
Implementation of Simple Multiobjective Memetic Algorithms
and Its Application to Knapsack Problems

Hisao Ishibuchi and Shiori Kaige

Dept. of Industrial Engineering, Osaka Prefecture University
1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan

{ hisaoi, shiori} @ie.osakafu-u.ac.jp

Abstract. The aim of this paper is to propose a simple but powerful multiobjective hybrid genetic algorithm
and to examine its search ability through computational experiments on commonly used test problems in the
literature. We first propose a new multiobjective hybrid genetic algorithm, which is designed by combining
local search with an EMO (evolutionary multiobjective optimization) algorithm. In the design of our algo-
rithm, we try to make its algorithmic complexity as simple as possible so that it can be easily understood,
easily implemented and easily executed within short CPU time. At the same time, we try to maximize its
search ability. Our algorithm makes use of advantages of both EMO and local search for achieving high
search ability without increasing its algorithmic complexity. For example, each solution is evaluated based
on Pareto ranking and the concept of crowding as in many EMO algorithms. On the other hand, a weighted
scalar fitness function is used for efficiently executing local search. A kind of elitism is also implemented
using Pareto ranking in the process of generation update. Through computational experiments on multiobjec-
tive 0/1 knapsack problems, we examine the search ability of four variants of our algorithm with various pa-
rameter specifications. Those variants are different from each other in the implementation of parent selection
and local search. While some variants use the weighted scalar fitness function only for local search, others
use it for both local search and parent selection. One variant uses Pareto ranking instead of the weighted sca-
lar fitness function in local search. In addition to the comparison among those four variants, our algorithm is
also compared with well-known EMO algorithms (i.e., SPEA of Zitzler & Thiele and NSGA-II of Deb et al.)
and memetic EMO algorithms (i.e., M-PAES of Knowles & Corne and MOGLS of Jaszkiewicz). We also
examine the effect of the balance between genetic search and local search on the search ability of our algo-
rithm using two parameters: a local search application probability and a local search stopping condition.
Moreover we demonstrate the usefulness of a weighted scalar fitness function-based greedy repair procedure
in the application of memetic EMO algorithms to multiobjective 0/1 knapsack problems. Our experimental
results by various EMO algorithms show that there exists a clear tradeoff between CPU time and the quality
of solution sets obtained by each algorithm. Since our algorithm is very simple, it can be efficiently executed.
As a result, our algorithm outperforms many EMO and memetic EMO algorithms in terms of CPU time for
large test problems while it does not always outperform them in terms of the quality of obtained solution sets.

Keywords: evolutionary multiobjective optimization, memetic algorithms, genetic algorithms, local search.

1 Introduction

Since Schaffer (1985), evolutionary algorithms have been applied to various multiobjective optimization
problems for finding their Pareto-optimal or near Pareto-optimal solutions (e.g., see Deb (2001) and Coello
et al. (2002)). Those algorithms are often referred to as EMO (evolutionary multiobjective optimization)
algorithms. Recent EMO algorithms share some common ideas such as elitism, fitness sharing and Pareto
ranking. For implementing the concept of elitism, some EMO algorithms have a secondary population that is
stored separately from the main population. While the use of the secondary population significantly improves
the convergence speed to the Pareto-front of EMO algorithms (e.g., see computational experiments in Zitzler
& Thiele (1999) and Zitzler et al. (2000)), usually it also increases algorithmic complexity and CPU time. On
the other hand, the concept of fitness sharing (or crowding) is implemented in almost all EMO algorithms for
increasing the diversity of solutions. Pareto ranking is also used in almost all EMO algorithms for evaluating
each solution with respect to multiple objectives.

In some studies, local search was combined with EMO algorithms for further improving the convergence
speed to the Pareto-front. Hybridization of EMO algorithms with local search is often referred to as MOGLS
(multiobjective genetic local search) algorithms. Such a hybrid algorithm is also called a memetic EMO al-

gorithm. Memetic EMO algorithms can be roughly classified into two categories according to their solution
evaluation mechanisms in local search: One uses a weighted scalar fitness function, and the other uses Pareto
ranking. A MOGLS algorithm based on a weighted scalar fitness function with random weight values was
first proposed by Ishibuchi & Murata (1996, 1998), and improved by Jaszkiewicz (2002a) and Ishibuchi et al.
(2003). On the other hand, Knowles & Corne (2000a) proposed a memetic EMO algorithm called M-PAES
(memetic Pareto archived evolution strategy) where each solution was evaluated based on Pareto ranking.
Some Pareto ranking-based acceptance rules of neighboring solutions in local search were examined in Ishi-
buchi et al. (2003) and Murata et al. (2003). The MOGLS of Jaszkiewicz (2002a) and the M-PAES of
Knowles & Corne (2000a), which are well-known memetic EMO algorithms with high search ability, have
been compared with each other in many comparative studies (e.g., Knowles & Corne (2000b), Jaszkiewicz
(2001, 2002b), Ishibuchi & Kaige (2003)). Experimental results in those studies show that the M-PAES has
higher convergence speed to the Pareto-front while the MOGLS can find much more solutions with larger
diversity. That is, they have their own advantages and disadvantages.

In this paper, we propose a new MOGLS algorithm (i.e., a new memetic EMO algorithm) that shares
some advantages with existing EMO and memetic EMO algorithms. While we try to maximize the search
ability of our MOGLS algorithm, we also try to minimize its algorithmic complexity so that it can be easily
understood, easily implemented and easily executed within short CPU time. In order to emphasize its sim-
plicity, we refer to our MOGLS algorithm as the simple MOGLS (i.e., S-MOGLS) algorithm in this paper.
Our S-MOGLS algorithm can be viewed as a hybrid algorithm of the NSGA-II (elitist non-dominated sorting
genetic algorithm) of Deb et al. (2002) and local search in our former MOGLS algorithm (Ishibuchi & Mu-
rata (1996, 1998) and Ishibuchi et al. (2003)). More specifically, we use the generation update mechanism of
the NSGA-II where solutions in the next population are chosen from the current population and the offspring
population. We adopt this generation update mechanism because it does not need a secondary population.
The use of the secondary population often increases algorithmic complexity and CPU time. Each solution is
evaluated by Pareto ranking and the distances from its neighboring solutions. We adopt this solution evalua-
tion mechanism of the NSGA-II because it realizes the concept of crowding in a simple but effective manner.
A local search procedure is probabilistically applied to each offspring generated by genetic operations. As in
our former MOGLS algorithm, a weighted scalar fitness function with random weights is used for choosing a
pair of parent solutions. The same fitness function is used in local search for their offspring. We use the
weighted scalar fitness function in parent selection and local search because it can be efficiently calculated,
i.e., because its calculation is not time-consuming if compared with Pareto ranking-based schemes. We also
examine several variants of our S-MOGLS algorithm. Some variants do not use the weighted scalar fitness
function in parent selection (i.e., it is used only in local search). Another variant uses Pareto ranking instead
of the weighted scalar fitness function in local search.

This paper is organized as follows. In Section 2, we briefly describe multiobjective optimization prob-
lems and the concept of Pareto optimality. Then we explain our S-MOGLS algorithm and its four variants in
Section 3. Those four variants are compared with each other through computational experiments on multiob-
jective 0/1 knapsack problems of Zitzler & Thiele (1999) in Section 4 where they are also compared with the
SPEA (strength Pareto evolutionary algorithm) of Zitzler & Thiele (1999), the NSGA-II of Deb et al. (2002),
the M-PAES of Knowles & Corne (2000a), and the MOGLS of Jaszkiewicz (2002a). Experimental results
show that our S-MOGLS algorithm can find better solutions using less CPU time than the SPEA and similar
solutions using less CPU time than the NSGA-II. It is also shown that our S-MOGLS algorithm needs much
less CPU time than the M-PAES and almost the same CPU time as the MOGLS for finding solutions of al-
most the same quality. Moreover we demonstrate that the use of a heuristic solution repair mechanism based
on the weighted scalar fitness function significantly improves the search ability of the MOGLS and S-
MOGLS algorithms. Finally Section 5 concludes this paper.

2 Multiobjective Optimization

Let us consider the following k-objective maximization problem:

 Maximize))(...,),(),(()(21 xxxxf kfff= subject to Xx ∈ , (1)

where)(xf is the objective vector,)(xif is the i-th objective to be maximized, x is the decision vector, and
X is the feasible region in the decision space.

When the following two conditions are satisfied, a feasible solution Xx ∈ is said to be dominated by an-

other feasible solution Xy ∈ (i.e., y dominates x: y is better than x):

 i∀ ,)()(yx ii ff ≤ and j∃ ,)()(yx jj ff < . (2)

If there is no feasible solution y that dominates x, x is said to be a Pareto-optimal solution of the multiobjec-
tive optimization problem in (1). Our task in this paper is to find Pareto-optimal or near Pareto-optimal solu-
tions as many as possible. The main advantage of EMO and memetic EMO algorithms over other search
methods is that multiple solutions can be simultaneously obtained by their single run.

3 Proposed S-MOGLS Algorithm

In this section, we first briefly describe our former MOGLS algorithm (Ishibuchi & Murata (1996, 1998),
Ishibuchi et al. (2003)) and the MOGLS algorithm of Jaszkiewicz (2002a). Next we explain the basic frame-
work of our S-MOGLS algorithm. Then we show its variants. Those variants are different from each other in
the implementation of parent selection and local search.

3.1 Former MOGLS Algorithms

The following weighted scalar fitness function was used in our former MOGLS algorithm (Ishibuchi & Mu-
rata (1996, 1998), Ishibuchi et al. (2003)) and the MOGLS algorithm of Jaszkiewicz (2002a):

�

λ=
=

k

i
ii ff

1
)(),(xx λλλλ , (3)

where

 i∀ , 0≥λi and 1
1

=
�

λ
=

k

i
i . (4)

In our former MOGLS algorithm, the weight vector)...,,(1 kλλ=λλλλ was randomly specified whenever a pair
of parent solutions was to be selected based on the weighted scalar fitness function. The roulette wheel selec-
tion was used in Ishibuchi & Murata (1996, 1998) while it was outperformed by the binary tournament selec-
tion in computational experiments in Ishibuchi et al. (2003). An offspring was generated by crossover and
mutation from the selected pair of parents. The same weighted scalar fitness function with the current weight
values was used in local search for the generated offspring. In Fig. 1, we show the outline of our former
MOGLS algorithm. All the non-dominated solutions among examined ones were stored in the secondary
population with no limitation on its size. A pre-specified number of solutions were randomly selected from
the secondary population and their copies were added to the main population.

Genetic
operations

Local
search

Current
population

Next
population

Update Update

Non-dominated
solutions

Non-dominated
solutions

Elite
solutions

Genetic
operations

Local
search

Current
population

Next
population

Update Update

Non-dominated
solutions

Non-dominated
solutions

Elite
solutions

Figure 1. Outline of our former MOGLS algorithm.

In the MOGLS algorithm of Jaszkiewicz (2002a), the weight vector)...,,(1 kλλ=λλλλ was also randomly
specified whenever a pair of parent solutions was to be selected based on the weighted scalar fitness function.
The best K solutions were selected from the current population with respect to the weighted scalar fitness
function. Then a pair of parent solutions was randomly chosen from those best K solutions in order to gener-
ate an offspring by crossover. Local search was applied to the generated offspring using the weighted scalar
fitness function with the current weight values. All the non-dominated solutions among the examined ones
were stored in the secondary population.

3.2 S-MOGLS Algorithm

As in some other EMO and memetic EMO algorithms (e.g., SPEA, M-PAES, and Jaszkiewicz’s MOGLS),
our former MOGLS algorithm used the secondary population for storing non-dominated solutions. The use
of the secondary population often increases algorithmic complexity and CPU time. Thus we do not use the
secondary population in our new MOGLS (i.e., simple MOGLS: S-MOGLS) algorithm. Since some form of
elitism is necessary for implementing high performance EMO and memetic EMO algorithms, we use the
same generation update mechanism as in the NSGA-II of Deb et al. (2002). That is, solutions in the next
population are selected from the current and offspring populations as shown in Fig. 2. More specifically, first
the current and offspring populations are merged to form a tentative population. Then a rank is assigned to
each solution in the tentative population using Pareto ranking. That is, the first rank is assigned to all the
non-dominated solutions in the tentative population. All solutions with the first rank are removed from the
tentative population and added to the next population. The second rank is assigned to all the non-dominated
solutions in the reduced tentative population. All solutions with the second rank are removed from the re-
duced tentative population and added to the next population. In this manner, better solutions with respect to
multiple objectives are chosen and added to the next population. If the number of the solutions in the next
population exceeds the population size, solutions with the worst rank in the next population are sorted using
the concept of crowding. Each solution is evaluated by the sum of the distances from adjacent solutions with
the same rank. More specifically, two adjacent solutions of each solution are identified with respect to each
objective. Then the distance between those adjacent solutions is calculated on each objective and summed up
over all the k objectives for calculating the measure of crowding. For each extreme solution with the maxi-
mum or minimum value of at least one objective among the same rank solutions, an infinite large value is
assigned to the crowding measure because one of the two adjacent solutions cannot be identified. Solutions
with larger values of the crowding measure are viewed as being better because those solutions are not located
in crowded regions in the objective space. Solutions with the worst rank are removed from the next popula-
tion in the increasing order of the crowding measure until the number of remaining solutions in the next
population becomes the population size. For further descriptions of this generation update mechanism, see
Deb (2001) and Deb et al. (2002).

Genetic
operations

Local
search

Current population Offspring population

Pareto
ranking

Next population

Genetic
operations

Local
search

Current population Offspring population

Pareto
ranking

Next population

Figure 2. Outline of the proposed S-MOGLS algorithm.

Let popN be the population size. When a pair of parent solutions is to be selected from the current popu-
lation with popN solutions, the weight vector is randomly specified as in our former MOGLS algorithm. We
use the standard binary tournament selection in our S-MOGLS algorithm because it was demonstrated in
Ishibuchi et al. (2003) that the tournament selection outperformed the roulette wheel selection in computa-
tional experiments on multiobjective flowshop scheduling problems using our former MOGLS algorithm. An
offspring is generated from the selected pair of parents using crossover and mutation. A local search proce-
dure is applied to the generated offspring with a pre-specified local search application probability LSP . The

weighted scalar fitness function with the current weight values is used in the local search procedure for the
generated offspring. The genetic operations (i.e., selection, crossover and mutation) and the local search pro-
cedure are iterated for generating popN offspring. The next population with popN strings is constructed by
choosing good solutions from the current and offspring populations in the above-mentioned manner, i.e.,
using the generation update mechanism of the NSGA-II.

3.3 Several Variants

We can implement various variants of our S-MOGLS algorithm. The S-MOGLS algorithm in the previous
subsection is referred to as the S-MOGLS Version 1 algorithm, which can be written as follows:

S-MOGLS Version 1 Algorithm:
Step 1 (Initialization): Generate an initial population with popN solutions.
Step 2 (Genetic operations and local search): Generate an offspring population by iterating the following

procedures popN times:
(1) Randomly specify the weight vector.
(2) Choose a pair of parent solutions from the current population using the binary tournament selec-

tion based on the weighted scalar fitness function with the current weight values.
(3) Generate an offspring from the selected parents by crossover and mutation.
(4) Apply a local search procedure based on the weighted scalar fitness function with the current

weight values to the generated offspring with the local search application probability LSP .
Step 3 (Generation update): Construct the next population from the current and offspring populations by

choosing good solutions from them based on Pareto ranking and the crowding measure.
Step 4 (Termination test): If the pre-specified stopping condition is not satisfied, return to Step 2. Otherwise

terminate the execution of the algorithm.

In this algorithm, the weighted scalar fitness function is used not only in local search but also in parent

selection. One might think that the use of the weighted scalar fitness function in the parent selection degrades
high search ability of the NSGA-II algorithm with which local search is combined for designing our S-
MOGLS algorithm. So we examine the following variant where the weighted scalar fitness function is used
only in local search.

S-MOGLS Version 2 Algorithm (Steps 1, 3, 4 are the same as the S-MOGLS Version 1 algorithm):
Step 2-1 (Genetic operations): Generate an offspring population with popN solutions in the same manner as

in the NSGA-II where the binary tournament selection based on Pareto ranking and the crowding
measure is used for parent selection.

Step 2-2 (Local search): Apply the following procedures to each offspring generated in Step 2-1 with the
local search application probability LSP .
(1) Randomly specify the weight vector.
(2) Apply a local search procedure based on the weighted scalar fitness function with the current

weight values to the current offspring. If the current offspring (i.e., the initial solution in local
search) is updated by the local search procedure, the updated solution (i.e., the final solution in
local search) is added to the offspring population generated in Step 2-1.

This algorithm is the same as the NSGA-II except for the local search part in Step 2-2 while the above-

mentioned Version 1 algorithm uses a different parent selection mechanism from the NSGA-II. One possible
flaw of the Version 2 algorithm is the random specification of the weight vector in local search. That is, the
local search direction is totally random in the Version 2 algorithm while it is inherited from the parent selec-
tion procedure in the Version 1 algorithm. As an intermediate version between these two algorithms, we also
examine the following variant:

S-MOGLS Version 3 Algorithm (Steps 1, 3, 4 are the same as the S-MOGLS Version 1 algorithm):
Step 2 (Genetic operations and local search): Generate an offspring population by iterating the following

procedures popN times:
(1) Using the local search application probability LSP , determine whether local search is applied or

not.
(2) If local search is applied, generate an offspring from the current population in the same manner as

(1)-(4) in Step 2 of the Version 1 algorithm.

(3) If local search is not applied, generate an offspring from the current population in the same man-
ner as Step 2-1 of the Version 2 algorithm.

Instead of the weighted scalar fitness function used in the local search part of the above-mentioned three

variants of the S-MOGLS algorithm, we also examine the use of Pareto ranking in local search where the
current solution is updated only when it is dominated by its neighboring solution (see Murata et al. (2003)):

S-MOGLS Version 4 Algorithm (Steps 1, 3, 4 are the same as the S-MOGLS Version 1 algorithm):
Step 2-1 (Genetic operations): Generate an offspring population with popN solutions in the same manner as

in the NSGA-II where the binary tournament selection based on Pareto ranking and the crowding
measure is used for parent selection (i.e., this step is the same as Step 2-1 of the Version 2 algorithm).

Step 2-2 (Local search): Apply a Pareto ranking-based local search procedure to each offspring in Step 2-1
with the local search application probability LSP . The current solution is updated in local search only
when it is dominated by its neighboring solution. If the current offspring (i.e., the initial solution in
local search) is updated by the local search procedure, the updated solution (i.e., the final solution in
local search) is added to the offspring population generated in Step 2-1.

This algorithm is the same as the Version 2 algorithm except for the use of Pareto ranking instead of the

weighted scalar fitness function.

4 Computational Experiments

Through computational experiments on multiobjective 0/1 knapsack problems, we examine the following
issues:
(a) Effect of the balance between genetic search and local search on the performance of our S-MOGLS algo-

rithm.
(b) Comparison among the four variants of our S-MOGLS algorithm.
(c) Comparison of our S-MOGLS algorithm with other EMO and memetic EMO algorithms.
(d) Use of the weighted scalar fitness function in a heuristic greedy repair procedure for unfeasible solutions.

4.1 Conditions of Computational Experiments

In our computational experiments, we use the nine multiobjective 0/1 knapsack problems with two, three or
four objectives (i.e., knapsacks) and 250, 500 or 750 items in Zitzler & Thiele (1999). The k-objective n-
item problem is denoted as the k-n problem (e.g., 2-250 and 3-750 problems). Multiobjective 0/1 knapsack
problems with k knapsacks (i.e., k objectives) and n items can be written in a generic form as follows:

 Maximize))(...,),(),(()(21 xxxxf kfff= , (5)

 subject to � ≤
=

n

j
ijij cxw

1
, ki ...,,2,1= , (6)

where

 �=
=

n

j
jiji xpf

1
)(x , ki ...,,2,1= . (7)

In this formulation, x is an n-dimensional binary vector (i.e., n
nxxx }1,0{)...,,,(21 ∈=x), ijp is the profit

of item j according to knapsack i, ijw is the weight of item j according to knapsack i, and ic is the capacity
of knapsack i.

Our computational experiments on the multiobjective 0/1 knapsack problems are performed in the same
manner as in other comparative studies using the same test problems (e.g., Zitzler & Thiele (1999), Knowles
& Corne (2000b), Jaszkiewicz (2001), Ishibuchi & Kaige (2003)). Each solution is handled as a binary string
of the length n in EMO and memetic EMO algorithms. When new solutions are generated by genetic opera-
tions, they are often unfeasible. For deriving feasible solutions from unfeasible ones, repair procedures have
been used in the literature. Zitzler & Thiele (1999) used a greedy repair procedure where items were re-
moved in the increasing order of the maximum profit/weight ratio jq over all knapsacks:

 },...,2,1|max{ kiwpq ijijj == , nj ,...,2,1= . (8)

This maximum ratio greedy repair procedure has been used in many studies on EMO and memetic EMO
algorithms (Zitzler & Thiele (1999), Knowles & Corne (2000b), Jaszkiewicz (2001, 2002b), Ishibuchi &
Kaige (2003)). This greedy repair procedure is used in our computational experiments of this paper. We also
examine a different greedy repair procedure based on the weighted scalar fitness function.

For comparing the search ability of various EMO and memetic EMO algorithms, we use the generational
distance and the R1D measure (see Deb (2001), Coello (2002), Knowles & Corne (2002) for various per-
formance measures). These measures evaluate the quality of an obtained non-dominated solution set using a
reference solution set. The reference solution set is a set of Pareto-optimal or near Pareto-optimal solutions.
In our computational experiments, the reference solution set for each test problem is constructed by choosing
non-dominated solutions among all solutions obtained by computational experiments in Ishibuchi & Kaige
(2003). The generational distance is the average distance from each solution in the obtained solution set to its
nearest reference solution. This measure evaluates the convergence speed to the Pareto-front. On the other
hand, the R1D measure is the average distance from each reference solution to its nearest solution in the
obtained solution set. This measure evaluates both the convergence speed and the diversity of obtained solu-
tions. We also monitor the CPU time of each algorithm in our computational experiments.

In addition to our S-MOGLS algorithm, we use two EMO algorithms (i.e., SPEA and NSGA-II) and two
memetic EMO algorithms (i.e., M-PAES and Jaszkiewicz’s MOGLS) in our computational experiments of
this paper. In the three memetic EMO algorithms, we use two parameters for terminating local search for
each solution as in Knowles & Corne (2000b) and Jaszkiewicz (2001). One is the maximum number of local
search moves (i.e., optl−) and the other is the maximum number of consecutive fails of local search moves
(i.e., failsl−). In other words, optl− is the upper bound on the total number of examined solutions in local
search from an initial solution while failsl− is the upper bound on the number of examined neighbors of the
current solution. In all the three memetic EMO algorithms, a neighboring solution is generated by applying
the standard bit-flip mutation operation with a probability of 4/n to each bit of the current solution where n is
the number of items. This operation is also used as a mutation operation. The standard one-point crossover is
used in all the five algorithms. The crossover probability is specified as 0.8 in the two EMO algorithms and
our S-MOGLS algorithm while it is specified as 1.0 in the M-PAES and the MOGLS.

Parameter values in our computational experiments are summarized in Table 1. In this table, evalsmax−
is the total number of evaluated solutions, which is used as the stopping condition of each algorithm. Our
parameter specifications are almost the same as those in Zitzler & Thiele (1999), Knowles & Corne (2000a,
2000b) and Jaszkiewicz (2001).

Table 1. Parameter values in our computational experiments.

Population Size K l_fails l_opt
Problem

SPEA NSGA-II M-PAES MOGLS S-MOGLS MOGLS Memetic EMO
evalsmax−

2-250 120 150 30 3,000 150 20 20 100 75,000
2-500 160 200 40 4,000 200 20 20 100 100,000
2-750 200 250 50 5,000 250 20 5 20 125,000
3-250 160 200 40 4,000 200 20 20 50 100,000
3-500 200 250 50 5,000 250 20 20 50 125,000
3-750 240 300 60 6,000 300 20 5 20 150,000
4-250 200 250 50 5,000 250 20 20 50 125,000
4-500 240 300 60 6,000 300 20 20 50 150,000
4-750 280 350 70 7,000 350 20 5 20 175,000

4.2 Effect of the Balance between Genetic Search and Local Search

For examining the effect of the balance between genetic search and local search on the performance of our S-
MOGLS algorithm, we only use optl− as the stopping condition of local search in this subsection. Thus the
average number of examined solutions by local search in each generation of our S-MOGLS algorithm can be
calculated as optlPN −⋅⋅ LSpop while genetic operations generate popN solutions in each generation. Thus
local search examines optlP −⋅LS times as many solutions as genetic search (i.e., optlP −⋅LS is the relative

computation load of local search with respect to genetic search). We perform computational experiments
using various combinations of LSP and optl− . More specifically, we examine 1212× combinations of LSP
and optl− : =LSP 0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, 1 and =−optl 0, 1, 2, 4, 6, 8, 10, 20,
40, 60, 80, 100. When LSP and/or optl− are specified as 0, local search is not used. On the other hand, local
search examines 100 times as many solutions as genetic search when =LSP 1 and =−optl 100.

We apply the S-MOGLS Version 1 algorithm to the 2-250 test problem. The execution of the algorithm is
terminated when 75,000 solutions are examined. Our computational experiment is performed 30 times (i.e.,
30 independent runs) for each combination of LSP and optl− . We also perform the same computational ex-
periment under the same CPU time for all combinations of LSP and optl− . More specifically, the S-MOGLS
Version 1 algorithm is executed for 5.0 seconds on a PC with a Pentium 4 (2.80 GHz) processor. Experimen-
tal results are summarized in Fig. 3. Fig. 3 (a) shows the average value of the R1D measure over 30 runs for
each of the 1212× combinations of LSP and optl− where the stopping condition is the evaluation of 75,000
solutions. Fig. 3 (b) shows the corresponding average CPU time. On the other hand, Fig. 3 (c) shows the av-
erage value of the R1D measure where the stopping condition is the CPU time of 5.0 seconds. This stopping
condition is almost the same as the average CPU time of the S-MOGLS algorithm around the bottom-left
corner in Fig. 3 (b). In these figures, the relative computation load of local search (i.e., optlP −⋅LS) is small
near the bottom and left sides while it assumes the maximum value at the top-right corner. On the other hand,
experimental results on the 3-250 test problem are summarized in Fig. 4. The stopping condition is the ex-
amination of 100,000 solutions in Fig. 4 (a) while it is the CPU time of 15.0 seconds in Fig. 4 (c).

0
0.1 0

10

100

200

300

400

500

600

R1D

LSP

l_opt

1

R1D

LSP

l_opt

R1D

LSP

l_opt

1

0
0.1 0

10

100

0

2

4

6

Time CPU

l_opt

LSP 1

Time CPU

l_opt

LSP

Time CPU

l_opt

LSP 1

0
0.1 0

10

100

200

250

300

350

R1D

LSP

l_opt

1

R1D

LSP

l_opt

R1D

LSP

l_opt

1

 (a) D1R measure (75,000 solutions). (b) CPU time (seconds). (c) D1R measure (5.0 seconds).

Figure 3. Experimental results on the 2-250 problem by the S-MOGLS Version 1 algorithm.

0
0.1 0

10

100

200
300
400
500
600

700

R1D

LSP

l_opt

1

R1D

LSP

l_opt

R1D

LSP

l_opt

1

0
0.1 0

10

100

0

5

10

15

Time CPU

l_opt

LSP 1

Time CPU

l_opt

LSP

Time CPU

l_opt

LSP 1

0
0.1 0

10

100

250

300

350

R1D

LSP

l_opt

1

R1D

LSP

l_opt

R1D

LSP

l_opt

1

 (a) D1R measure (100,000 solutions). (b) CPU time (seconds). (c) D1R measure (15.0 seconds).

Figure 4. Experimental results on the 3-250 problem by the S-MOGLS Version 1 algorithm.

We can see from Fig. 3 (b) and Fig. 4 (b) that the hybridization with local search significantly decreases
the average CPU time. In this sense, our intention to design a simple hybrid algorithm has been realized in
our S-MOGLS algorithm. On the other hand, we can see from Fig. 3 (a) and Fig. 4 (a) that the performance
of our S-MOGLS algorithm is very poor around the top-right corner where almost all solutions are examined
by local search (i.e., where the total number of generation updates is very small). From Fig. 3 (c) and Fig. 4

(c) where various parameter specifications are examined under the same CPU time (i.e., 5.0 seconds and 15.0
seconds), we can see that the hybridization with local search improves (i.e., decreases) the average value of
the R1D measure when the balance between genetic search and local search is appropriate. In Fig. 3 (c), we
observe a deep valley (i.e., a parameter region with high performance) where the value of optlP −⋅LS can be
roughly viewed as being constant (i.e., the relative computational load of local search is roughly the same).
We also observe such a valley in Fig. 4 (c).

4.3 Comparison among Four Variants

As in Fig. 3 (c) with the stopping condition of the same CPU time (i.e., 5.0 seconds), we compare the four
variants of our S-MOGLS algorithm. In Fig. 5, we show the average value of the R1D measure over 30 runs
on the 2-250 problem for each of the 1212× combinations of LSP and optl− where the stopping condition
of each run is the CPU time of 5.0 seconds.

0
0.1 0

10

100

200

300

400

R1D

LSP

l_opt

1

R1D

LSP

l_opt

R1D

LSP

l_opt

1

0
0.1 0

10

100

200

300

400

R1D

LSP

l_opt

1

R1D

LSP

l_opt

R1D

LSP

l_opt

1

 (a) S-MOGLS Version 1 algorithm. (b) S-MOGLS Version 2 algorithm.

0
0.1 0

10

100

200

300

400

R1D

LSP

l_opt

1

R1D

LSP

l_opt

R1D

LSP

l_opt

1

0
0.1 0

10

100

200

300

400

R1D

LSP

l_opt

1

R1D

LSP

l_opt

R1D

LSP

l_opt

1

 (c) S-MOGLS Version 3 algorithm. (d) S-MOGLS Version 4 algorithm.

Figure 5. Experimental results on the 2-250 problem by the four variants. Each variant is executed for 5.0 seconds.

While the S-MOGLS Version 1 algorithm uses the weighted scalar fitness function for parent selection,
Version 2 uses the parent selection mechanism of the NSGA-II, which is based on Pareto ranking and the
crowding measure. The difference between Fig. 5 (a) and Fig. 5 (b) shows the effect of the use of the
weighted scalar fitness function for parent selection. We can see that Fig. 5 (a) is inferior to Fig. 5 (b) near
the bottom and left sides where the relative computation load of local search is zero or very small. This
means that the weighted scalar fitness function does not work well for parent selection in pure EMO algo-
rithms. When the balance between genetic search and local search is appropriate, good results are obtained
from the weighted scalar fitness function as shown by the deep valley in Fig. 5 (a).

The S-MOGLS Version 3 algorithm can be viewed as an interpolation of its Version 1 and Version 2 al-
gorithms. The larger the value of LSP , Version 3 becomes more similar to Version 1. Version 3 with =LSP 1
is the same as Version 1 while Version 3 with =LSP 0 is the same as Version 2. Experimental results in Fig.
5 (c) are consistent with this algorithmic nature of the S-MOGLS Version 3 algorithm. That is, experimental

results with large values of LSP in Fig. 5 (c) are similar to Fig. 5 (a) while those with small values of LSP
are similar to Fig. 5 (b).

The difference between Fig. 5 (b) and Fig. 5 (d) is due to the difference in the implementation of local
search. The weighted scalar fitness function is used for local search in Fig. 5 (b) while Pareto ranking is used
in Fig. 5 (d). From the comparison between Fig. 5 (b) and Fig. 5 (d), we can see that the weighted scalar fit-
ness function works better in local search than Pareto ranking. Similar observations have been often reported
in the literature (e.g., see Ishibuchi et al. (2003)). It should be noted that Pareto ranking works better than the
weighted scalar fitness function in parent selection as shown in Fig. 5 (a) and Fig. 5 (b).

4.4 Comparison with Other Algorithms

Using the parameter specifications in Table 1 in Subsection 4.1, we compare our S-MOGLS algorithm with
the two pure EMO algorithms (i.e., NSGA-II and SPEA) and the two memetic EMO algorithms (i.e., M-
PAES and MOGLS of Jaszkiewicz). In this subsection, we use both optl− and failsl− in our S-MOGLS
algorithm in the same manner as in the other memetic EMO algorithms. The value of LSP is specified as

=LSP 0.01 in our S-MOGLS algorithm. We implement the M-PAES and the MOGLS with no restriction on
the secondary population size. Each algorithm is applied to each test problem 30 times. Then the average
values of the generational distance, the RD1 measure and the CPU time are calculated over those 30 runs of
each algorithm on each test problem. The standard deviation is also calculated for each average value over
those 30 runs. Experimental results are summarized in Tables 2-4 where the best result (i.e., the smallest av-
erage value) in each row is highlighted by boldface. The standard deviation corresponding to each average
value is shown in parentheses in those tables. In our computational experiments, we implement all algorithms
by ourselves. Thus our experimental results (especially CPU time) by each algorithm in this paper can be
further improved by more sophisticated implementations.

Table 2. Average values of the generational distance by the four variants of our S-MOGLS algorithm and the
other four algorithms. The standard deviation is shown in parentheses. The best average result for each test prob-
lem is highlighted by boldface.

Problem SPEA NSGA-II M-PAES MOGLS Version 1 Version 2 Version 3 Version 4
2-250 205 (24) 61 (10) 73 (15) 157 (19) 74 (14) 76 (14) 89 (12) 78 (15)
2-500 566 (43) 149 (26) 225 (28) 405 (39) 181 (27) 190 (30) 183 (25) 182 (32)
2-750 923 (71) 224 (29) 345 (51) 372 (57) 237 (36) 224 (44) 234 (34) 232 (33)
3-250 367 (51) 75 (12) 53 (5) 98 (18) 59 (10) 100 (16) 84 (19) 81 (19)
3-500 1079 (85) 306 (39) 301 (45) 424 (44) 217 (36) 329 (43) 328 (37) 319 (42)
3-750 1945 (121) 560 (60) 609 (92) 497 (82) 326 (50) 544 (63) 570 (61) 564 (52)
4-250 676 (85) 360 (38) 147 (28) 130 (20) 158 (24) 342 (25) 337 (31) 376 (33)
4-500 1791 (119) 793 (51) 580 (63) 447 (68) 456 (58) 795 (50) 788 (61) 847 (72)
4-750 2669 (150) 1133 (84) 658 (117) 428 (67) 513 (81) 1123 (78) 1111 (84) 1156 (100)

Table 3. Average values of the D1R measure by the four variants of our S-MOGLS algorithm and the other four
algorithms. The standard deviation is shown in parentheses. The best average result for each test problem is
highlighted by boldface.

Problem SPEA NSGA-II M-PAES MOGLS Version 1 Version 2 Version 3 Version 4
2-250 289 (21) 264 (27) 264 (40) 231 (17) 293 (36) 263 (39) 246 (25) 260 (23)
2-500 692 (39) 494 (49) 602 (48) 502 (31) 551 (41) 522 (41) 508 (49) 509 (47)
2-750 1174 (36) 793 (67) 1070 (81) 620 (49) 846 (66) 798 (65) 810 (47) 778 (47)
3-250 505 (39) 234 (17) 280 (26) 295 (20) 337 (22) 253 (18) 249 (16) 252 (20)
3-500 1266 (68) 530 (22) 645 (25) 678 (34) 601 (29) 566 (30) 572 (26) 563 (26)
3-750 2352 (102) 1194 (42) 1528 (53) 1314 (80) 1436 (54) 1225 (43) 1216 (41) 1216 (57)
4-250 796 (70) 392 (25) 341 (21) 390 (28) 366 (16) 392 (18) 388 (17) 415 (26)
4-500 2059 (107) 989 (54) 893 (41) 900 (44) 822 (27) 1002 (50) 983 (61) 1041 (70)
4-750 3267 (134) 1679 (62) 1761 (66) 1521 (101) 1527 (34) 1687 (53) 1670 (55) 1719 (60)

Table 4. Average values of the CPU time by the four variants of our S-MOGLS algorithm and the other four al-
gorithms. The standard deviation is shown in parentheses. The best average result for each test problem is high-
lighted by boldface.

Problem SPEA NSGA-II M-PAES MOGLS Version 1 Version 2 Version 3 Version 4
2-250 2 (0.06) 5 (0.03) 7 (0.32) 1 (0.02) 4 (0.04) 4 (0.06) 4 (0.04) 5 (0.04)
2-500 5 (0.08) 10 (0.02) 41 (1.62) 3 (0.02) 8 (0.06) 9 (0.10) 9 (0.09) 10 (0.06)
2-750 11 (0.18) 18 (0.02) 83 (5.91) 14 (0.22) 17 (0.08) 19 (0.04) 19 (0.04) 19 (0.05)
3-250 7 (0.38) 10 (0.07) 13 (0.29) 2 (0.05) 10 (0.09) 9 (0.08) 9 (0.08) 10 (0.08)
3-500 17 (1.11) 16 (0.05) 61 (2.86) 5 (0.03) 13 (0.09) 14 (0.12) 14 (0.09) 15 (0.09)
3-750 32 (1.49) 26 (0.07) 107 (6.17) 22 (0.35) 25 (0.05) 27 (0.08) 27 (0.08) 28 (0.07)
4-250 24 (1.41) 15 (0.09) 43 (0.44) 4 (0.03) 14 (0.10) 16 (0.12) 16 (0.16) 13 (011)
4-500 64 (2.86) 23 (0.17) 134 (3.37) 7 (0.04) 19 (0.13) 20 (0.14) 20 (0.17) 20 (0.11)
4-750 123 (3.77) 35 (0.16) 250 (14.6) 30 (0.61) 34 (0.12) 37 (0.22) 37 (0.17) 35 (0.16)

From Table 2, we can see that the S-MOGLS Version 1 algorithm outperforms the other algorithms for

many test problems in terms of the generational distance (i.e., in terms of the convergence speed to the
Pareto-front) except that it is slightly outperformed by the NSGA-II for the two-objective problems and by
the MOGLS for the four-objective problems. Among the four variants of our S-MOGLS algorithm, the best
results are obtained by Version 1 in terms of the generational distance in Table 2. On the other hand, the S-
MOGLS Version 1 algorithm is somewhat inferior to the MOGLS and the NSGA-II for some test problems,
comparable to the M-PAES on average, and superior to the SPEA for many test problems in terms of the

R1D measure in Table 3 (i.e., in terms of both the convergence speed to the Pareto-front and the diversity of
obtained solutions). While the best results are obtained by Version 1 among the four variants with respect to
the convergence speed to the Pareto-front in Table 2, there is no large difference among their performance in
Table 3 with respect to the R1D measure. This may be because the use of the weighted scalar fitness func-
tion in parent selection in Version 1 has a negative effect on the diversity of obtained solutions while it has a
positive effect on the convergence speed to the Pareto-front. In terms of CPU time, Table 4 clearly demon-
strates that the NSGA-II, the MOGLS and our S-MOGLS are much faster than the SPEA and the M-PAES
especially for the four-objective test problems.

As shown in Fig. 3 (b) and Fig. 4 (b), the CPU time of our S-MOGLS algorithm strongly depends on the
balance between local search and genetic search. The larger the weight of local search is (i.e., the larger the
local search parameters LSP , optl− and failsl− are), the shorter the CPU time is. In our computational ex-
periments, LSP was specified as =LSP 0.01. If we assign a larger value to LSP , our S-MOGLS algorithm
can become much faster at the cost of the deterioration in its search ability as shown in Fig. 3 and Fig. 4. The
CPU time of our S-MOGLS algorithm (and other algorithms) also strongly depends on the population size.
In our computational experiments, we used the same population size in our S-MOGLS algorithm as in the
NSGA-II for each test problem (see Table 1). If we use the same population size as in the M-PAES (i.e., 1/5
of the current specification), the CPU time of our S-MOGLS algorithm is significantly decreased (roughly
speaking, it is decreased to 1/2 of the reported average values in Table 4).

4.5 Further Discussions on the Hybridization with Local Search

In Jaszkiewicz (2001, 2002b), he used a different repair procedure based on the weighted scalar fitness func-
tion in his MOGLS algorithm. In his repair procedure, items were removed in the increasing order of the
following ratio using the current weight vector)...,,,(21 kλλλ=

�
 in the weighted scalar fitness function:

 �� λ=
==

k

i
ij

k

i
ijij wpq

11
, nj ,...,2,1= . (9)

It should be noted that this greedy repair procedure is not always directly applicable to EMO algorithms.
Since the MOGLS and S-MOGLS Version 1 algorithms use the weighted scalar fitness function in parent
selection as well as in local search, the greedy repair procedure in (9) is directly applicable to these algo-
rithms. On the contrary, this greedy repair procedure cannot be directly used in the following algorithms that
are not based on the weighted scalar fitness function: the S-MOGLS Version 4, SPEA, NSGA-II, and M-
PAES. In the S-MOGLS Version 2 algorithm, this greedy repair procedure is applicable in the local search

part based on the weighted scalar fitness function. In the S-MOGLS Version 3 algorithm, it can be used in
genetic search only when parent solutions are chosen based on the weighted scalar fitness function.

We demonstrate the effect of this greedy repair procedure on the search ability of the MOGLS and S-
MOGLS Version 1 algorithms in Fig. 6 where “Maximum ratio” and “Weighted scalar” denote the greedy
repair procedures in (8) and (9), respectively. Fig. 6 shows a single solution set obtained by a single run of
each algorithm with a different repair procedure on the 2-250 test problem. From Fig. 6, we can see that the
performance of the MOGLS and S-MOGLS Version 1 algorithms is significantly improved by the use of the
greedy repair procedure in (9) based on the weighted scalar fitness function.

Using the weighted scalar greedy repair procedure in (9), we perform the same computational experi-
ments as in Tables 2-4. This greedy repair procedure is used only when it is directly applicable (i.e., only
when unfeasible solutions are related to the weighted scalar fitness function). For example, in the case of the
S-MOGLS Version 2 algorithm, the maximum ratio greedy repair in (8) is used in genetic search while the
weighted scalar greedy repair in (9) is used in local search. Experimental results are summarized in Tables 5-
7. From the comparison between Table 2 and Table 5 (and between Table 3 and Table 6), we can see that the
performance of the MOGLS and S-MOGLS algorithms (except for Version 4) is improved by the use of the
weighted scalar greedy repair procedure. It should be also noted that the use of this greedy repair procedure
increases the CPU time of those algorithms. The CPU time of the Version 2 and Version 3 algorithms, how-
ever, is still very small in Table 7 while its search ability is improved in Table 5 and Table 6. This means that
these two variants of our S-MOGLS algorithm are simple but powerful. That is, our intention to design a
simple but powerful memetic EMO algorithm has been realized. Of course, the increase in the CPU time by
the use of the weighted scalar greedy repair procedure may be partially remedied by the use of a sophisti-
cated sorting method and/or the use of prespecified weight vectors instead of randomly generated ones.

Total profit (knapsack 1)

T
ot

al
 p

ro
fit

 (
kn

ap
sa

ck
 2

)

Maximum ratio
Weighted scalar

MOGLS

7500 8000 8500 9000 9500 10000

7500

8000

8500

9000

9500

10000

 Total profit (knapsack 1)

T
ot

al
 p

ro
fit

 (
kn

ap
sa

ck
 2

)

Maximum ratio
Weighted scalar

S-MOGLS

7500 8000 8500 9000 9500 10000

7500

8000

8500

9000

9500

10000

Figure 6. A solution set obtained by a single run of each of the MOGLS of Jaszkiewicz and S-MOGLS Version 1 algo-
rithms with a different greedy repair procedure on the 2-250 problem.

Table 5. Average values of the generational distance by the four variants of our S-MOGLS algorithm and the
other four algorithms. The weighted scalar greedy repair procedure is used whenever it is directly applicable.

Problem SPEA NSGA-II M-PAES MOGLS Version 1 Version 2 Version 3 Version 4
2-250 205 (24) 61 (10) 73 (15) 24 (2) 20 (3) 80 (9) 72 (10) 78 (15)
2-500 566 (43) 149 (26) 225 (28) 57 (10) 29 (6) 163 (18) 145 (18) 182 (32)
2-750 923 (71) 224 (29) 345 (51) 106 (21) 47 (6) 218 (32) 186 (24) 232 (33)
3-250 367 (51) 75 (12) 53 (5) 166 (9) 110 (7) 96 (16) 94 (13) 81 (19)
3-500 1079 (85) 306 (39) 301 (45) 246 (44) 154 (14) 325 (40) 304 (32) 319 (42)
3-750 1945 (121) 560 (60) 609 (92) 350 (50) 279 (17) 551 (55) 490 (46) 564 (52)
4-250 676 (85) 360 (38) 147 (28) 162 (10) 225 (22) 330 (28) 364 (46) 376 (33)
4-500 1791 (119) 793 (51) 580 (63) 378 (34) 347 (35) 715 (48) 710 (62) 847 (72)
4-750 2669 (150) 1133 (84) 658 (117) 658 (72) 518 (57) 1074 (94) 1055 (97) 1156 (100)

Table 6. Average values of the D1R measure by the four variants of our S-MOGLS algorithm and the other four
algorithms. The weighted scalar greedy repair procedure is used whenever it is directly applicable.

Problem SPEA NSGA-II M-PAES MOGLS Version 1 Version 2 Version 3 Version 4
2-250 289 (21) 264 (27) 264 (40) 30 (4) 63 (13) 145 (30) 119 (19) 260 (23)
2-500 692 (39) 494 (49) 602 (48) 63 (21) 95 (18) 270 (25) 220 (24) 509 (47)
2-750 1174 (36) 793 (67) 1070 (81) 107 (38) 210 (28) 729 (55) 609 (69) 778 (47)
3-250 505 (39) 234 (17) 280 (26) 146 (10) 181 (16) 191 (13) 168 (18) 252 (20)
3-500 1266 (68) 530 (22) 645 (25) 241 (55) 310 (25) 457 (30) 420 (28) 563 (26)
3-750 2352 (102) 1194 (42) 1528 (53) 292 (55) 714 (50) 1174 (52) 1061 (64) 1216 (57)
4-250 796 (70) 392 (25) 341 (21) 173 (18) 268 (19) 359 (20) 380 (39) 415 (26)
4-500 2059 (107) 989 (54) 893 (41) 363 (51) 500 (28) 880 (61) 871 (78) 1041 (70)
4-750 3267 (134) 1679 (62) 1761 (66) 525 (70) 949 (51) 1610 (62) 1565 (61) 1719 (60)

Table 7. Average values of the CPU time by the four variants of our S-MOGLS algorithm and the other four al-
gorithms. The weighted scalar greedy repair procedure is used whenever it is directly applicable.

Problem SPEA NSGA-II M-PAES MOGLS Version 1 Version 2 Version 3 Version 4
2-250 2 (0.06) 5 (0.03) 7 (0.32) 2 (0.02) 16 (0.18) 4 (0.07) 4 (0.06) 5 (0.04)
2-500 5 (0.08) 10 (0.02) 41 (1.62) 5 (0.06) 66 (0.89) 9 (0.10) 9 (0.06) 10 (0.06)
2-750 11 (0.18) 18 (0.02) 83 (5.91) 45 (0.47) 227 (0.53) 20 (0.03) 20 (0.03) 19 (0.05)
3-250 7 (0.38) 10 (0.07) 13 (0.29) 3 (0.03) 27 (0.26) 9 (0.07) 9 (0.06) 10 (0.08)
3-500 17 (1.11) 16 (0.05) 61 (2.86) 8 (0.06) 90 (0.95) 14 (0.10) 14 (0.10) 15 (0.09)
3-750 32 (1.49) 26 (0.07) 107 (6.17) 60 (0.49) 277 (0.79) 28 (0.07) 29 (0.07) 28 (0.07)
4-250 24 (1.41) 15 (0.09) 43 (0.44) 5 (0.03) 36 (0.30) 15 (0.16) 12 (0.09) 13 (011)
4-500 64 (2.86) 23 (0.17) 134 (3.37) 11 (0.07) 110 (0.84) 20 (0.16) 19 (0.15) 20 (0.11)
4-750 123 (3.77) 35 (0.16) 250 (14.6) 79 (0.86) 330 (0.72) 38 (0.19) 36 (0.14) 35 (0.16)

5 Conclusions

In this paper, we proposed a simple but powerful memetic EMO (i.e., S-MOGLS) algorithm. In the design of
our S-MOGLS algorithm, emphasis was placed on its algorithmic simplicity as well as its search ability. Our
algorithm has the same generation update mechanism as the NSGA-II: Elitism is implemented using Pareto
ranking and the concept of crowding without using a secondary population. At the same time, our algorithm
uses the weighted scalar fitness function as in other MOGLS algorithms for choosing a pair of parent solu-
tions and executing local search for its offspring. Experimental results showed that our S-MOGLS algorithm
is comparable or superior to the well-known EMO and memetic EMO algorithms (i.e., SPEA, NSGA-II, M-
PAES and MOGLS) while its CPU time is almost the same as or shorter than the other algorithms for many
test problems. It was also demonstrated that the use of a heuristic greedy repair procedure based on the
weighted scalar fitness function improved the performance of the MOGLS and S-MOGLS algorithms. When
our S-MOGLS algorithm was used together with the weighted scalar greedy repair procedure, its search abil-
ity outperformed that of the SPEA, NSGA-II and M-PAES algorithms with the maximum ratio greedy repair
procedure.

We also demonstrated the importance of the balance between genetic search and local search in our S-
MOGLS algorithm. When this balance was not appropriate, the search ability of our S-MOGLS algorithm
was severely deteriorated. We also examined four variants of our S-MOGLS algorithm. Experimental results
showed that the use of the weighted scalar fitness function in parent selection had a negative effect on the
diversity of solutions and a positive effect on the convergence speed to the Pareto-front. On the other hand,
the weighted scalar fitness function worked better than Pareto ranking in local search. When the weighted
scalar greedy repair procedure was employed, the use of the weighted scalar fitness function became much
more advantageous. In this case, our S-MOGLS Version 2 and Version 3 algorithms outperformed the SPEA,
the NSGA-II and the M-PAES from an overall viewpoint with respect to both the search ability and the CPU
time. The best results with respect to the generational distance were obtained by our S-MOGLS Version 1
algorithm while the MOGLS worked best with respect to the RD1 measure.

One important issue that was not discussed in this paper is the selection of initial solutions for local

search. It was reported in Ishibuchi et al. (2003) for multiobjective flowshop scheduling problems that the
performance of their MOGLS algorithm was significantly improved by choosing good initial solutions for
local search from the current population. While we did not report experimental results in this paper, the per-
formance of our S-MOGLS Version 2 algorithm was improved by the choice of good initial solutions for
local search.

Acknowledgments

The authors would like to thank the financial support from Japan Society for the Promotion of Science
(JSPS) through Grand-in-Aid for Scientific Research (B): KAKENHI (14380194).

References

Coello Coello, C. A., van Veldhuizen, D. A., and Lamont, G. B. (2002), Evolutionary Algorithms for Solving
Multi-Objective Problems, Kluwer Academic Publishers, Boston, MA.

Deb, K. (2001), Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, Chiches-
ter, UK.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002), “A fast and elitist multiobjective genetic algo-
rithm: NSGA-II,” IEEE Trans. on Evolutionary Computation, vol. 6, no. 2, pp. 182-197.

Ishibuchi, H. and Kaige, S. (2003), “Effects of repair procedures on the performance of EMO algorithms for
multiobjective 0/1 knapsack problems,” Proc. of 2003 Congress on Evolutionary Computation (in press).

Ishibuchi, H. and Murata, T. (1996), “Multi-objective genetic local search algorithm,” Proc. of 1996 IEEE
International Conference on Evolutionary Computation, pp. 119-124.

Ishibuchi, H. and Murata, T. (1998), “A multi-objective genetic local search algorithm and its application to
flowshop scheduling,” IEEE Trans. on Systems, Man, and Cybernetics - Part C: Applications and Re-
views, vol. 28, no. 3, pp. 392-403.

Ishibuchi, H., Yoshida, T., and Murata, T. (2003), “Balance between genetic search and local search in me-
metic algorithms for multiobjective permutation flowshop scheduling,” IEEE Trans. on Evolutionary
Computation, vol. 7, no. 2, pp. 204-223.

Jaszkiewicz, A. (2001), “Comparison of local search-based metaheuristics on the multiple objective knap-
sack problem,” Foundations of Computing and Decision Sciences, vol. 26, no. 1, pp. 99-120.

Jaszkiewicz, A. (2002a), “Genetic local search for multi-objective combinatorial optimization,” European
Journal of Operational Research, vol. 137, no. 1, pp. 50-71.

Jaszkiewicz, A. (2002b), “On the performance of multiple-objective genetic local search on the 0/1 knapsack
problem - A comparative experiment,” IEEE Trans. on Evolutionary Computation, vol. 6, no. 4, pp. 402-
412.

Knowles, J. D. and Corne, D. W. (2000a), “M-PAES: A memetic algorithm for multiobjective optimization,”
Proc. of 2000 Congress on Evolutionary Computation, pp. 325-332.

Knowles, J. D. and Corne, D. W. (2000b), “A comparison of diverse approaches to memetic multiobjective
combinatorial optimization,” Proc. of 2000 Genetic and Evolutionary Computation Conference Work-
shop Program (WOMA I), pp. 103-108.

Knowles, J. D. and Corne, D. W. (2002), “On metrics for comparing non-dominated sets,” Proc. of 2002
Congress on Evolutionary Computation, pp. 711-716.

Murata, T., Kaige, S., and Ishibuchi, H. (2003), “Generalization of dominance relation-based replacement
rules for memetic EMO algorithms,” Proc. of 2003 Genetic and Evolutionary Computation Conference,
pp. 1234-1245.

Schaffer, J. D. (1985), “Multiple objective optimization with vector evaluated genetic algorithms,” Proc. of
1st International Conference on Genetic Algorithms and Their Applications, pp. 93-100.

Zitzler, E., Deb, K., and Thiele, L. (2000), “Comparison of Multiobjective Evolutionary Algorithms: Empiri-
cal Results,” Evolutionary Computation, vol. 8, no. 2, pp. 173-195.

Zitzler, E. and Thiele, L. (1999), “Multiobjective evolutionary algorithms: A comparative case study and the
strength Pareto approach,” IEEE Trans. on Evolutionary Computation, vol. 3, no. 4, pp. 257-271.

