used for

solution evaluation.

The main characteristic feature of the SPEA is the use

of a secondary population where a prespecified number of 

non-dominated solutions among examined ones are stored

separately from the current population. Those non-

dominated solutions can be viewed as elite solutions.

While the NSGA-II does not explicitly use such a

secondary population, a kind of elitism is realized by its 

generation update procedure. 

The M-PAES was proposed in [4] by introducing the

concept of a population and a recombination operation into

a multiobjective local search algorithm: (1+1)-PAES [15].

In the M-PAES, two secondary populations (i.e., a local

archive H and a global archive G) are stored separately

from the main population P. The local archive H is used

for solution evaluation in local search while a pair of

parent solutions is randomly chosen from P  for

generating an offspring.

G

In the M-PAES and the MOGLS, we use two 

parameters for terminating local search for each solution

as in Knowles & Corne [5] and Jaszkiewicz [7]. One is the

maximum number of local search moves (i.e., l_opt) and 

the other is the maximum number of consecutive fails of

local search moves (i.e., l_fails). In both algorithms, a 

neighboring solution is generated by applying the standard

bit-flip mutation operation with a probability of 4/n to

each bit of the current solution where n is the number of 

items (i.e., n is the string length). This operation is also 

used as mutation in the pure EMO algorithms  (i.e., SPEA 

and NSGA-II). No mutation is used in the memetic EMO 

algorithms (i.e., M-PAES and MOGLS). The standard

one-point crossover is used in all the four algorithms. The 

crossover rate is specified as 0.8 for the pure EMO 

algorithms and 1.0 for the memetic EMO algorithms.

Parameter values in our computational experiments are

summarized in Table 1. In this table, max_evals is the total

number of evaluated solutions, which is used as the

stopping condition of each algorithm. Our parameter

specifications are almost the same as those in Zitzler & 

Thiele [3]. For some parameters in the M-PAES and the

MOGLS, we use almost the same specifications as

Knowles & Corne [4], [5] and Jaszkiewicz [7].

3.3 Experimental Results 

For visually demonstrating the effect of the choice of a 

repair procedure on the performance of the four EMO

algorithms, we show a set of solutions obtained by a single

run of each algorithm on the two-objective test problems

in Figs. 1-12. In each figure, we show three solution sets 

obtained by each algorithm with the three different repair

procedures.

From these figures, we can see that the best results

were obtained from the weighted scalar repair procedure.

This procedure outperformed the maximum ratio repair in 

terms of not only the diversity of obtained solutions but

also the convergence speed to the Pareto front. The

superiority of the weighted scalar repair can be more or 

less observed in all figures independent of the problem

size and the EMO algorithm. This observation supports the

experimental results in Jaszkiewicz [7], [8] where the

MOGLS with the weighted scalar repair outperformed the 

M-PAES and the SPEA with the maximum ratio repair.

The reported superiority of the MOGLS on multiobjective

0/1 knapsack problems in [7], [8] can be (at least partially)

attributed to the superiority of the weighted scalar repair

over the maximum ratio repair.
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Figure 1: SPEA on 2-250 problem.    Figure 2: SPEA on 2-500 problem.            Figure 3: SPEA on 2-750 problem. 
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Figure 4: NSGA-II on 2-250 problem.    Figure 5: NSGA-II on 2-500 problem.          Figure 6: NSGA-II on 2-750 problem. 
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Figure 7: M-PAES on 2-250 problem.    Figure 8: M-PAES on 2-500 problem.         Figure 9: M-PAES on 2-750 problem. 
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Figure 10: MOGLS on 2-250 problem.  Figure 11: MOGLS on 2-500 problem. Figure 12: MOGLS on 2-750 problem.



We can also see from Figs. 1-12 that more diverse

solutions were obtained from the random ratio repair than

the maximum ratio repair. This observation suggests that a 

different order of items for each unfeasible solution has a

positive effect on the diversity of obtained solutions.

While the weighted scalar repair improved both the

diversity of obtained solutions and the convergence speed

to the Pareto front, the random ratio repair degraded the

convergence speed in many cases in Figs. 1-12. 

Let us further examine the effect of the choice of a

repair procedure on the performance of EMO algorithms. 

In Tables 2-3, we show the average number of obtained

solutions by each algorithm over ten runs. From Table 3,

we can see that much more solutions were obtained by the 

memetic EMO algorithms with the weighted scalar repair

(i.e., Weight in Table 3) than those with the other repair

procedures. On the other hand, the number of obtained

solutions does not strongly depend on the choice of a

repair procedure in the case of the pure EMO algorithms in

Table 2. This is because the population size has a

dominant effect on the number of solutions obtained by

the pure EMO algorithms.

Table 2: Average number of solutions by the pure EMO

algorithms. The larger values mean the better results. 

SPEA NSGA-II
Problem

Max Rand Weight Max Rand Weight

2-250 37 38 38 38 53 55

2-500 46 49 49 46 57 87

2-750 56 61 62 55 68 103

3-250 50 50 50 148 179 176

3-500 63 63 62 199 234 232

3-750 75 75 75 248 287 281

4-250 63 63 63 213 247 248

4-500 75 75 75 284 311 315

4-750 88 88 88 335 376 385

Table 3: Average number of solutions by the memetic EMO

algorithms. The larger values mean the better results. 

M-PAES MOGLS
Problem

Max Rand Weight Max Rand Weight

2-250 55 75 106 82 79 173

2-500 48 83 144 71 67 123

2-750 59 113 178 364 300 639

3-250 429 570 886 370 333 638

3-500 454 605 1183 341 297 578

3-750 342 585 1178 1191 905 2072

4-250 1231 1484 2415 741 652 1256

4-500 1287 1865 2702 678 672 1270

4-750 1583 2011 3229 2981 2017 4455

We also examine the diversity using the width of the

range of obtained solutions. The width of the range of a

solution set S is measured for each objective  as )(xif

}|)(min{}|)(max{)( SfSfSwidth iii xxxx .   (8) 

Then the sum of the widths over the k objectives is 

calculated as
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In Tables 4-5, we show the average sum of the widths

of the obtained solution set by each algorithm over ten

runs. From these tables, we can see that wider solution sets

were obtained from the random ratio repair and the

weighted scalar repair than the maximum ratio repair. This

observation suggests that a different order of items for

each unfeasible solution has a positive effect on the

diversity of obtained solutions. We can also see that the

widest solution sets were obtained by the MOGLS with

the weighted scalar repair (i.e., Weight in Table 5). 

Table 4: Average sum of widths by the pure EMO algorithms. 

The larger values mean the better results. 

SPEA NSGA-II
Problem

Max Rand Weight Max Rand Weight

2-250 2373 3397 3256 1972 3298 3131

2-500 2965 4386 4503 2539 3617 4324

2-750 4457 7333 7491 3729 5694 6296

3-250 3290 4171 3753 3394 4644 4818

3-500 4743 6607 5781 4388 6343 6088

3-750 5768 8320 7288 5015 8012 7466

4-250 3965 5255 4550 3829 5998 5409

4-500 6096 7468 6383 5910 9255 7804

4-750 7849 9615 8619 6642 10703 10008

Table 5: Average sum of widths by the memetic EMO algorithms.

The larger values mean the better results. 

M-PAES MOGLS
Problem

Max Rand Weight Max Rand Weight

2-250 1828 3183 3394 2814 3882 4749

2-500 2105 3312 4846 3952 5682 7224

2-750 2503 5130 6040 7207 9976 12642

3-250 3529 4786 4935 4349 6005 7530

3-500 4260 7144 7085 6600 10132 13101

3-750 4364 6570 7202 8339 13856 18884

4-250 4425 6818 6230 4820 7914 9493

4-500 6384 9690 8911 8392 14025 17872

4-750 6443 10604 9569 10467 18225 25580

We have already examined the effect of the choice of a

repair procedure on the diversity of obtained solutions by

each EMO algorithm through computational experiments

in Tables 2-5. Now let us examine its effect on the

convergence speed to the Pareto front. For this purpose,

we use the generational distance measure.



 Let S be a solution set obtained by an EMO algorithm.

The proximity of S to the Pareto front is evaluated by the

generational distance defined as follows [1], [2], [16]:

S
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where is a set of reference solutions and d  is the

distance between a solution x and a reference solution y in

the k-dimensional objective space: 
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In our computational experiments, the reference solution

set was generated for each test problem in the

following manner. We applied the four EMO algorithms

with the three repair procedures to each test problem ten

times (i.e., 120 times to each test problem in total). Among

the obtained 120 solution sets for each test problem, we 

picked up only non-dominated solutions to construct the

reference solution set .

*S

*S

Experimental results are shown in Tables 6-7. From

these tables, we can see that the best results with respect to 

the convergence speed to the Pareto front were obtained

from the weighted scalar repair. We can also see that the

random ratio repair degraded the convergence speed. 

Table 6: Average generational distance by the pure EMO

algorithms. The smaller values mean the better results. 

SPEA NSGA-II
Problem

Max Rand Weight Max Rand Weight

2-250 208 309 79 110 202 34

2-500 581 696 264 316 426 104

2-750 946 1287 656 503 798 224

3-250 531 727 406 207 295 81

3-500 1037 1911 997 368 662 164

3-750 2050 2952 1646 815 1258 295

4-250 688 1219 595 177 452 122

4-500 1730 2573 1358 606 953 198

4-750 2827 4016 2346 922 1799 406

Table 7: Average generational distance by the memetic EMO

algorithms. The smaller values mean the better results. 

M-PAES MOGLS
Problem

Max Rand Weight Max Rand Weight

2-250 91 105 16 140 232 24

2-500 228 257 26 379 499 77

2-750 319 418 38 309 394 79

3-250 159 189 44 216 272 76

3-500 275 562 64 400 717 172

3-750 717 829 84 466 735 209

4-250 148 338 88 135 353 130

4-500 605 786 137 478 782 267

4-750 780 1363 144 476 1054 342

For examining both the diversity of obtained solutions

and the convergence speed to the Pareto front, we

calculate the  measure defined as follows [16]:RD1

*
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It should be noted that D1 in (12) is the average

distance from each reference solution y to its nearest

obtained solution in S while GD in (10) is the average

distance from each obtained solution x to its nearest

reference solution in S . The generational distance

measures the proximity of the obtained solution

set S to the reference solution set S . On the other hand,

evaluates how well the obtained solution set S

approximates the reference solution set .

)(R S
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Tables 8-9 show the average value of the D1

measure obtained by each EMO algorithm for each test

problem. From these tables, we can see that the best results

in terms of the D1 measure were obtained from the

EMO algorithms with the weighted scalar repair. It should

be noted that better results were obtained from the random

ratio repair than the maximum ratio repair in some cases in

Tables 8-9 while better results were obtained from the

maximum ratio repair in Tables 6-7.

R

R

Table 8: Average value of the D1 measure by the pure EMO

algorithms. The smaller values mean the better results. 
R

SPEA NSGA-II
Problem

Max Rand Weight Max Rand Weight

2-250 291 319 131 275 224 106

2-500 702 710 323 580 529 212

2-750 1209 1338 747 974 965 463

3-250 606 735 495 356 340 190

3-500 1252 2022 1131 690 784 396

3-750 2431 3359 2062 1472 1603 946

4-250 818 1231 679 419 490 282

4-500 2000 2873 1604 943 1121 609

4-750 3442 4570 2996 1879 2372 1371

Table 9: Average value of the D1 measure by the memetic

EMO algorithms. The smaller values mean the better results. 
R

M-PAES MOGLS
Problem

Max Rand Weight Max Rand Weight

2-250 280 151 74 226 300 37

2-500 596 437 117 488 637 134

2-750 1067 729 371 641 855 141

3-250 301 235 110 310 363 104

3-500 646 670 242 611 1074 310

3-750 1497 1340 863 1129 1390 324

4-250 340 349 167 314 444 147

4-500 898 956 426 784 1033 358

4-750 1779 1963 1197 1291 1650 485



4. Discussions on Experimental Results

Our experimental results in Section 3 demonstrated that

the best results were obtained from the weighted scalar

repair procedure in terms of both the diversity of solutions

and the convergence speed to the Pareto front. It was also

shown that the choice of a repair procedure is more

important than the choice of an EMO algorithm (e.g., see 

Figs. 1-12). In this section, we further examine each repair

procedure.

For examining the effect of each repair procedure

separately from the EMO algorithms, we perform the

following computational experiment. First we randomly

generate an n-dimensional binary vector x

by assigning 0 with the probability 0.4 and 1 with the

probability 0.6 to each x . Then we generate a feasible

solution using one of the three repair procedures if the

randomly generated binary vector is unfeasible. When the

randomly generated binary vector is feasible, we return to

the first step in order to generate another binary vector.

This two-step procedure is iterated for generating a 

prespecified number of feasible solutions from unfeasible

binary vectors.

)...,,( 1 nxx

j

In Fig. 13, we show the trajectories of the repair from

10 unfeasible binary vectors by the maximum ratio repair

for the 2-500 test problem. In this figure, unfeasible and 

feasible solutions are depicted by open circles and closed

circles, respectively. It should be noted that the same order

of items is always used for all the 10 unfeasible binary

vectors in this repair procedure. Thus the directions of the

trajectories are similar to each other in Fig. 13.

Fig. 14 shows the trajectories of the repair from the

same 10 unfeasible binary vectors in the case of the 

random ratio repair. In this repair procedure, two orders of

items are randomly chosen for each unfeasible binary

vector because the 2-500 test problem involves two

knapsacks. From the comparison between Fig. 13 and Fig.

14, we can see that the trajectories in Fig. 14 have more

diverse directions.

Fig. 15 shows the results by the weighted scalar repair

for the same 10 unfeasible binary vectors. In this repair

procedure, a different order of items is used for each 

unfeasible binary vector. We observe various directions of

the trajectories in Fig. 15.

In the same manner as in Figs. 13-15, we generate a set

of 10000 feasible solutions using each repair procedure.

Then we pick up only non-dominated solutions by

comparing solutions with each other within each solution

set. The non-dominated solutions obtained by each repair

procedure (i.e., obtained from each solution set with 10000 

repaired feasible solutions) are shown in Fig. 16. We can 

see that Fig. 16 is somewhat similar to Figs. 1-12. For 

example, the best results were obtained from the weighted

scalar repair in Fig. 16. This observation suggests that the

choice of a repair procedure has a dominant effect on the

performance of EMO algorithms.
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Figure 13: Maximum ratio repair. 
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Figure 14: Random ratio repair. 
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Figure 15: Weighted scalar repair. 
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Figure 16: Non-dominated solutions obtained by each procedure. 

5. Concluding Remarks 

In this paper, we demonstrated that the performance of

EMO algorithms on multiobjective 0/1 knapsack problems

strongly depended on the choice of a repair procedure.

While the repair has been often performed based on the

maximum profit/weight ratio in the literature, much better

results were obtained from a greedy repair procedure

based on a weighted scalar fitness function in our

computational experiments. We also showed that the use

of this repair procedure significantly improved the

performance of EMO algorithms even when they did not

use any scalar fitness function for solution evaluation.
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