A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

Genetic local search for multi-objective
combinatorial optimization

Andrzej Jaszkiewicz
Institute of Computing Science
Poznan University of Technology
ul. Piotrowo 3a, 60-965 Poznan, Poland
Jaszkiewicz@cs.put.poznan.pl
WwWw-idss.cs.put.poznan.pl/~jaszkiewicz

Abstract

The paper presents a new genetic local search algorithm for multi-objective combinatorial
optimization. The goal of the dgorithm is to generate in a short time a set of gpproximately
efficient solutions that will allow the decision maker to choose a good compromise solution.
In each iteration, the algorithm draws at random a utility function and constructs a temporary
population composed of a number of best solutions among the prior generated solutions.
Then, a pair of solutions selected at random from the temporary population is recombined.
Local search procedure is applied to each offspring. Results of the presented experiment
indicate that the algorithm outperforms other multi-objective methods based on genetic loca
search and a Pareto ranking based multi-objective genetic algorithm on travelling salesperson
problem.

K eywor ds Multi-objective combinatorial optimization, metaheuristics, genetic local search

1 Introduction

Combinatoria optimization finds applications in many areas, e.g. in production scheduling,
project scheduling, staff scheduling, time tabling, production facilities design, vehicle routing,
telecommunication routing, investment planning, location and many others (see eg. Yu,
1998). Solutions of real-life combinatorial optimization problems usually have to be evaluated
taking into account different points of view corresponding to multiple, often conflicting
objectives.

The goa of multi-objective optimization is to find the single solution giving the best
compromise between multiple objectives. Since usudly there is no single solution that
optimizes simultaneoudly al the objectives, sdection of the best compromise solution
requires taking into account preferences of the DM. Under very weak and generally accepted
assumptions about the DM’ s preferences the best compromise solution belongs to the set of,
so cdled, efficient solutions (Steuer, 1986, ch. 6.6-6.7). Thus, many multi-objective
optimization methods reduce the search space to the set of efficient solutions. Note that this

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

approach is not valid if the DM searches for a sample of best solutions as the second best and
other good solutions do not need to be efficient under the same assumptions about the DM’s
preferences

Because of computationa complexity of many MOCO problems the use of metaheuristcs, e.g.
genetic algorithms, simulated annealing or tabu search, seems to be the most promising
approach to generation of approximately efficient solutions (Ulungu and Teghem, 1994).
Metaheuristics have the advantages of being computationally efficient, general and relatively
simple in implementation.

Below we use the term “multi-objective metaheuristic” to characterize methods that generate
a set of approximately efficient solutions in a single run. Single objective metaheuristics can
also be used in multi-objective context, for example to optimize a scalarizing function. In the
latter case, however, a single approximately efficient solution is obtained in each run of the
single objective method.

Several authors have proposed multi-objective metaheuristic procedures. The methods are
usudly based on classicad single objective metaheuristics. For example, the methods of
Schaffer (1985), Fonseca and Fleming (1993), Horn, Nafpliotis and Goldberg (1994), Srinivas
and Deb (1995) are based on genetic algorithms, the methods of Serafini (1994), Czyzak and
Jaszkiewicz (1998), Ulungu et a. (1999) are based on simulated annealing, and the methods
of Gandibleux et. al. (1996) and Hansen (1998) are based on tabu search.

In recent years we are observing a growing interest in hybrid single objective metaheuristicc
that combine elements of various methods. Typica example is genetic local search (GLYS)
method combining genetic algorithms with local search. Such methods often outperform other
metaheuristics on combinatoria optimization problems (see e.g. Ulder et al., 1991; Murata
and Ishibuchi, 1994; Merz, Freideben, 1997; Gorges-Schleuter, 1997; Galinier and Hao,
1999). Thus, the construction of multi-objective genetic local search methods is a very
promising direction for multi-objective combinatorial optimization.

The paper describes a new multi-objective genetic local search method. The goa of the
method is to generate effectively a set of approximately efficient solutions that will alow the
DM to choose a good compromise solution.

A multi-objective genetic local search method has been proposed by Ishibuchi and Murata
(1998). Their method is discussed in section 4.2. Results of the computational experiments
reported in section 7 demonstrate that our method performs significantly better in the case of
multi-objective travelling sal esperson problem (TSP).

The paper is organized in the following way. In the next section, some basic definitions are
given. In the third section, the single objective genetic local search metaheuristic is described.
Existing multi-objective genetic algorithms are discussed in the fourth section. In the fifth
section, the basic single objective genetic local search algorithm is presented. The new
multi-objective genetic local search agorithm is described in the sixth section. In the seventh
section computational experiments with the proposed algorithms are reported. In the last
section conclusions and directions for further research are summarized.

2 Problem statement and basic definitions
The general multi-objective combinatorial optimization (MOCO) problem is formulated as:
maximize{ f,(x)= z,..., f,(x) = z,} (P1)
st. x 0D,

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

where: solution x =[x,,...,X, | is a vector of discrete decision variables, D is the set of
feasible solutions.

Theimage of a solution x in the objective space isa point z* :[zf,...,zﬁl, suchthat zj =f(x),
ji=1,..,J.
A point z'0Z dominates z*0Z, z'>2?, if Ojz; 2z and z >z for a least one j.

Solution x* dominates x?, x* > x?, if the image of x* dominates the image of x*. A solution
x 0D is efficient (Pareto-optimal) if thereisno x'00D such that x'> x Point being image of
an efficient solution is called nondominated. The set of all efficient solutions is called efficient
set and denoted by N. The image of the efficient space in the objective space is called

nondominated set.
The point z2 composed of the best attainable objective function vaues is called the ideal
point:

z]zmax{zj|zDZ} ji=1..J.

The point z. composed of the worst attainable objective function values in the efficient set is
caled the nadir point.

Range equalization factors (Steuer, 1986, ch. 8.4.2) are defined in the following way:

1 .
=i (1)

]

where R; is the (approximate) range of objective z in the set N or D. Objective function values
multiplied by range equalization factors are called normalized objective function values.

A tility function u:07 - O, is a model of the DM’s preferences that maps each point in the
objective space into a vaue of utility. It is assumed that the god of the DM isto maximize the
utility.

Weighted Tchebycheff utility functions are defined in the following way:
u. (2,2 ,A)=- mjax{/lj (ZJ 5) (2)

where A = [Al,...,AJ.J, OjA; 20, is a weight vector. Each utility function of this type has a

least one globa optimum belonging to the set of efficient solutions. For each efficient
solution x there exists aweighted Tchebycheff utility function such that x is a global optimum
of u (Steuer, 1986, ch. 14.8).

Weighted linear utility functions are defined in the following way:
J
u(zA)=>Az. 3)
j=1

An efficient solution X is supported if there exists a vector of non-negative weights
A= [Al,...,/]jj such that x is the unique globa optimum of the following problem:

maximize u,(z,A\)

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

st. x OD.
Weight vectors than meet the following conditions:

J
0jA; 20, A =1,

=1

are called normalized weight vectors.

3 Genetic local search metaheuristic

In recent years, the development of hybrid genetic algorithms is one of the most significant
trends in the field of metaheuristics. Methods of this kind hybridize recombination operators
with local heuristics, e.g. with local search. Other frequently used names are memetic
algorithms or genetic loca search (GLS). It is quite difficult to track the single origin of GLS.
To our knowledge, the first description of GLS was published by Ackley (1987), but smilar
algorithms were developed probably completely independently by several authors. As it was
mentioned in section 1 genetic local search algorithms have proved in recent years to be a
very effective class of methods for combinatorial optimization. The methods tend to achieve
synergy of recombination operators and local heuristics. In some cases very smple loca
heuristics are used while other implementations use extensions of local search. For example,
Radcliffe and Surry (1994) consider an algorithm in which a single iteration of local searchis
applied to each offspring while Taillard (1995) applies tabu search to each offspring.

From the genetic agorithms perspective, GLS may be interpreted as a standard
genetic/evolutionary algorithm working on a reduced set of solutions, e.g. on a set of loca
optima. From this point of view, loca heuristic is just a part of the recombination operator.
The efficiency of GLS may be explained by the fact that in the case of many problems local
optima constitute a relatively smdl part of the search space and the local optima can be
achieved in an efficient way.

GLS may be dso interpreted as a modification of multiple start local search with random
starting solutions. In GLS, starting solutions are constructed in an inteligent way by
combination of the properties of other good solutions. If the recombination operator is well
designed, garting solutions obtained by recombination should congtitute better starting points
for local improvement than random solutions. The efficiency of GLS in comparison with
multiple start loca search can be explained by the fact that local search when started from
good starting solutions usually yields better solutions and often requires less time.

4 Existing multi-objective genetic methods

4.1 Pareto ranking based multi-objective genetic algorithms

Clearly, majority of research in the field of multi-objective metaheuristics concentrates on
genetic algorithms (see Fonseca and Fleming, 1995, for review). It is often claimed that since
GAs work with population (set) of solutions they are especialy well suited for multi-objective
optimization where the god is to find a set of gpproximately efficient solutions (see e.g.
Fonseca and Flemming, 1995; Van Veldhuizen, 1999, ch. 2.5). In al MOGAS, we are avare
of, asingle population of solutionsis expected to approach and disperse over the whole (or, in
some cases, over an interesting region of) the efficient set.

At present probably most often used are MOGAS based on Pareto ranking (compare Van
Veldhuizen, 1999, ch. 3.3.2.2 and 3.3.2.3). In classica single objective GAs fitness of a
solution depends on its score on the single objective. In Pareto ranking based MOGAS the

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

fitness depends primarily on a ranking induced by the dominance relation. For the first time
this idea was introduced by Goldberg (1988). The general idea of Pareto ranking has been
implemented by various authors in dightly different ways. In the MOGA of Fonseca and
Fleming (1993) the rank of a given solution is equa to the number of solutions that dominate
it.

A clear advantage of Pareto ranking is its independence on any monotonic transformation of
objective functions. Note, however, that this kind of fithess assignment may promote regions
with higher density of solutions.

Pareto ranking alone does not guarantee, however, that the population will disperse over all
regions of the efficient set. Fonseca and Fleming (1995) consider fitness landscapes induced
by very large, uniformly distributed populations. In the case of Pareto ranking-based selection
schemes, al efficient solutions have the highest fitness, i.e. define a plateau of the fitness
landscape. This situation is similar to optimization of a single function having global optima
at aplateau. It iswell known that in this case finite populations converge to a single optimum.
This phenomenon is caled “genetic drift” (Goldberg and Segrest, 1987). In the
multi-objective case, genetic drift means that finite populations tend to converge to small
regions of the efficient set. Fonseca and Fleming (1993) and Srinivas and Deb (1994) propose
the use of fitness sharing to prevent the genetic drift. The idea of this technique is to penalize
(decrease fitness) of solutions being too close, either in objective or in decision space, to some
other solutionsin the current population.

In classcal single objective GAs al solutions from the current population may be mated
(recombined) to produce offsprings. This may be, however, very ineffective in multi-objective
case. Single objective GAs construct new solutions by recombination of properties of two
good solutions. The idea is based on (usually implicit) assumption that good solutions have
some smilarities in the decision space, i.e. that some features appear often in good solutions.
In the case of standard binary coding such features are caled schemas and correspond to some
patterns of zeros and ones (see schema theorem, Holland, 1975). In multi-objective case, in
general, there is no reason to expect such similarities even if they are observed in
corresponding single objective problems (compare the study of Borges and Hansen, 1998).
Efficient set of a multi-objective problem includes, among others, optima of particular
objectives. If the objectives are not positively correlated their optima will be, in generd,
completely different. This suggests that recombination of approximately efficient solutions
digant in the objective space is very unlikely to yield good offsprings. Fonseca and Fleming
(1993) propose the use of mating restrictions to avoid not promising recombinations, i.e. they
propose to ban mating of distant solutions.

Notice that fitness sharing and mating restrictions do in some sense opposite jobs. Fitness
sharing pendizes close solutions while mating restrictions ban mating of distant solutions.
Thus, parameters of these techniques should be carefully set. Note aso that the distance
measures used in the two techniques are, in general, dependent on scaling of objectives. Thus,
in practice, the methods based on Pareto ranking are not independent on monotonic
transformations of objective functions.

Note also that Pareto ranking is not well suited for hybridization with local search. Change of
the rank of a given solution may require significant changes of the objective values, so, many
local moves will not influence the rank. In the case of solutions having rank 1 no loca
improvement is possible. Furthermore, evaluation of local moves depends on other solutions
in the population. In the case of problems, for which the evaluation of loca moves is very
fadt, it may significantly increase running time of local optimization.

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

4.2 Ishibuchi's and Murata's multi-objective genetic local search

Ishibuchi and Murata (1998) were the first authors to propose a multi-objective genetic local
search algorithm. The main idea of the method is to randomly generate a weight vector for
each iteration. The weight vector is used in a linear utility function. Each iteration of the
method consists of a single recombination and a single loca search applied to the offspring.
The method uses a standard genetic population with no mating restrictions. The solutions for
recombination are selected according to the roulette wheel scheme, with fitness depending on
the current utility function. Generation replacement is used. Furthermore, a portion of elite
potentialy efficient solutions is added to the new generation. Ishibuchi and Murata applied
their method to a multi-objective flowshop problem.

4.3 MOSA-like multi-objective genetic local search

Ulungu et al. (1999) proposed a method based on smulated annealing caled MOSA. The
method uses a number of predefined weight vectors defining a set of weighted linear utility
functions. Each of the functions is optimized sequentially or in parale by an independent
simulated annealing process. The outcome of the algorithm are not only the best solutions
obtained for each of the optimized functions, but al the potentiadly efficient solutions
generated during the optimization. The idea of the method is very genera and can be easily
used with any other metaheuristic applied to optimization of particular utility functions, e.g.
GLS. Such an algorithm will be called MOSA-like MOGLS.

5 Basic single objective genetic local search algorithm

Similarly to other multi-objective metaheuristics our MOGLS is based on a single objective
algorithm. The details of this algorithm are given in figure 1. The algorithm assumes complete
elitism, i.e. the current population is dways composed of a sample of best known solutions.

Parameters: K — size of the current population, stopping criterion
Initialization:
Current population P:=[]
repeat K times
Construct randomly a new feasible solution x
Optimize locally the objective function starting from solution x obtaining x’
Add x’ to P.
Main loop:
repeat
Draw at random with uniform probability two solutions x; and x, from P
Recombine x; and X, obtaining x3
Optimize locally the objective function starting from solution x3 obtaining X3’
if X3’ is better than the worgt solution in P and different in the decision space from all
the solutionsin P then
Add x3' to P and delete from P the worst solution
until the stopping criterion is met

Figurel. Algorithm of the basic single objective genetic local search

For the TSP instances of the sze similar to those used in our experiment the population
relatively quickly converges to a number of close loca optima, such that no other better local
optima can be found in result of recombination and local search. In the experiments described

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

in section 7.5 the optimization was stopped if in K successive iterations current population
was not changed. This value was selected experimentaly. It was observed that population that
was not changed in K iterations gives little chance for further improvements. The size of the
current population K is the main parameter controlling the calculation time. In general, the
larger K the larger CPU time and the better quality of results (see section 7.5).

In the above algorithm mutation operator is not explicitly used. The recombination operator
used for TSP problem introduces, however, some elements of randomness. In other cases,
explicit mutation operators may be necessary.

6 The algorithm of multi-objective genetic local search

6.1 Main algorithm

The god of multi-objective metaheurigtics is to generate a set of approximately efficient
solutions being a good approximation of the whole set of efficient solutions. Of course, the
best possible gpproximation is set N itself. As it was mentioned in section 2, al weighted
linear and all weighted Tchebycheff utility functions achieve optima at efficient solutions.
Thus, finding al the efficient solutions is equivaent to finding the optima of all weighted
Tchebycheff and al weighted linear utility functions. Hence, we reformulate the goa of
multi-objective metaheuristics as simultaneous optimization of all weighted Tchebycheff or
all weighted linear utility functions. The term "optimization" in the previous sentence is
understood as a tendency of the algorithm to improve values of all the utility functions.

Our MOGLS implements the idea of smultaneous optimization of all weighted Tchebycheff
or al weighted linear utility functions by random choice of the utility function optimized in
each iteration. In other words, in each iteration, MOGLS tries to improve the value of a
randomly selected utility function. A sngle iteration of MOGLS consists of a single
recombination of a pair of solutions. The offspring is then used as a starting point for loca
search.

The generd idea of the proposed algorithm is similar to that used by Ishibuchi and Murata
(1998). The main difference is in the way the solutions are selected for recombination.
Consider the agorithm of single objective GLS presented in section 5 that is a basis for the
proposed MOGLS. In the single objective GLS two parents are drawn at random from the
population of K solutions being the best known solutions on the single objective function.
Analogoudly, in the proposed multi-objective genetic local search the parents are selected
from the temporary population composed of K solutions being the best known solutions on
the temporary utility function used in the current iteration. Of course, in each iteration, the
temporary population is, in general, different.

In order to draw at random the utility function in our MOGLS algorithm, a normalized weight
vector is drawn at random by the algorithm presented in figure 2. The algorithm uniformly
samples the set of normalized weight vectors.

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

A, =1-3rand()

=1

J-1
AI

=1

A, =1-

Figure2. Algorithm for generation of random normalized weight vectors. Function
rand() returnsarandom value from the range <0,1> with uniform probability

The details of the MOGLS agorithm are given in figure 3. Figure 4 graphicaly illustrates the
work of the method in asingle iteration.

Parameters. K — size of the temporary population, S - number of initid solutions,
stopping criterion
Initialization:
The set of potentialy efficient solutions PE:=[]
The current set of solutions CS=[]
repeat Stimes
Draw at random a utility function u
Construct randomly a new feasible solution x
Optimize locally the objective function u starting from solution x obtaining x’
Add x’ to the current set of solutions CS
Update set PE with X’
Main loop:
repeat
Draw at random a utility function u
From CS sdect K different solutions being the best on utility function u forming
temporary population TP
Draw at random with uniform probability two solutions x; and x, from TP.
Recombine x; and x» obtaining x3
Optimize locally the utility function u starting from solution x3 obtaining X3’
if x3' is better than the worst solution in TP and different in the decision space from all
the solutionsin TP then
Add x3' to the current set of solutions CS
Update set PE with x5’
until the stopping criterion is met

Figure 3. Algorithm of the multi-objective genetic local search

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

i o Current set of

o solutions CS
g Q
= Temporary
o ¢ population TP
g - -
5 b O Recombined
%, R° 8 solutions
O | . ° New offsprin
® X pring
4 Gradient of the " o
| utility function X @ ..
dbjective 1

Figure4. Graphical illustration of a singleiteration of the multi-objective genetic local
sear ch

Our original idea was to store al the generated solutions in the current set of solutions CS
from which the temporary populations are selected. Storing and handling al the solutions
would, however, be very time and memory consuming. Thus, set CSis organized as a queue
of size KxS, where Sis the number of initial solutions. In each iteration, the newly generated
solution is added to the beginning of the queue if it is better than the worst solution in the
temporary population and different in the decision space from all solutions in the temporary
population. If the size of the queue is bigger than KxS then the last solution from the queueis
removed. The size KxS was established experimentaly. We have observed that such a size of
CS reaults in no significant deterioration of the results with respect to the version of our
algorithm that stores al generated solutions.

The way the temporary populations are built may be interpreted as a form of mating
resrictions. The algorithm recombines only those solutions that are good on the same utility
function.

In the case of our method we did not notice this kind of convergence that has been observed
in the single objective GLS (see section 5). Even after a large number of iterations
recombination and local search allow to obtain new efficient solutions. This happens because
random selection of utility functions introduces additional diversification mechanism. Thus,
the stopping criterion is defined by the maximum number if iterations.

Updating the set of potentially efficient solutions PE with solution x consists of:
» adding x to PE if no solution in PE dominates x,
* removing from PE all the solutions dominated by x.

Note that the set of potentially efficient solutions is updated with local optima only. In
general, other solutions generated during the local search may also be potentialy efficient.
This approach alows, however, for significant reduction of computational time. Furthermore,
a data structure called quad tree alows for very effective updating of PE (Finkel and Bentley,
1974; Habenicht, 1982).

6.2 Setting the number of initial solutions

The number of initial solutions Sis an additional parameter of the method. Its influence on the
performance of the algorithm is yet to be tested. Below we propose an approach that allows to

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

stop generating the initial solutions when the average quality of K best solutionsin CS over all
utility functions is the same as the average quality of local optima of these functions. In other
words, the method assures that on average the quality of K best solutions on a utility function
will be the same as the quality of the staring population generated by the root single objective
algorithm presented in section 5 applied to optimization of this utility function.

Let x[OCS be an initia solution obtained by the local optimization of utility function uy. Note
that x does not need to be the best solution on uy in the current set of solutions CS. Let
B(K,CS,x,u) 0CS be the set of K best solutions of function uy different from x. Let

ux(B(K,CS,x,u,)) bethe average value of u in B(K,CS,x,u,), i.e:
. U, ()y)

(B(K CS x,u,) = 2 S

We propose to stop the generation of initia solutions when the following condition is met:

Cla;S(UX(B(K,CS,X,UX))—ux(x))z 0.

Of course, the above condition could only be tested if |[CS> K + 1.

Table 1 presents exemplary sizes of the initid sets of solutions obtained with the above
approach. The results are averages over 50 results - 5 runs for 10 instances of each size (see
section 7.1). In addition standard deviations are presented. Note that the variance of the values
isrelatively low.

Table 1. Numbers of starting solutions for multi-objective TSP instances. Standard
deviationsaregiven in brackets.

Bi-objective TSP | Three-objective | Bi-objective TSP | Three-objective
instances with 50 | TSP instances with | instances with 100 | TSP instances with
cities 50 cities cities 100 cities

K S S S S

4 33.6 (3.13) 115.52 (8.07) 43.52 (2.87) 198.96 (11.84)

8 57.28 (3.74) 203.84 (14.20) 75.04 (5.08) 349.76 (18.57)

16 108.48 (6.70) 381.12 (20.87) 142.4 (6.66) 662.4 (31.17)

32 202.88 (15.31) 733.44 (35.90) 268.8 (15.83) 1290.88 (41.70)

7 Computational experiment on multi-objective symmetric

travelling salesperson problem

7.1 Multi-objective symmetric travelling salesperson problem

Single objective TSP is often used to test single objective metaheurigtics. It is defined by a set
of cities and a cost (distance) of travel between each pair of cities. In symmetric TSP the cost
does not depend on the direction of travel between two cities. The goal is to find the lowest
cost hamiltonian cycle.

In J-objective TSP, J different cost factors are defined between each pair of cities. In practical
applications the cost factors may for example correspond to cost, length, travel time or tourist
attractiveness. In our case, J-objective symmetric TSP instances are constructed from J
different single objective TSP instances having the same number of cities. Thus, j-th cost
factor, j=1,...,J, between a pair of cities comes from j-th single objective instance. Individua

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

optima of particular objectives are equa to optima of corresponding single objective
ingances. In our case, the single objective instances are completely independent, so, also
objectives are independent and therefore non-correlated. The same approach was used by
Borges and Hansen (1998).

Also following Borges and Hansen (1998) we use multi-objective TSP instances based on the
TSPLIB library (Reinelt, 1991). For example, problem instance kroAB100 denotes a
bi-objective instance with cost factors corresponding to the first objective taken from
kroA100, and cost factors corresponding to the second objective taken from kroB100.
kroABC100 denotes a three objective instance with cost factors taken from kroA100,
kroB100 and kroC100 instances. In this way 10 different bi-objective instances and 10
three-objective instance were created. We used also instances with 50 leading cities taken
from kroA100-kroE100 instances.

7.2 Quality evaluation

Most of the quality measures used to evaluate results of multi-objective metaheuristics
assume the knowledge of the exact set of nondominated points (Van Veldhuizen, 1999, ch.
6.3.4). In the case of our TSP instances, however, the sets of al nondominated points are not
known.

In order to measure the quality of solutions generated by the tested agorithms we follow the
approach proposed by Hansen and Jaszkiewicz (1998). The quality of a set of gpproximately
efficient solutions A is evaluated by the expected vaue of weighted Tchebycheff utility
function over the set of normalized weight vectors:

E(u, (AA)= [u:(AA)PA)A,

AOW

J
where W :{/\DDJ >4, =1land A, 20,j=1..,J ¢ isthe set of normalized weight vectors,

j=1
p(A) is a probability intensity function, u;(AA):mﬁx{um(Z,z*,A)} is the best utility
achieved by function u, (z,z*,/\) on approximation A.

The utility functions are normalized such that each of them achieve value equal to 1 at
(approximation of) the ideal point and value equa to O at (gpproximation of) the nadir point.
In order to estimate the expected value we use numerical integration. Details are given in
appendix.

7.3 Adaptation of genetic local search to travelling salesperson problem

The recombination operator used in this experiment is the distance-preserving crossover
introduced by Freideben and Merz (1996). An offspring is constructed in the following steps:

Step 1. Put in the offspring al arcs common to both parents
Step 2. Complete the hamiltonian cycle with randomly selected arcs.

Local optimization is performed in two phases. In the first phase loca search does not take
into account arcs that were common to both parents. In the second phase al arcs are
conddered.

The loca search uses a standard 2-arcs exchange neighborhood (see figure 5). While
congtructing the initial population greedy local search is used. After recombination steepest

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

local search is used. This combination was found to give the best results. The greedy loca
search tests the neighborhood moves in random order and performs first improving move
found. The steepest local search tests all neighborhood moves and performs the best
improving move. Both versions stop when no improving move is found in the whole
neighborhood.

Unchanged
arcs

Inserted
arcs

Removed
arcs

Figure5. lllustration of the 2-arcs exchange movein 2D Euclidean TSP

Note that the local search is relatively simple and leaves space for many improvements. Merz
and Freideben (1997) describe a state of the art GLS for single objective TSP that uses a
number of techniques significantly increasing effectiveness of local search.

7.4 Selection of the type of utility functions

In the case of discrete problems, weighted Tchebycheff utility functions seem to have an
advantage over weighted linear utility functions. Each efficient solution is a globa optimum
of a weighted Tchebycheff utility function, while weighted linear utility functions achieve
globa optima on a subset of efficient solutions only, i.e. supported efficient solutions (see
section 2). Because of it, we use Tchebycheff functions in our quality measure (see section
7.2). Our implementation of MOGLS for TSP uses, however, weighted linear function.
Several reasons for that are discussed below.

First of all, weighted Tchebycheff functions are more difficult to optimize than weighted
linear functions for multi-objective TSP. Hansen (2000) noticed that in the case of
multi-objective TSP both local search and tabu search give better final values of weighted
Tchebycheff functions, when the search within neighborhood of the current solution is guided
by the weighted linear functions than when it is guided by the weighted Tchebycheff
functions. Our observations confirm this phenomenon. For example, figure 6 presents loca
optima of 1000 randomly selected weighted Tchebycheff and loca optima of 1000 randomly
selected weighted linear functions obtained for kroAB100 bi-objective TSP instance with 100
cities. We present also areference s, i.e. the best set of approximately efficient solutions we
have obtained. The figure illustrates that local optima of weighted linear functions are much
closer to the reference set.

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

90000
85000 %
80000 P
» Local optima of
N 75000 linear functions
o 70000
'E 65000 1% x Local optima of
.g 60000 - Tchebycheff
55000 - functions
50000 H . AR > o a Reference set
45000 - K RxC ﬁ'}:"‘ 33 N obtained by
e gyt R S S MOGLS
40000 ; ‘ 2% U R 8
40000 50000 60000 70000 80000 90000
Objective 1

Figure6. Local optima of weighted linear and weighted Tchebycheff functions with
random weights

Because of special structure of TSP local search is also faster in the case of weighted linear
functions, because evaluation of loca moves requires less arithmetica operations.

As it was mentioned above global optima of weighted Tchebycheff functions contain all
efficient solutions. Since we work with a heuristic agorithm and since the set of potentialy
efficient solutions is updated with every new generated loca optimum, it is more interesting
what is the chance of finding efficient solutions among good local optima of a function. In
order to test it we used a set of 1000 local optima of randomly selected weighted linear
functions (similar results were obtained when loca optima of Tchebycheff functions were
used). Among the 1000 solutions 130 were potentialy efficient. Then, 1000 other randomly
selected weighted linear functions and weighted Tchebycheff functions were used. For each
of the functions samples composed of 1, 2,...,50 best solutions were selected from the set of
1000 solutions. For each sample the number of potentially efficient solutions contained in the
sample was counted. The results are presented in figure 7. On average sample of n best
solutions of a weighted linear function contains more potentially efficient solutions. For
example, among 50 best solutions of aweighted linear function on average more than 19 were
potentialy efficient, while among 50 best solutions of a weighted Tchebycheff function on
average less than 11 were potentially efficient. Intuitively, it can be explained by comparison
of figures 8 and 9. Good solutions of weighted linear functions are dispersed over the set of
efficient solutions while good solutions of weighted Tchebycheff functions are more
concentrated and placed inside the feasible set.

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

" = Linear functions
=" ¢<><><><>°°°° ¢ Tchebycheff functions

0 LA L O O

I R R R

Average number of efficient solutions
H
o

L
|
[]
n
<
<
<
<
<
<

Number of best solutions

Figure7. Numbers of potentially efficient solutions among n best solutions of linear
and weighted Tchebycheff functions

65000

%

:

o All local optima
X Best local optima

Objective 2

:

40000 45000 50000 55000 60000 65000
Objective 1

Figure8. 50 best local optima of a weighted Tchebycheff function

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

65000 -
ET:.F,D a
X e
60000 - B
o %D‘?n
! o
< 55000 "”na;",,uu o
2 g . o All local optima
_f:i o 'l’gn o X Best local optima
& 50000 - o
3§,
XX anlll =] o
45000 oo $3 °
LY
X X o
40000 T T T T
40000 45000 50000 55000 60000 65000
Objective 1

Figure9. 50 best local optima of a weighted linear function

Summarizing, we have decided to use weighted linear functions in the implementation of
MOGLS for multi-objective TSP because such functions are easier to optimize and give
higher chance for finding new potentially efficient solutions than weighted Tchebycheff
functions. Note, however, that we do not claim that the two kinds of functions have the same
properties in the case of other problems. The global shape of the nondominated set in the case
of multi-objective TSP is relatively smooth (see eg. figure 12). Weighted Tchebycheff
functions may be better for problems with more irregular nondominated sets. Similar
experiments on other MOCO problems should be performed.

7.5 Experiment with single objective metaheuristics

The goal of the experiment described in this section was to confirm the quality of single
objective genetic loca search heuristic in the case of TSP. The agorithm was compared to
genetic agorithm (GA), multiple start local search (MLS) and simulated annealing (SA).

GA used population of size 50 and roulette wheel selection with linear scaling. It used the
same recombination operator as GLS. In the case of GLS no mutation operator is used. In the
case of GA we have observed that the lack of mutation operator results in a very fast
convergence of the population. Thus, a mutation operator with probability 0.1 was used. The
mutation operator exchanges two randomly selected arcs (see section 7.3).

In MLS starting solutions were constructed randomly and greedy algorithm was used. In the
case of SA, the starting temperature was set equal to 100 and the fina temperature was equa
to 1. An intensive experiment was performed in order to find good temperature settings for
SA. After each temperature plateau the temperature was multiplied by 0.9. The number of
moves on atemperature plateau was constant in each run of the procedure.

The three methods were compared on five instances coming from TSPLIB library (Reinelt,
1991) — kroA100, kroB100,..., kroE100. The results presented in table 2 and in figure 10 are
averages of 25 runs of the algorithms (5 runs for each problem). Comparison of heuristic
algorithms should take into account at least two main criteria — computational effort and
quality of results. Since for each of the 5 instances global optimum is known, the quality is

measured by the relative excess over the optimum value, i.e. (f - f,,)/ f,,, where f is the

opt opt ?

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

obtained vaue of the objective and fopt is the optimum vaue. The computationa effort is

measured by both number of function evaluations (number of tested loca moves) and CPU
time. The experiments were performed on 350 MHz Pentium PC. Implementations of all the
algorithms shared majority of the same code.

GA is clearly the worst agorithm if CPU time is used as the measure of effectiveness. The
difference is that high that we decided not to include it in figure 10. Partidly it is related to
the fact that it performs dmost 300 times fewer function evaluations per second than multiple
start loca search and genetic local search. Allowing GA to perform the same number of
functions evauation as the longest runs of the other algorithm would be extremey time
consuming. Note, however, that the longest runs of GA required numbers of function
evaluations comparable to the shortest runs of the other agorithms and the quaity of
solutions generated by GA was still much worse.

GLS by far outperforms the other algorithms. In less than 2 secondsiit gives better results than
achieved by the other algorithms in more than 45 seconds. It is also the only algorithm that
gives high probability of finding the global optimum. Note that the good performance of GLS
is an example of a synergy of two mechanisms, i.e. recombination and loca search, that used
alone perform worse than simulated annealing.

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of

Operational Research.

Table 2. Comparison of three single objective algorithms

Multiple start local search

Number of local CPU time[s] Thousands of Average excess | Percent of runs
searches function with globa
evaluations optimum found
10 0.52 523 0.049287 0
20 1.12 1060 0.040346 0
40 2.09 2096 0.0335 0
80 4.24 4180 0.027339 0
160 8.41 8390 0.021984 0
320 16.93 16849 0.019942 0
640 33.74 33623 0.014479 0
1280 67.40 67169 0.01543 0
Genetic algorithm
Number of CPU time[s] Thousands of Average excess | Percent of runs
generations function with global
evaluations optimum found
50 0.71 25 0.575154 0
100 1.41 5 0.310289 0
200 2.71 10 0.237564 0
400 5.29 20 0.228006 0
800 10.38 40 0.182186 0
1600 20.66 80 0.178661 0
3200 41.14 160 0.142605 0
12800 165.72 640 0.098903 0
Simulated annealing
Number of CPU time[s] Thousands of Average excess | Percent of runs
moves on function with globa
temperature evaluations optimum found
plateau
10000 0.74 440 0.042622 0
20000 1.50 880 0.032959 0
40000 2.93 1760 0.024034 0
80000 5.91 3520 0.017107 0
160000 11.78 7040 0.01466 0
320000 23.48 14080 0.0146 0
640000 47.07 28160 0.010489 0
Geneticlocal search
Population size CPU time[s] Thousands of Average excess | Percent of runs
function with globa
evaluations optimum found
4 0.60 626 0.019031 0
12 1.74 1874 0.003975 12
20 2.95 3187 0.003883 20
28 3.97 4281 0.001781 48
44 5.84 6257 0.001456 48
60 7.67 8208 0.000803 64

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

0.06
0.05 m
£ 004 :
g Ty - - ® - - Multiple
$ 0.03 - * start local
g - search
g 0.02 | W .- — - — Simulate
= L AL B e e - annealing
001 ¢ —&— Genetic
0 - T ‘ ‘ ; ‘ ‘ local search

0 10 20 30 40 50 60 70
CPU time [s]

Figure 10. Theresultsof single objective algorithms

7.6 Experiments with multi-objective metaheuristics

The proposed MOGLS algorithm was compared with the Ishibuchi's and Murata's MOGLS
(IM MOGLYS), with MOSA-like MOGLS and with a Pareto ranking based GA. We used our
own implementations of the algorithms that shared most of the code with implementation of
our MOGLS. All MOGLS dgorithms used the same recombination and local search
operators.

In the case of our algorithm the size of the temporary population was equd to 16. In
MOSA-like MOGLS the population size was set to the same value. The number of initia
solutions of our MOGL S was set according to the values reported in table 1. The CPU time
used by the algorithm was controlled by changing the number of recombinations.

In the case of Ishibuchi's and Muratas algorithm the size of the population was set in the same
way as the number of initial solutions in our MOGLS. Thus both agorithms were starting in
the same way by generating the same number of random local optima. Furthermore, in both
algorithms the random utility functions were generated in the same way. Moreover, the
number of recombinations was the same in the case of the two agorithms. The €lite size in
IM MOGL S was st equal to 10% of the population size. This size was chosen experimental ly
using the best choice principle. We have noticed however, that this parameter has relatively
small influence on the performance of the method. Ishibuchi and Murata (1998) in the case of
flowshop scheduling, reduce the CPU time used by local optimization by restricting the
number of neighborhood solutions evaluated in each iteration of local search. Thus, in
genera, local search does not achieve local optima. We did not use this technique. Note that
the state of the art versions of GLS for single objective TSP (see e.g. Merz and Freisleben,
1997) do not use this kind of restrictions in local search. Furthermore, the same kind local
search was used in adl MOGLS dgorithms.

In the case of MOSA-like MOGLS the weight vectors defining the set of utility functions
were generated with the agorithm described in the appendix. The CPU time was controlled
by changing the number of utility functions. Optimization of each of the utility functions was
continued till the stopping criterion described in section 5 was met.

We used Pareto ranking based GA (Pareto GA) proposed by Fonseca and Flemming (1993)
witht fitness sharing and no mating restrictions. The recombination operator was the same as
in the case of MOGLS algorithms (see section 7.3). Fonseca and Flemming (1993) do not
give guidelines for setting the population size. Following (Van Veldhuizen, 1999, ch. 6.3.3.6)

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

we used population of size 100. The mutation operator was the same as in the case of single
objective GA (see section 7.5) and used with probability 0.1.

Reaults of the experiment are presented in tables 3 to 5 and in figure 11. For each problem
size 10 different instances described in section 7.1 were used. On each instance asingle run of
each method was performed.

Pareto GA is clearly outperformed by al MOGLS algorithms. This could be expected taking
into account results of single objective GA reported in the previous section. Alike in the case
of sngle objective GA we decided not to include its resultsin figure 11.

It can be observed that Ishibuchi's and Muratas MOGLS is by far least effective of the
MOGLS algorithm. Only on the smallest bi-objective instances with 50 cities it gives results
comparable to other agorithms but requires more functions evaluations. On instances with
100 cities Ishibuchi's and Muratas MOGLS does not achieve quality given by the shortest
runs of our MOGLS even in 14 times longer time. Note also, that on average Ishibuchi's and
Muratas MOGLS performs more functions evaluations per recombination than the other
algorithms, i.e. on average local search in this algorithm is significantly longer. This happens
because, in general, solutions recombined in IM MOGLS are worse on the current utility
function and less similar than in the other adgorithms. In result, local search needs more
functions evaluations to reach loca optimum.

The difference between MOSA-like MOGLS and our algorithm islower. Figure 11 illustrates,
however, that our agorithm outperforms MOSA-like MOGLS, i.e. gives better quality in
shorter time. Because the difference between the qualities of results of the two algorithmsis
low we study statistical significance of the differences. Since the average vaues of quality
reported in tables 3 - 5 are averages of results obtained for different instances their variations
cannot be used directly. Thus we andyze variations of differences between results of the two
algorithms for the same instances. More precisely we test the dtatistica hypothesis that the
differences of qudity of results of our MOGLS and MOSA-like MOGLS corresponding to
the parameters settings described in the same rows in tables 3 - 5 are greater than 0. For
example we compare results of MOSA-like MOGL S with 10 utility functions with results of
our MOGL S with 1080 recombinations on bi-objective instances with 50 cities. The results of
the analysis are reported in table 6. The differences are significant at level 0.01 except of the
longest runs on bi-objective instances. We expect that on the smaller instances results of both
the agorithms converge very close to the set of efficient solutions and thus no significant
differences between the algorithms are possible.

The quality measure used in the experiment alows comparison of different agorithms but
does not give information about absolute quality of the sets of approximately efficient
solutions. Unfortunately, the exact nondominated sets for the problems tested are not known.
However, Borges and Hansen (1998) generated alarge set of supported efficient solutions for
kroABC100 instance. From this set one can extract supported solutions of kroAB100,
kroAC100 and kroBC100 instances. Unfortunately, there is no warranty that the sets will
contain al supported solutions. We use, however, the supported solutions to graphically
illustrate the quality of obtained approximations. Figures 13 and 14 present supported
solutions of kroAB100 instance and the approximation generated by our MOGLS with
population of size 16 after 7100 recombinations. The approximation contains solutions very
close or identicd to the supported ones.

The TSP instances used in the experiment and as well as the results of particular methods are
available in the Internet at http://www-idss.cs.put.poznan.pl/~jaszkiewicz/motsp/. This page
contains aso the software used for evaluation of the qudity of results.

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

Table 3. Comparison of the algorithms on bi-objective insances with 50 cities

Pareto GA IM MOGLS
Number of | Number of | CPU time | Thousands | Average | Number of | CPU time | Thousands| Average
generation | recombina [g] of quality | recombina (g of quality
S tions functions tions functions
evauation evauation
S S
1000 100000 13.7 100 0.77301 1080 12.3 13938 | 0.873895
2000 200000 27.7 200 0.77550 2160 235 26667 | 0.874639
3000 300000 41.2 300 0.77575 3240 34.8 39503 | 0.874909
4000 400000 54.9 400 0.77696 4320 45.8 52103 0.875076
5000 500000 68.7 500 0.77715 5400 57 64871 | 0.875194
MOSA-like MOGLS MOGLS
Number of | Number of | CPU time | Thousands | Average | Number of | CPU time | Thousands| Average
utility recombina [g] of quality | recombina [g] of quality
functions tions functions tions functions
evauation evauation
S S
10 1071 3.6 4014 0.873336 1080 3.9 3815 0.874539
20 2194 7.4 7992 0.874595 2160 6.4 6010 0.874903
30 3154 11 11795 | 0.874894 3240 8.9 8144 0.875108
40 4402 14.9 16154 | 0.875098 4320 11.5 10266 | 0.875217
50 5349 18.4 19842 | 0.875134 5400 14 12367 | 0.875297
Table 4. Comparison of the algorithms on bi-objective instances with 100 cities
Pareto GA IM MOGLS
Number of | Number of | CPU time | Thousands | Average | Number of | CPU time | Thousands| Average
generation | recombina [g] of quality | recombina [g of quality
S tions functions tions functions
evauation evauation
S S
1000| 100000 32.9 100| 0.75524 1420 133.1| 159739| 0.901577
2000 200000 65.8 200| 0.75639 2840 256| 309435| 0.902141
3000 300000 99.2 300| 0.75837 4260 377.4) 457891| 0.902456
4000| 400000 132.8 400| 0.75861 5680 499.9| 607413| 0.902632
5000 500000 167.1 500| 0.75900 7100 621.7| 756456| 0.902802
MOSA-like MOGLS MOGLS
Number of | Number of | CPU time | Thousands | Average | Number of | CPU time | Thousands | Average
utility recombina [s] of quality | recombina [s] of quality
functions tions functions tions functions
evauation evauation
S S
10 1630 29.4 30350| 0.901347| 1420 30.1 31478 | 0.903309
20 3341 60.4 61497| 0.903267| 2840 44.9 46414 | 0.903768
30 5051 90.6 94029 | 0.903619| 4260 59.6 60406 | 0.903972
40 7167 124.3| 129379 | 0.903828| 5680 74.2 73863 | 0.904082
50 8766 154.4| 160442 | 0.903889| 7100 88.3 86862 | 0.904167

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

Table5. Comparison of the algorithms on three-obj ective instances with 100 cities

Pareto GA IM MOGLS
Number of | Number of | CPU time | Thousands | Average | Number of | CPU time | Thousands| Average
generation | recombina [g] of quality | recombina (g of quality
S tions functions tions functions
evauation evauation
s S
5000 500000 220.6 500| 0.70643 6620 996.6| 1029637| 0.859863
10000 | 1000000 487.7 1000| 0.71364 13240 1938.8| 2015579| 0.860726
15000 | 1500000 767.2 1500| 0.71638 19860 2883| 2999410| 0.86117
20000| 2000000 1035.3 2000, 0.71684 26480 3830.1| 3981994 | 0.861476
25000| 2500000 1300.7 2500 0.71792 33100 4777.3| 4966231 | 0.861703
MOSA-likeMOGLS MOGLS
Number of | Number of | CPU time | Thousands | Average | Number of | CPU time | Thousand | Average
utility recombina [g] of quality | recombina [g] sof quality
functions tions functions tions functions
evauation evauation
s s
55 10435 211.4| 194225 0.860187 6620 223.2| 179230| 0.862988
91 17279 369.7| 323748 0.862565 13240 411| 268712| 0.863973
136 26102 589.5| 488423 | 0.863735 19860 619.8| 347328| 0.864439
190 36520 868.5| 682463 | 0.864336 26480 830.8| 421326| 0.86472
253 48698 1224.1| 911775| 0.864751 33100 1044.4| 492552 | 0.864923
0.8755 - 0.9045 -
0.875 | j=Ral B AT A 0.904 - 50
e 09035 | | ¥
> 0.8745 - gA 2 0.903 - EA
5 E ! LA
& 0.874 309025 | | o
0902 | | A
0.8735 | | !
oh 0.9015 | !
o
0.873 ‘ ‘ 1 0.901 ‘ ‘ ‘
0 20 40 60 0 200 400 600
CPU time [s] CPU time [s]
a) b)

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

0.865 -
Fﬂ
0.864 -
cf
/
0.863 - & |
z o
‘T 0.862 | !
= | L.-A
o | JUREE S —+—MOGLS
08611 AT - -0- - MOSA-like MOGLS
ose @ ~--a--- IM MOGLS
0.859 ‘ ‘ ‘ ‘ \
0 1000 2000 3000 4000 5000
CPU time [s]
c)

Figure11. Theresultson a) bi-objective instances with 50 cities b) bi-objective insances
with 100 cities c) three-objective instances with 100 cities

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of

Operational Research.

Table 6. Statistical significance of differences between MOSA-like MOGLS and

MOGLS
Number of utility Number of Average Standard Statigtically
functionsin recombinations difference of deviation of the significant at
MOSA-like inMOGLS resultsover 10 difference of level 0.01
MOGLS instances results
Bi-objective instances with 50 cities
10 1188 0.001515 0.000341 yes
20 2268 0.000414 0.000188 yes
30 3348 0.000179 0.000144 yes
40 4428 8.35E-05 9.32E-05 no
50 5508 4.73E-05 8.12E-05 no
Bi-objective instances with 100 cities
10 1420 0.00234 0.000349 yes
20 2840 0.000425 0.000227 yes
30 4260 0.000209 0.000155 yes
40 5680 0.000202 0.000143 yes
50 7100 0.000118 0.000152 no
Three-objective instances with 100 cities
55 6620 0.004387 0.000293 yes
91 13240 0.001993 0.000197 yes
136 19860 0.000943 0.000144 yes
190 26480 0.000486 0.000116 yes
253 33100 0.000275 0.000116 yes
180000
160000 ¥
140000 -
~ 120000 1 ¥
g © Supported
*g 100000 - solutions
oy » Approximation
O 80000 -
60000
40000 -
20000 W =260 Dy = =S|

19000

39000 59000 79000 99000 119000 139000 159000 179000

Objective 1

Figure12. Supported solutions of kroAB100 instance and one of the approximations

obtained with population of size 16 after 7100 recombinations

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

55000
53000 -
51000 -
49000 - '\
47000 b .M‘O < Supported
45000 1 "Q....“ solutions
43000 - (;... . e Approximation
41000 - *%.
39000 -
37000 -

35000 ‘ ‘ ‘
50000 55000 60000 65000

Objective 1

Objective 2

..‘
Q)\.@@..

Figure13. Supported solutions of kroAB100 instance and one of the approximations
obtained with population of size 16 after 7100 recombinations— zoomed view

8 Conclusions and directions for further research

A new multi-objective genetic local search (MOGLS) dgorithm has been described. Results
of the presented experiment indicate that the new algorithm can effectively generate sets of
high quality approximately efficient solutions for relatively large instances of multi-objective
combinatorial problems. The agorithm significantly outperformed other tested algorithms on
TSP instances. The new MOGLS has, however, higher memory requirements than the other
algorithms. Thus, the good performance of the algorithm is obtained at the price of memory
usage. Taking into account capacities of present computers this fact does not limits
significantly applications of our MOGLS.

The outcome of the paper is also a method for setting the size of the initial sample of
solutions. It can be used in other multi-objective methods that start by generating a set of
random local optima. In fact, it was applied in our experiment in Ishibuchi's and Murata's
MOGLS.

Another result presented in this paper is the proposition of a MOGLS agorithm based the
idea of MOSA method (Ulungu et a., 1999). The method performs worse than our algorithm
but outperforms Ishibuchi's and Murata's MOGLS.

In this paper, we used a hybridization of recombination operators with local search. The idea
of our MOGLS is, however, more general and alows the use of other local heuristics taking
into account the value of the current utility function. In fact, we have dready used this
possibility in the case of multi-objective knapsack problem (Jaszkiewicz, 2000). In that case,
we have used two smple greedy repair and insertion heuristics after each recombination.

The presented MOGLS agorithm generates approximately efficient solutions from all regions
of the efficient set. In many cases, however, some partia information about decision maker's
preferences may be known, and the search should be focused on some subregions of the
efficient set. In our agorithm it can be achieved by constraining the set of possible weight
vectors.

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

In the presented experiment all objectives are of the same type, i.e. they have the same
mathematical definition and differ only by parameter values. In practice, one should rather
expect problems with objectives of different mathematica form e.g. sum, min-max, max-min,
quadratic, etc. Some of them may be more difficult to optimize than the others. In result, some
regions of the efficient set may require more computational time, i.e. more recombinations, to
achieve good results. The question arises whether MOGLS could automatically discover
differences of difficulty in different regions.

Our MOGLS agorithm uses random generation of weights. A deterministic scheme that
would assure uniform sampling of the weight space could have positive influence on the
qudity of results.

In the current version of our agorithm we use uniformly distributed normalized weight
vectors. There is, however, no reason to assume that this distribution is appropriate for all
problems. In fact one reason for changing the distribution was already discussed above, i.e.
different difficulty of a problem in some regions of the efficient set. Furthermore, the overall
shape of the nondominated set may aso influence the best distribution of weights for a given
problem.

In generd, the normaized weight vectors should be applied to normalized objective vaues
(see section 2), especialy if the objectives have significantly different ranges. This requires
knowledge about the range equalization factors. We suggest to generate J first local optima by
optimization of particular objectives in order to obtain the first estimation of the range
equalization factors. Then, the values may be updated during the run of MOGLS on the basis
of the objective rangesin the current set of potentialy efficient solutions.

According to the presented experiment weighted linear functions give better results in the
case of TSP than weighted Tchebycheff functions. In general, however, weighted
Tchebycheff functions should be more robust if the shape of the nondominated set is more
complicated.

Multi-objective metaheuristics are gpplied to both large scde combinatorial optimization
problems and non-convex continuous optimization problems. The aim of the proposed
method is to work effectively on MOCO problems. Furthermore, the development of the
method is motivated by smilarity of good solutions exhibited by many combinatoria
optimization problems. Other types of problems may require different approaches. Taking
into account limitations imposed by the “No free lunch” theorem (Wolpert and Macready,
1997) we believe that it is better to clearly define the class of problems an algorithm is
designed for, than to make unjustified statements about its generadity.

Acknowledgement

I would like to thank my colleagues Michad Hansen and Pedro Borges for fruitful
discussions.

Thiswork has been supported by KBN grant No. 8T 11F00619.

Bibliography

Ackley D. H. (1987), A connectionist machine for genetic hillclimbing. Kluwer Academic
Press, Boston.

Borges P.C., Hansen P.H. (1998), A basis for future successes in multiobjective combinatoria
optimization. Technical Report, Department of Mathematical Modelling, Technical
University of Denmark, IMM-REP-1998-8.

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

Czyzak P., Jaszkiewicz A. (1998), Pareto simulated annealing - a metaheuristic technique for
multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis,
7, 34-47.

Finkel R.A. and Bentley J.L. (1974), Quad Trees. A data structure for retrieval on composite
keys. Acta Informatica, 4, 1-9.

Fonseca C.M., Fleming P.J. (1993), Genetic agorithms for multiobjective optimization:
Formulation, discusson and generalization. In S. Forrest (Ed.), Genetic Algorithms
Proceedings of 5™ International Conference, San Mateo, CA, Morgan Kaufmann, 416-423.

Fonseca C.M., Fleming P.J. (1995), An overview of evolutionary algorithms in multiobjctive
optimization. Evolutionary Computation, 3, 1, 1-16.

Freideben B., Merz P. (1996), A genetic local search algorithm for travelling salesman
problem. In H.-M. Voigt, W. Ebeling, |. Rechenberg, H.-P. Schwefd (Eds.), Proceedings of
the 4™ Conference on Parallel Problem Solving fram Nature- PPSN 1V, 890-900.

Gdinier P., Hao J.-K. (1999), Hybrid evolutionary algorithms for graph coloring. Technica
Report, Parc Scientifigue Georges Besse, Nimes. (To appear in Journa of Combinatoria
optimization).

Gandibleux, X., Mezdaoui N., Fréville A. (1996), A tabu search procedure to solve
multiobjective combinatorial optimization problems, In R. Caballero, R. Steuer (Eds.),
Proceedings volume of MOPGP ‘96, Springer-Verlag.

Goldberg D.E. (1988), Genetic Algorithms in Search, Optimization, and Machine Learning. Reading,
Addison-Wesley.

Goldberg D. E., Segrest P. (1987), Finite Markov chain analysis of genetic algorithms. In J.J.
Grefenstette (Ed.), Genetic algorithms and their applications: Proceedings of the Second
International Conference on Genetic Algorithms, Hillsdale, NJ, 1-8.

Gorges-Schleuter M. (1997), On the power of evolutionary optimization at the example of
ATSP and large TSP Problems, In European Conference on Artificial Life "97, Brighton,
U.K.

Habenicht W. (1982), Quad Trees, A datastructure for discrete vector optimization problems.
Lecture Notes in Economics and Mathematical Systems, 209, 136-145.

Hansen M.P. (1998), Metaheuristics for multiple objective combinatorial optimization, Ph.D.
Thesis, IMM-PHS-1998-45, Technical University of Denmark, Lyngby.

Hansen M. (2000), Use of substitute scalarizing functions to guide a local search based
heurigtic: the case of moT SP. Journal of Heuristics, 6, 3, 419-430.

Hansen P.H, Jaszkiewicz A. (1998), Evaduating qudity of approximations to the
non-dominated set. Technical Report, Department of Mathematical Modelling, Technical
University of Denmark, IMM-REP-1998-7.

Holland J.H. (1975), Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor.

Horn. J., Nafpliotis N., Goldberg D. E. (1994), A niched Pareto genetic agorithm for
multiobjective optimization. Proceedings of the First IEEE Conference on Evolutionary
Computation, IEEE World Congress on Computational Intelligence, vol. 1, IEEE, New
York, 82-87.

Ishibuchi H. Murata T (1998), Multi-Objective Genetic Local Search Algorithm and Its
Application to Flowshop Scheduling. |EEE Transactions on Systems, Man and Cybernetics,
28, 3, 392-403.

Jaszkiewicz A. (2000), On the performance of multiple objective genetic local search on the
0/1 knapsack problem. A comparative experiment. Research report, Ingtitute of Computing
Science, Poznan University of Technology, RA-002/2000, pp.15.

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

Merz P., Freideben B. (1997), Genetic Locad Search for the TSP. New Results, In
Proceedings of the 1997 IEEE International Conference on Evolutionary Computation,
IEEE Press, 159-164.

Murata T., Ishibuchi H. (1994), Performance evaluation of genetic algorithms for flowshop
scheduling problems. Proc. of the 1% |EEE Int. Conf. Evolutionary Computat., 812-817.

Radcliffe N.J., Surry P.D. (1994), Forma memetic dgorithms, in: T. Fogaty (Ed.),
Evolutionary Computing: AlSB Workshop, Springer-Verlag, 1994.

Reinelt G. (1991), TSPLIB — a traveling salesman problem library. ORSA Journal of
Computing, 3, 4, 376-384.

Schaffer J.D. (1985), Multi-objective optimization with vector evaluated genetic algorithms.
In: J.J. Grefenstette (Ed.), Genetic Algorithms and Their Applications: Proceedings of the
Third International Conference on Genetic Algorithms, Lawrence Erlbaum, Hillsdae, NJ,
93-100.

Serafini P. (1994), Simulated annealing for multi-objective optimization problems. In: Tzeng
G.H., Wang H.F., Wen V.P,, Yu P.L. (Eds.), Multiple Criteria Decision Making. Expand
and Enrich the Domains of Thinking and Application, Springer Verlag, 283-292.

Srinivas N., Deb K. (1994), Multiobjective optimization using nondominated sorting in
genetic algorithms. Evolutionary Computation, 2, 2, 221-248.

Steuer R.E. (1986), Multiple Criteria Optimization - Theory, Computation and Application,
Wiley, New Y ork.

Taillard E. D. (1995), Comparison of iterative searches for the quadratic assignment problem,
Location science, 3, 87-105.

Ulder N.L.J., Aarts E.H.L., Bandelt H.-J. von Laarhoven P.J.M., Pesch E. (1991), Genetic
local search agorithms for the travelling sdlesman problem, in H.-P. Schwefel, R. Méanner
(Eds.) Parallel Problem Solving from Nature, Springer-Verlag, Berlin, 1991, 109-116.

Ulungu E.L. and Teghem J. (1994), Multiobjective Combinatorial Optimization Problems: A
Survey. Journal of Multi-Criteria Decision Analysis, 3, 83-101.

Ulungu E.L., Teghem J., Fortemps Ph., Tuyttens (1999), MOSA method: a tool for solving
multiobjective combinatorial optimization problems. Journal of Multi-Criteria Decison
Analyss, 8, 221-236.

Van Veldhuizen D.A. (1999), Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. PhD thesis, Department of Electrical and Computer
Engineering. Graduate School of Engineering. Air Force Ingtitute of Technology,
Wright-Patterson AFB, Ohio, May 1999.

Wolpert D.H., Macready W. G. (1997), No free lunch theorem for optimization. |EEE
Transactions on Evolutionary Computation, 1 (1), 67-82.

Yu G. (1998), Industrial Applications of Combinatorial Optimization, Kluwer Academic
Publisher, Boston, 366 pp.

Appendix.

Following the proposition of Hansen and Jaszkiewicz (1998) we use the following approach
in order to systematically generate uniformly distributed normalized weight vectors. We use
al weight vectors in which each individual weight takes on one of the following values:

{' K | = 0,...,k}, where k is a sampling parameter defining the number of weight levels. The
set of such weight vectorsis denoted by W and defined mathematicaly as:

Y, ={n = 10w 00 Y20 KTl

A. Jaszkiewicz (to appear). Genetic local search for multiple objective combinatorial optimization. European Journal of
Operational Research.

. k+J-1) .
With a combinatoria argument, we notice that this produce;(jwaght vectors. For

example, for k=3 and J=3, we obtain the following set of 10 vectors: {[0,0,1], [0,1/3,2/3],
[0,2/3,1/3],[0,1,0], [1/3,0,2/3], [1/3,1/3,1/3], [1/3,2/3,0], [2/3,0,1/3], [2/3,1/3,0], [1,0,0]} . This
approach is used to obtain set of weight vectors defining the set of utility functions optimized
in MOSA-like MOGLS, as well as, to cdculate estimate values of the quality measure
described in section 7.2. While evauation bi-objective instances the parameter k was equa to
100, and in the case of three-objective instances to 40.

In order to estimate the quality measure (see section 7.2), the uniformly distributed
normalized weight vectors were gpplied to objective values multiplied by range equdization
factors (1). We used the ranges over set N. This required the knowledge of ideal and nadir
point. In the case of 100 cities instances the ided point is known, because each individua
objective corresponds to a single objective problem coming from TSPLib library. 50-cities
ingances are relaively easy to solve optimaly. As the objectives are independent the
elements of the nadir points were estimated on the basis of expected objectives values for
random solutions. In the case of instances with 50 cities they were all set equal to 80000,
while in the case of instances with 100 cities they were dl set equd to 180000.

