MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 1

Reducing the Run-time Complexity of
Multi-Objective EAs: The NSGA-II and

other algorithms

Mikkel T. Jensen

Mikkel T. Jensen is a research assistant professor in the EVALife group at the Department of Computer Science,

University of Aarhus, Ny Munkegade bldg. 540, DK-8000 Aarhus C, Denmark. E-mail: mjensen@daimi.au.dk

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 2

Abstract

The last decade has seen a surge of research activity on multi-objective optimization using evolu-
tionary computation, and a number of well performing algorithms have been published. The majority of
the algorithms use fitness assignment based on Pareto-domination: Non-dominated sorting, dominance
counting or identification of the non-dominated solutions. The success of these algorithms indicates that
this type of fitness is suitable for multi-objective problems, but so far the use of Pareto-based fitness has
lead to program run-times in O(GM N?), where G is the number of generations, M is the number of
objectives and N is the population size. The N2 factor should be reduced if possible, since it leads to
long processing times for large population sizes.

This paper presents a new and efficient algorithm for non-dominated sorting, which can speed up the
processing time of some multi-objective EAs substantially. The new algorithm is incorporated into the
NSGA-II, and reduces the overall run-time complexity of this algorithm to O(GN log™ ! N), much faster
than the O(GM N?) complexity published by Deb et al. Experiments demonstrate that the improved
version of the algorithm is indeed much faster than the previous one.

The paper also points out that multi-objective EAs using fitness based on dominance counting and
identification of non-dominated solutions can be improved significantly in terms of running time by using
efficient algorithms known from computer science instead of inefficient O(M N?) algorithms. Furthermore,
the archives currently used in multi-objective EAs (usually based on lists) are slow and can be improved
by using orthogonal range-searching data-structures. Finally, the paper discusses the use of niching in
multi-objective EAs, and points out that the use of efficient algorithms for nearest neighbor identification
can be used to speed up multi-objective EAs using certain types of niching.

The directions given in this paper can be used to improve the run-time complexity of the NSGA-II,
DMOEA, SPEA2, PDE, PAES, PESA, and a multi-objective VLSI-GA.

I. INTRODUCTION

Over the last ten years, there has been an increasing interest in applying evolutionary
algorithms to multi-objective optimization problems. This research is highly relevant for
real world applications, since real world optimization problems often involve several con-
flicting objectives for which a trade-off must be found. The presence of multiple conflicting
objectives in an optimization problem means that no single solution is globally optimal,
unless priorities can be assigned to the objectives. It is usually difficult or even impossible
to assign priorities a priori, and this makes an algorithm returning a set of promising
solutions preferable to an algorithm returning only one solution based on some weighting

of the objectives. For this reason, most contemporary multi-objective evolutionary algo-

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 3

rithms (MOEAs) are designed to return a set of promising solutions, from which a solution
can be picked by a human expert.

Most MOEAs use Pareto domination to guide their search. A solution s; is said to
dominate another solution sy, if s; is no worse than s, in all objectives, and better than
S9 in at least one objective. A solution is said to be non-dominated if it is not dominated
by any other solution. Ideally, a MOEA returns the Pareto optimal set, the solutions not
dominated by any other solution in the search-space. If the Pareto optimal set is infinite
or very large, the algorithm returns a set of non-dominated solutions covering the Pareto
set as well as possible. Examples of this work include Corne et al.’s PESA [8], Knowles
and Corne’s PAES [16], Zitzler and Thiele’s SPEA [27] and Deb et al.’s NSGA-II [10].

Even though contemporary MOEAs work with several objectives simultaneously, they
still transform all of the objectives into one fitness measure. This is necessary, since
ultimately what makes an EA work is the selection of highly fit individuals over less fit
individuals. This transformation is usually made in an explicit way, e.g., by assigning each
solution a measure of its non-dominatedness (e.g. NSGA-II [10], SPEA [27]), but it can
also be done implicitly, e.g., in the form of Pareto domination tournaments (NPGA [14]).

The transformation of multiple objectives into a single fitness measure is usually a costly
matter in terms of processing time. Most Pareto-based fitness assignment schemes require
that each solution is compared to a large number of other solutions. Many of the MOEAs
published in recent years have running times bounded only by O(GM N?) [10], [27], [26],
[1], [19], where G is the number of generations, M is the number of objectives and N
is the population size. In contrast, single-objective evolutionary algorithms usually have
processing times bounded by O(GN). The N? factor in multi-objective processing means
that for large population sizes the processing time becomes prohibitively large. Since in
some situations it is desirable to use large population sizes (e.g., when the number of
conflicting objectives is large [9, section 8.8.2]), it is important to reduce this processing
time.

The high computational demand of many published MOEAs is partly due to the fact that
multi-objective fitness assignment is a harder computational problem than single-objective

fitness assignment. Another explanation lies in the fact that often MOEA research has

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 4

disregarded run-time complexity. The focus has been on coming close to the true Pareto-
optimal set and on achieving a good spread of solutions.

In this paper, a different approach is taken. The focus will be on improving the running
time of a number of well-known MOEAs. Many of the MOEAs published can be improved
in terms of running time using standard computer science algorithms and data-structures.

The main result of this paper is the development of an efficient algorithm for non-
dominated sorting. Since non-dominated sorting is used for fitness assignment in NSGA-II
[10] and a few other MOEAs, the algorithm can be used to improve running times of these
algorithms. The new algorithm runs in time O(N log™ ! N), which is much faster than the
previously used O(M N?) algorithm. This drops the run-time complexity of the NSGA-
IT algorithm from O(GMN?) to O(GNlog"~' N). Experiments with implementations
of the old and the new algorithm confirm that for moderate and large population sizes
the savings in processing time can be very large. Additionally, directions for reducing
the running times of PESA [8], PDE [1], SPEA2 [26], PAES [16], DMOEA [19], and the
algorithm of [24] will be given.

The outline of the paper is as follows. The next section gives an overview of MOEA
research from a processing time perspective. Fitness assignment, archiving and niching
methods are discussed, and directions are given for how to improve the run-time complexity
of a number of well-known algorithms. Section III discusses how to improve the run-time
performance of the NSGA-IIL. It has a brief description of the NSGA-II, followed by the
introduction of an efficient algorithm for non-dominated sorting. Experiments demonstrate
that the proposed algorithm can be much faster than the previous algorithm. Section IV

concludes the paper.

II. A BRIEF OVERVIEW OF MOEAS AND THEIR RUNNING-TIMES

This section will give a brief survey on current MOEA research. The emphasis will be
on the run-time complexity of the algorithms, and on improving the run-time complexities
whenever this is possible. Since most MOEA research has not been focused on this issue
so far, many of the papers cited below do not explicitly deal with the run-time complexity

of the algorithms they present!. These papers give no directions for how to make an

!noteworthy exceptions are [16], [10], [9], [22]

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 5

efficient implementation of the algorithm they describe, and they give no references to
this effect either. In these cases I take the liberty of assuming that the authors were
considering an algorithm not employing sophisticated algorithms and data-structures from
computer science. In any case, a person without solid knowledge of computer science
implementing the algorithm will end up with an inefficient O(GM N?) algorithm without
sophisticated algorithms and data-structures. The ability of the algorithms to come close
to the true Pareto-front and achieve diverse solutions will not be treated in this text, for
more comprehensive surveys of MOEA research see [9], [7].

As presented by their original authors, most MOEAs have running times bounded only
by O(GMN?) or O(GMNA). This is the case for the NSGA-II [10], SPEA [27], SPEA2
[26], DMOEA [19], PESA [8], PAES [16], M-PAES [17], PDE [1] and the maximin MOEA
of [2]. In all of these algorithms fitness assignment or archive maintenance takes time
proportional to N2 or NA. The author is not aware of a single publication describing in
detail a MOEA running faster than O(GM N?) or O(GM N A).

Common to many MOEAs published these days are three features: i) Fitness assignment
based on Pareto-domination, i7) elitism and 77) niching. We will deal with these features
in turn in the next subsections. Each subsection will describe the methods used in cur-
rent MOEAs and propose algorithms doing exactly the same but in a more time-efficient
manner.

Most MOEAs employ mechanisms for rewarding or punishing individuals for their “non-
dominatedness” and for being located in a sparsely or densely populated part of the
search-space (niching). These two mechanisms govern selection and replacement in the
algorithms, and strictly speaking they are both part of the fitness assignment of individuals.
However, in the following subsections we will take the liberty of referring to the measure

of “non-dominatedness” as fitness, while dealing separately with niching.

A. Fitness assignment

Many early MOEAs used non-Pareto based fitness such as weighted sums or considering
the objectives in turns. A number of problems have been identified in these approaches
(such as only finding one solution per run, being unable to identify non-convex parts

of the trade-off surface), and they are rarely used in contemporary algorithms. Now

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 6

most MOEASs use fitness based on Pareto-domination: domination counts, non-dominated
sorting or identification of the non-dominated solutions. Domination counts, identification
of the non-dominated set and non-dominated sorting can all be solved using strait-forward
O(M N?) algorithms, and these have been widely used. However, divide-and-conquer
algorithms for identifying the non-dominated front running in time O(N log™~2 N) [18],
[4] and dominance counting in time O(N log™ * N) [4] are known. Section III-B of this
paper presents an O(N log™~! N) algorithm for non-dominated sorting. To the best of
my knowledge, these algorithms are not used in any MOEAs today, although Deb [9] is
aware of the efficient algorithm for identifying non-dominated solutions.

Examples of algorithms using inefficient algorithms for fitness assignment are the SPEA
[27] and SPEA2 [26] algorithms, in which each solution is assigned a “strength” reflecting
its degree of non-dominatedness. The strength is based on dominance counts: a solution
not dominated by any other solution is assigned a low strength (i.e., a high fitness) if
it dominates few other solutions. This is believed to assign higher fitness to solutions
located in sparsely populated parts of the search-space. A dominated solution is assigned
a strength based on the accumulated strength of the solutions that dominate it. The papers
on SPEA [27] and SPEA2 [26] give no directions on which algorithms to use to calculate
dominance counts and strengths, but the SPEA implementation made available by Zitzler
uses O(MN?) algorithms. However, the dominance counting algorithm of [4] can be
transformed into calculating dominance counts and solution strengths in parallel, and this
will reduce the running time of fitness assignment in these algorithms to O(N log™ ™' N).

The PDE algorithm [1] need to identify the non-dominated set for fitness assignment.
A naive implementation of this uses time O(M N?), while the efficient algorithm of Kung
et al. [18] will only require O(N log" = N).

The NSGA-II, DMOEA [19], and the algorithm for VLSI design [24] all use non-
dominated sorting for fitness assignment. Using the fast non-dominated sorting algorithm
developed in this paper, the running times will drop from O(M N?) to O(Nlog"~" N).

The run-time complexities discussed in this subsection are summed up in table I.

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 7

TABLE I
RUN-TIME COMPLEXITIES FOR EVALUATING THE FITNESS IN ONE GENERATION USING NAIVE AND
MORE EFFICIENT ALGORITHMS.

Algorithm Naive fitness Improved fitness Remark

NSGA-II [10] O(MN?)  O(NlogM'N

non-dominated sorting

)
DMOEA [19] O(MN?) O(Nlog” ' N) non-dominated sorting
VLSI-GA [24] O(MN?) O(N1log™ ™' N) non-dominated sorting
SPEA [27] O(MN?) O(Nlog™ ' N) dominance counting
SPEA2 [26] O(MN?) O(Nlog™ ' N) dominance counting
PDE [1] O(MN?) O(Nlog” 2 N) identification of non-dom solutions

B. Archive maintenance / elitism

It has been established that preserving the best individuals is important in multi-
objective optimization [25]. This is usually accomplished either by having a huge elite
within the population (e.g. NSGA-II, DMOEA), or by having an explicit archive separate
from the population in which the elite is stored (e.g., SPEA [27], PAES [16]). When an
external archive is used, a data-structure is needed to hold it.

Most papers do not explicitly state how to implement the archive, but give the impres-
sion that it should be done by having a list of solutions and comparing a new candidate
solution to all of them?. This requires time O(MA) to test a candidate solution, where A
is the size of the archive, while insertions and deletions can be done in constant time.

The archive can be maintained much more efficiently using a data-structure for dynamic
orthogonal range searching, since checking for non-dominance is equivalent to an orthog-
onal range query. An orthogonal range query is a query in a data-structure of points
in a space R¢ asking if any points exist in a rectangular region {x € R?|zJ"" < x, <
zper o xmin < gy < 29} Whether the solution s is dominated by any point in the
archive can be checked using the objectives as dimensions in the data-structure, and by
asking if any archive solutions are in the region {x € R?¢| — 0o < zy < z¢(8),... ,—00 <

Tq < m4(s)}3. The data-structure needs to support insertions and deletions, since the

2For PAES, Knowles and Corne [16] explicitly state that they use linear search in the archive.

w

3We are assuming that all objectives are minimized. The query will only check whether x™°% is covered by any

of the points in the data-structure. True domination can be tested by checking if all of the points covering x™¢*

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 8

TABLE I1

NAIVE AND IMPROVED RUN-TIME COMPLEXITIES PER GENERATION FOR ARCHIVE MAINTENANCE.

Algorithm  Naive archive Improved archive Remark

SPEA [27] O(MNA)  O(NlogM! Aloglog A

Identification of non-dom

( )
SPEA2[26] O(MNA)  O(NlogM ! Aloglog A) solutions also viable. Time:
PESA [§] O(MNA)  O(NlogM™! Aloglog A) O((N + A)log™~2(N + A)).
PAES [16] O(MNA)  O(NlogM~! Aloglog A)

archive is updated from time to time. Dynamic orthogonal range searching data-structures
satisfy all of these requirements, and using a dynamic range tree [20] the archive can do
a query/update operation in time O(log™~* Aloglog A), much faster than the O(MA)
complexity of the linear list. Another possibility is to use a randomized segment tree [23,
section 8.1], giving update and query times in O(log" A). This suggestion is similar to
the suggestion of Mostaghim et al. [22], who proposed the use of quad-trees to maintain
the archive. Mostaghim et al. did not consider the run-time complexity of their approach,
but for large population sizes they achieve substantial speedups in their experiments with
the SPEA algorithm.

The algorithms PAES [16], SPEA [27], SPEA2 [26], and PESA [8] all use archives, and
can all be improved by using a more efficient data-structure. Some of the algorithms update
their archives in large batches. This is the case for SPEA, SPEA2 and PESA, in which
the program alternates between filling up the population and inserting new non-dominated
individuals into the archive. For these algorithms another efficient way of implementing
the archive would be by identifying the entire non-dominated set from scratch every time
the population and the archive are merged. This will be effective as long as the archive is
not much larger than the population.

The run-time complexities discussed in this subsection are summed up in table II.

C. Niching

In order to reach a nice spread of solutions, most MOEAs employ some kind of niching.

Usually phenotypical niching is used, meaning that the spread is supposed to be in the

are identical to x™¢*. Using an extra search tree with counts of phenotypes, this additional check can be done in
time O(log A).

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 9

objective functions values and not necessarily on the genotypical level. In most cases,
niching is used as a secondary measure of fitness: If individual s; is more non-dominated
than sg, s; is preferred regardless of niching, while if s; and s have the same degree of
non-dominatedness, the one residing in the most sparsely populated part of the search-
space is preferred. In archive-based algorithms such as PESA [8], PAES [16] and SPEA
[27], new non-dominated solutions are inserted into the archive until a maximum size is
reached. After this, whenever a new non-dominated individual is found, it is inserted in
the archive and a solution perceived to be in the most crowded region of the archive is
removed.

In many algorithms, the niching mechanisms used are just as time-consuming as fit-
ness assignment, but harder to improve in terms of time-complexity. Many algorithms
use niching mechanisms that require the calculation of the nearest neighbor (or k£ nearest
neighbors) for all solutions in the archive or population, leading to an O(M N?) processing
time for a naive implementation. Examples of such algorithms are SPEA [27], SPEA2
[26], PAES [16], and PDE [1]. In the general case, it is difficult to improve this, but for
the case of two objectives, efficient algorithms are known from computational geometry.
According to Mulmuley [23, section 7.7], ray-shooting methods can be used to answer
nearest neighbor queries. Using this approach, a data-structure for two-dimensional near-
est neighbor computation can be built in time O(N'*¢), where ¢ is an arbitrarily small
constant. Using the data-structure, a k’th nearest neighbor query can be answered in
expected time O(klog N).

The PDE [1] algorithm uses a nearest neighbor approach to do niching. Non-dominated
solutions are stored in an archive, and when the archive reaches a maximal size archive
solutions are selected based on the distance to their two closest neighbors. Using a
naive approach, this takes time O(M N?), while for two objectives it can be done in time
O(N'*¢log N) using the ray-shooting data-structure.

The SPEA2 [26] algorithm uses a related approach: When the archive becomes too
large, the individuals with the lowest nearest neighbor distances are removed. In case
of a tie, the individual with the closest second-nearest neighbor is removed, etc. Using

a naive implementation this gives an expected time of O(MN?). Considering a two-

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 10

objective problem, using the ray shooting approach of [23] gives an expected processing
time of O(N'™log N), assuming that ties can be broken within a fixed number of nearest-
neighbor queries. However, it is possible to construct degenerate inputs that will result
in a O(N?log N) processing time for this approach. For niching within the population,
SPEA?2 uses an approach based on a k-th nearest neighbor-rule, where k& = v/N. The
algorithm uses tournament selection, and of two solutions with the same strength (non-
dominatedness), the solution with the most distant v/N’th nearest neighbor is preferred.
In the two-dimensional case, the k’th nearest neighbor can be found in time /N log N
assuming that the ray-shooting data-structure has been constructed first. This is much
faster than using the strait-forward approach requiring O(N) time, but since in practice
only few of these calculations may be needed, it is unclear whether the more efficient
approach is really worthwhile.

The SPEA [27] algorithm uses a clustering approach in which the distance between
all individuals in the archive is calculated, using time O(MN?). After the calculation
of distances, each individual is considered a cluster, and the clusters are merged one by
one based on their distances (the two clusters closest to each other are merged) until the
number of clusters is equal to the maximal archive size. The distance between two clusters
containing several solutions is defined to be the average distance between all solution pairs,
one solution from each cluster. A representative solution from each cluster is kept in the
archive, while the rest is removed. It is difficult to improve the run-time complexity of this
approach, even for two objectives. The difficulty stems from the use of average distances
between clusters of multiple solutions. A distance measure of this kind cannot be efficiently
handled by the ray shooting data-structure, and the processing time remains O (M N?),
even for M = 2.

The NSGA-II algorithm uses a much faster niching scheme than the algorithms discussed
above. After non-dominated sorting, each individual is assigned a crowding-distance, and
individuals with high crowding-distances are assumed to reside in sparsely populated areas
and preferred over individuals with low crowding-distances. The crowding distances are
assigned by sorting the population on each objective in turn, and setting the crowding

distance of an individual to the sum of distances along the objective axis to the closest

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 11

individual. Individuals with extreme positions are assigned infinite crowding-distances.
The crowding-distances can be calculated with an O(M N log N) algorithm.

The above algorithms have all used distance measures of various types to achieve diverse
solutions. Another popular approach is dividing the objective space into cells using a
hyper-grid, and simply counting the number of solutions in each cell. Individuals located
in cells with no or few other individuals are assumed to be in sparsely populated areas
and preferred over individuals sharing their cell with many other individuals. In terms
of processing time, this idea can be handled more efficiently than most distance-based
niching methods, for instance the grid-based method used in DMOEA [19] can run in time
O(MN) per generation.

The PESA [8] and PAES [16] algorithms use a closely related approach, but contrary to
DMOEA, they sometimes need to locate the most crowded cell in the hyper-grid. However,
if the hyper-grid is implemented as a quad-tree in which each tree is annotated with the
highest grid-count found below it, locating the most crowded cell can be done in time
O(M), and as for DMOEA the total cost of maintaining the hyper-grid can be linear,
O(M(N + A)) per generation. PAES sometimes recalculates the hyper-grid used. This
happens when the extremal objective values of the archive changes. The O(M (N + A))
processing time assumes that this happens infrequently, otherwise the processing time will
be larger.

Another approach for niching is used in MOGA [13], where phenotypical sharing [3,
section 6.1] is used; individuals closer to each other than a certain distance ogpare get their
fitness reduced. In the strait-forward implementation this will run in time O(MN?) per
generation. The procedure can be optimized by distributing the solutions in a hypergrid
similar to the one used by PAES [16], PESA [8] and DMOEA [19]. When calculating the
sharing function of and individual, only individuals in neighbor cells need to be consid-
ered. If the sharing is successful and only few individuals occupy each cell, the processing
time drops to O(M N), but in the worst case the running time will still be O(M N?) per
generation.

Table IIT summarizes the algorithms and niching methods discussed in this section. The

run-time complexity varies widely for the niching methods, ranging from expensive schemes

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 12

TABLE III

NAIVE AND IMPROVED RUN-TIME COMPLEXITIES FOR NICHING.

Algorithm Naive niching Improved niching Remark

NSGA-II O(MNlogN) -

DMOEA [19] O(MN) -

SPEA [27] O(MN?) -

SPEA2 [26] (M = 2) O(N?) O(N 3 log N) Assuming ties broken in few steps.
SPEA2 [26] (M > 3) O(MN?) -

PDE [1] (M =2) O(N?) O(N'*¢log N)

PDE [1] (M > 3) O(MN?) -

MOGA [13] O(MN?) O(MN) Assuming efficient geometric hashing.
PAES [16] O(M(N + A)) - Assuming infrequent recalculation.
PESA [8] O(M(N + A)) -

proportional to N? to much cheaper methods with linear running times. Currently, there
is little experimental evidence to support the use of the expensive O(N?) schemes over the

cheaper ones [10], [27].

D. Total run-time complexities

Table IV sums up the run-time complexities of the algorithms treated in this section.
In the complexities given, we are assuming M to be fixed. The table reveals that the
directions given in the last three subsections can be used to improve the overall run-
time complexities of the NSGA-II, DMOEA, MOGA, PESA, PAES and the VLSI-GA.
Additionally, the SPEA2 and PDE algorithms can be improved for two objectives.

III. IMPROVING THE RUN-TIME COMPLEXITY OF THE NSGA-II

The rest of the paper is devoted to improving the run-time complexity of the NSGA-
II. The complexity of the algorithm as described in [10] is O(GM N?), but this section
will demonstrate how to reduce this to O(GNlog™~' N). This is achieved by a new and
faster algorithm for non-dominated sorting. The next subsection introduces the NSGA-II.
Section III-B describes the improved non-dominated sorting algorithm, while the experi-
ments in section III-C demonstrate that the proposed algorithm can be much faster than

the previous one.

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 13

TABLE IV

NAIVE AND IMPROVED TOTAL RUN-TIME COMPLEXITIES FOR THE ALGORITHMS..

Algorithm Naive run-time Improved run-time Improvement
NSGA-II O(GMN?) O(GNlog™~1 N) fitness
DMOEA [19] O(GMN?) O(GNlog" ' N) fitness

SPEA [27] O(GM (N + A)?) - fitness+archive
SPEA2[26] (M =2) O(G(N +A)2)  O((N +A)% log(N + A)) fitness-+archive-+niching
SPEA2 [26] (M >3) O(GM(N + A)?) - fitness+archive
PDE [1] (M = 2) O(MN?) O(GN'*¢log N) fitness+niching
PDE [1] (M > 3) O(MN?) - fitness

MOGA [13] O(MN?) - niching

PAES [16] O(GMNA) O(GNlogM ™! Aloglog A) archive t
PESA [8] O(GMNA) O(GN log™ ™ Aloglog A)  archive
VLSI-GA [24] O(GMN?) O(GNlog"~' N) fitness

*: Assuming ties broken in few steps in niching. }: Assuming infrequent recalculation of hypergrid.

A. A brief description of the NSGA-II

Pseudo-code for the NSGA-II is given in Fig. 1. The algorithm is based on the idea of
transforming the M objectives to a single fitness measure by the creation of a number of
fronts, sorted according to non-domination. During fitness assignment, the first front F;
is created as the set of solutions not dominated by any solutions in the population. These
solutions are given the highest fitness and are temporarily removed from the population.
After this, a second non-dominated front F; consisting of the solutions that are now non-
dominated is built, assigned the second-highest fitness etc. This is repeated until all of
the solutions have been assigned a fitness. After each front has been created, its members
are assigned crowding distances (normalized distance to closest neighbors in the front in
objective space) later to be used for niching.

Selection is performed in tournaments of size two: The solution with the lowest front
number wins. If the solutions come from the same front, the solution with the highest
crowding distance wins, since a high distance to the closest neighbors indicates that the
solution is located at a sparsely populated part of the front. Reproduction occurs in gen-

erations. In each generation N new individuals are generated, where N is the population

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 14

NSGA-II() {
generate F, at random.
set Py = (Fi,F,,...) =non-dominated-sort (Fy)
for all F, € B,
crowding-distance-assignment (F;)
set t=0
while(not done) {
generate child population (); from P,
set Rt = Pt U Qt
set F = (F1,F,,...) =non-dominated-sort (R;)
set Py =10
set 1 =1
while |Ppy|+ [F[ <N {
crowding-distance-assignment (F;)
set Py =P UF
set 1 =1+1
}
sort JF; on crowding distances
set P = Py U F[L: (N — [Pra])]
set t=t+1

}

return F;

}

Fig. 1. The NSGA-II algorithm.

size. Of the 2N individuals, the N best individuals are kept for the next generation. In
this way a huge elite can be kept from generation to generation.

The processing time used by the non-dominated-sort procedure as suggested in [10]
is O(M N?), since the procedure involves comparing the objective values of every solution
to the objective values of all other solutions in the population. The time used by the
crowding-distance-assignment procedure is O(M N log N), since the procedure involves
sorting the elements in fronts F; one time for every objective, and since the front size is
only limited by N. The time used by the rest of the steps in the algorithm can be
expected to be in O(N), and the overall running time of the algorithm is dominated by

non-dominated-sort, and runs in time O(GM N?), where G is the number of generations.

B. A faster way to do non-dominated sorting

From the arguments above we realize that if a faster way to do non-dominated sorting
can be found, the run-time complexity of the NSGA-II can be reduced. The following

subsections will present a sweep line algorithm for the two-objective case, and a divide-

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 15

non-dom-sort-on-two-objectives() {
sort the solutions to a sequence si,S2...Sy satisfying
i < j=(2si) <@i(s)) Vo (@1(s0) = 21(s5) A @2(si) < 22(s5))

set Fy = {s1}

set A=1

for(1=2; i< N; i=i+1) {

/* Invariant: F ...F4 hold a non-dominated sorting of the solutions sy ...s; 1 */

/* The solutions in Fj ... F4 are not dominated by any of the solutions s;...sy. */
find lowest b such that s; £ F
set F=FU {SZ}

} else {
set A=A+1
set Fa = {si}
}
}
return Fi,...,F4

Fig. 2. Non-dominated sorting algorithm for two objectives.
and-conquer algorithm for three or more objectives.

B.1 Non-dominated sorting on two objectives

Kung et al. [18] present a simple algorithm for locating the non-dominated set of a set
of points in R2. This algorithm runs in time O(Nlog N). The algorithm presented in
[18] only extracts the first non-dominated front Fj, but it is not difficult to modify it to
extract all of the fronts F = (Fy, Fo, .. .).

In the following the notation s; < s; is used to indicate that s; is dominated by s;, and
s; £ s; to indicate that s; is not dominated by s;. The notation s < F'is used to indicate
that the solution s is dominated by some solution in the set F'. We are assuming that all
objectives are to be minimized. The algorithm for non-dominated sorting in two objectives
is given in Fig. 2. The idea in the algorithm is to construct all of the fronts simultaneously
by sweeping the solutions one by one in a way that guarantees that if solution s; is swept
after solution s;, we know that s; cannot dominate s;. This is achieved by presorting all
of the solutions on z; (and z, if two solutions share identical ; values), so that s; £ s,
will always hold if 7 < j.

After sorting the solutions, they are considered one by one. The solution s; is guaranteed

to be in the first front (since it cannot be dominated by any of the solutions s, ...sy), S0

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 16

we set F; = {s1}. The variable A holds the current number of fronts, and is initialized
to 1. In the main loop of the algorithm, we get the next solution s;, and check if it is
dominated by any solution in the worst front seen so far, F4. If this is not the case, s;
belongs to one of the fronts F; ... F4, so we locate the proper front F; by binary search in
Fi...F4 and insert s;. If s; was dominated by F4, a new front containing s; is created.
The fronts F;) can be implemented as lists. If we implement the F, = F, U {s;}
operation by simply appending s; to the list, we know that each list F{;) will hold solutions
in increasing order of z;. Since the solutions in F{;) do not dominate each other, they
must also hold solutions in decreasing order of x5. As the solutions have been presorted
according to x;, we know that the solution s; can never have a smaller x; value than any
of the solutions in F; ... F4. This means that in order to check the condition s; < F;, we
simply need to compare z,(s;) to the x5 value of the last element of F(;). A run of the

two-objective algorithm is illustrated in Fig. 3.

A Ex swep
2 N X
F X
o X
‘ x-i
Komimimimi- | —
Xoommes i X
XKoo
| Xl>

Fig. 3. Tllustration of the two-objective algorithm.

In order to do the binary search for F,, we need to do at most O(log V) checks of the
s; < JF; condition. Since this check and all other operations on F; can be done in constant
time, the total running time of the algorithm becomes O(N log N), which is clearly optimal

since ordinary sorting is a special case of two-objective non-dominated sorting.

B.2 A divide-and-conquer algorithm for M > 3

A divide-and-conquer algorithm for identifying the first non-dominated front of a M-

objective problem is presented by Kung et al. in [18]. A less complex presentation of

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 17

the same algorithm is given in [4]. This algorithm can be used to identify all of the
non-dominated fronts by repeatedly finding and removing the solutions that are currently
non-dominated. In the best case, in which all of the solutions are non-dominated, this
leads to a running time of O(N log™ =2 N). However, the worst case performance of such
an approach could be O(N? log" 2 N ), since if there is only one solution in each non-
dominated front, the O(N log” 2 N ) algorithm will have to be applied N times. Thus, a
more clever approach is needed.

The algorithm presented here is related to Kung et al.’s algorithm, but finds all of the
fronts in one run. The algorithm is shown in Fig. 4. The algorithm as presented in the
figure assumes that no solutions share identical values for any coordinates, but removing
this assumption is not difficult. The basic idea is to assign to each solution s € S an
additional value f[s]. This value holds the front-number of s for the solutions s has been
compared to so far. Thus, the main procedure non-dominated-sort sets f[s] = 1 for all
s € S (since in the beginning no solutions have been compared to any other solutions,
so all solutions are assumed to belong to the first front), and calls ND-helper A. When
ND-helper_A returns, the solutions have been sorted, and the front numbers are in f. The
fronts Fi, Fs,... are made based on f and returned.

The recursive procedures ND-helper_A and ND-helper_B are where the real sorting takes
place. ND-helper_A takes as arguments a set of solutions S and a number of objectives
M, and creates a non-dominated sorting of S based on the first M objectives x...xz.
The front numbers of the solutions are stored in the f[s] data structure. If the number of
solutions is two (line marked [Q?j) the two solutions are compared to each other. If s; is
found to dominate so, then f[so] is set to max(f[ss], f[s1] + 1). Conversely, if s is found
to dominate sy, then f[s] is set to max(f[si], f[s2] + 1).

If the number of solutions is higher than two, ND-helper_A splits the problem into
smaller subproblems and solves them recursively. This is done by splitting S into two
equally sized sets L and H around the median of the M objective, xf\’/}”t. The (L,H)=

split (S ,x%}lit , M) call of the split routine puts all elements of S with an x,, value lower

or equal to z*¥" into L and all elements with a higher z,, value into H. No element of

H can ever dominate an element in L (since s; € LA so € H = xp(81) < zp(82)), and

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003

18

non-dominated-sort (S, M) {
foreach (s € S) set f[s|]=1
ND-helper A(S, M)
set F1=0,F=10,.
foreach (s € S) set .7-"f Frg U {s}
return(Fy, Fo,...)

}

/* This procedure creates a non-dominated sorting of S on the first M
objectives. The frontnumbers in f[] are taken as a basis for the sorting */
ND-helper A(S,M) {
if (|S]| =2) <<sorting s; and sy:update f[si] and f[so] >> [Q?j
else if (|S|>2) {
set 23" =median(wa(s1) ... zam(sn)))
set (L,H)= split(S, xsp’” M)
ND-helper A(L,M)
ND-helper B(L,H ,M — 1)
ND-helper_A(H , M)

}
}

/* This procedure assigns front numbers to the solutions in
H according to the solutions in L. The solutions in L are
assumed to have the correct front numbers in f[] already. */
ND-helper B(L,H,M) {
if (|L|=1)

<<go through H, comparing to [;:update f[h] for he€ H >> [&

else if (|H|=1)
<<go through L, comparing to h;:update f[hi] >> [&j
else if (M =2) <<do 2D sorting of H according to L:
update f[h] for h€e H >> [Qj
else {
if (max(za(ly)...2m(lg))) < min(za(ha) .. 2 (hym)))
ND-helper B(L,H ,M — 1)
if (|L| > |H|]) set z}}"=median(zy(l)...zm ()
else set 2" =median(zy (hy) .. -y (hym))
set (Ly,L)= split(L,zP" M)
set (H,,H,)= split(H, x”’“t M)
ND-helper B(L,,H;,M)
ND—helper_B(L1 ,H2 ,M — 1)
ND—helper_B (L2 , H2 , M)

~

o

Fig. 4. Recursive non-dominated sorting algorithm for M > 3.

March 6, 2003

DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 19

therefore the elements in L can be sorted according to non-domination without considering
H. This is done in the recursive call ND-helper A(L,M). A solution in H may or may
not be dominated by solutions in L, so in order to get the proper front numbers of H,
L needs to be considered. Because of the construction of L and H, a solution s; € H is
dominated by a solution s, € L iff s, dominates s; in the first M — 1 objectives. The call
to ND-helper B(L,H ,M — 1) compares the solutions in H to the solutions in L for the
remaining M — 1 objectives, and if a solution s; € H is found to be dominated by s, € L,
then its front-number f[s;] is set to max(f[s1], f[s2] + 1). After the call to ND-helper_ B,
the front numbers assigned to the solutions in H would be correct if they were only to
be assigned front numbers according to the solutions in L. In order to complete the non-
dominated sorting, the solutions in H need to be compared to each other. The sorting is
finished by recursively calling ND-helper_A(H ,M), creating a non-dominated sorting of
the solutions in H while respecting the front-numbers assigned earlier in the algorithm.
The procedure ND-helper B works in a way similar to ND-helper_A, but instead of
sorting a set by comparing it to itself, it takes two sets L and H as arguments, and sorts
H by comparing the solutions in H to the solutions in L. The solutions in H are not
compared to each other, since this is supposed to happen after ND-helper_ B terminates.
The solutions in L are not compared to each other, since they already have the right front
numbers. If there is only one solution in L or one solution in H (lines marked [&j), all of
the solutions are compared to the single solution one by one using the first M objectives.
If s, € H is dominated by s; € L, it is assigned the front-number max(f[so], f[s1] + 1).
If the problem has two objectives (line marked [Qj), a sweep-line procedure akin to
the algorithm of Fig. 2 is used to assign front-numbers to H according to dominance by
solutions in L. This is done by building fronts (“stairs”) from the solutions in L while
assigning new front-numbers to solutions in H:; if s; € L dominates s € H then the
front number of so is set to max(f|[sq], f[s1] + 1). Since the stairs must respect the front-
numbers previously assigned to the solutions in L, “holes” will sometimes appear in the
front-numbers represented by the stairs (e.g., front-numbers 1, 2 and 4 may be present in
the stairs, while 3 is missing). Additionally, in some cases a stair may be discontinued, if a

stair representing a higher front number reaches a lower zo-value. A run of the algorithm is

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 20

illustrated on Fig. 5. The solutions from L have been annotated with their front-numbers,
while the solutions from H have been annotated with their front-numbers before and after
the sweep. Note that the stair corresponding to JF; is discontinued when the zs-value of
F, drops below the xo-value of F,. The F,-stair later reappears because a solution with

an even lower x5 value belonging to J; is found.

X solutionsfromL % solutionsfromH

X Sweep
Faemmme * |
4 * 3-5 |
P 23 Bs

29 p S o
D |
4 |

Y S I S
Komimmm e |
1 |

X
B

Fig. 5. Illustration of the two-objective algorithm used in ND-helper B.

If there are several solutions in both sets and the number of objectives is higher than 2,
recursive calls may be needed. If max(zar(l1) ... 2am(lz))) < min(zar(he) - .. 2 (hym))), ob-
jective M can be effectively ignored since all of the solutions in L have lower x,; objectives
than the solutions in H. We simply call ND-helper B(L,H ,M — 1) recursively.

If min(zar(ly) ... om () < max(zar(hi) ... 2a(ha))) does not hold we do not need to
do anything; the solutions in H all have lower z,; values than the solutions in L; they
cannot be dominated by solutions in H. If the x;, values of L and H form overlap-
ping intervals, the sets are split into sets L, Ly, H; and H; around the median of the
xp-coordinate. Recursive calls of ND-helper_B are made to assign front-numbers to H;
according to Li, Hy according to L; (only M — 1 objectives need to be considered since
zam(l) < zp(h) for I € Ly, h € Hy) and Hy according to Ly. Note that we do not need
to assign front-numbers to H; according to Lo, since by construction the solutions in H;
cannot be dominated by solutions in L.

The correctness of the algorithm follows from the fact that whenever a solution s,
is assigned a front-number by comparing it to another solution s;, the solution s, has

already been assigned the correct front-number. The recursive calls of the algorithms

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 21

make sure that all solutions are assigned front-numbers according to all other solutions.
Fig. 6 illustrates the algorithm for a three-objective problem.

divide problem

original problem helper A
. . | . |
. ! . !
I 1
. . T
A . divide P . N
o) . . | o .
S —— ! ! ——
~ | le !
W Lo ____ Lo Lo R [ I
obj3
solve recursively "merge solutions” solve recursively
helper_A helper B helper_A problem solved
o, ~ T Ry 3 o
' g S LR !
T . ' T N 0 R S,
! » R . PN _ ! (SN
N + IS = TN
Vi o-— . . " \.‘ A , JT
[ O b N A 78
/L,'\ ,,,,,,, R | S R A /;,\,v_,,,,,/;,,;\ ,,,,, ‘.,T,,k,,
’ . ’ ’ 1%
’ ObJ 1 / ’

Fig. 6. Illustration of the multi-objective sorting algorithm on a three-objective problem. Solutions

belonging to the same front have been connected by a dashed line.

As presented in Fig. 4, the algorithm assumes that no solutions share identical objective
values. Removing this assumption is strait-forward; all we need to do is check if all x,,
values of a call to the ND-helper procedures are identical, in which case the objective
M can effectively be ignored in the present call. This means that a sweep-line algorithm
has to be added to the ND-helper_A procedure for the M = 2 case. Besides, a number
of special cases have to be handled, e.g. in the split procedure. The analysis and time
complexity derived below can be shown to hold also for this case.

We now investigate the time-complexity of the algorithm. When using the big-oh nota-
tion we will assume M to be fixed. We start by considering the procedure ND-helper_B.

If we denote by L and H the sizes of inputs, the recursion equations for the running time

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 22
become

Tp(L,H,2) € O((L+ H)log(L+ H))
Ts(1,H,M) € O((L+H)M)
Ts(L,1,M) € O((L+H)M)
Tp(L,H,M) = Tg(Li,Hy, M)+ Tg(Ly, Hyy M) + Tg(L1, Hyy M — 1) + Tupase (L, H),

where Ly + Hy < 3(L+ H), Ly + Hy < 3(L+ H), L1 + Ly = L and H, + H, = H.
Tspris (L, H) is the time needed to find the median and call split on L and H. Using the
algorithm of Blum et al. [6] this can be achieved in time O(L + H). Recurrence relations
similar to the one above were investigated by Monier in [21]. According to his results, Tz
is bounded by O(N log" ™" N), where N = L + H.

For ND-helper_A, the recursion relation is

Ts(2, M) € O(M)
To(N,M) = 2T4(AN, M)+ Tp(N,M — 1) + Tup1:(N)

The total running time becomes T4(N, M) € O(N log™ " N). Note that the time com-
plexity of this algorithm is higher than the complexity of the algorithm for identifying the
first non-dominated front presented in [18], [4] by a factor of log N. The reason for this
is the existence of an O(N log N) algorithm for identifying the maxima of a three objec-
tive problem. We have not been able to find a O(N log N) algorithm for non-dominated
sorting when M = 3, but if such an algorithm can be found, it can be used as a base case
in ND-helper_A and ND-helper_B, lowering the processing times by a factor of log N for
M > 3.

When incorporating the fast non-dominated sorting algorithm into the NSGA-II, the

processing time of the entire algorithm becomes
Txsca-u(N, M) € O(G(MNlog N + Nlog" ™' N)) = O(G Nlog" "' N).

The M N log N term comes from the crowding-distance-assignment taking place in the
main loop.
Considering the storage complexity of the new sorting algorithm, recursion equations

related to the ones above can be stated. Solving these leads to a storage complexity

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 23

of O(MN) for the entire sorting algorithm. This is a significant improvement over the
O(MN + N?) storage required by the procedure suggested in [10].

Kung et al. [18] present a lower bound on the problem of identifying the non-dominated
set. According to them, the processing time is bounded from below by O(N log N), and
it is trivial to see that this bound must also hold for non-dominated sorting. The lower
bound indicates that for the case M = 2 the algorithm presented in this paper is optimal,

while for M > 3 this may not be the case.

C. Ezxperiments

In order to test the improvement of running time when using the new non-dominated
sorting algorithm, the NSGA-II was implemented in two versions, one using the non-
dominated sorting algorithm proposed in [10], and one using the faster algorithm of this
paper. Both algorithms were implemented in C++, and experiments were carried out on a
450MHz pentium III computer running Linux.

The algorithms were tested on two problems:

e The DTLZ1 benchmark from [11] was used, since it is a standard multi-objective
benchmark and since it is scalable (any number of objectives can be used). Besides,
phenotype construction and genetic operators take very little time in this problem, mean-
ing that a substantial speedup should be possible by faster non-dominated sorting. The

problem is defined as follows:

Minimize  fi(x) =  3z122...2m-1(1 + g(xnm)),

fo(x) = %xlxg...(l —zp1)(1 4 g(xn)),

fu—i(x) = gai(1—22)(1 + g(xm)),

where 0<z; <1, fort=1,2,...,n

and g(xM) = 100 |XM| + Z (.731 — %)2 - COS(QOW(.TZ' - %))

TiEX M

The number of decision variables is |x| = M + k — 1, where £ is a problem parameter. The

notation x,, is used to denote the last k& elements of x, i.e., Xpr = (Tar, Tara1s- -« s Trrrk—1)-

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 24

The Pareto-optimal solution corresponds to x,; = 0 with objective function values on the
hyperplane ZTAT/LIZI fm = 0.5. As suggested in [11], £ was set to 5 in the experiments.

e In order to test the algorithm on a problem for which phenotype construction and
genetic operators take significant amounts of processing time, a job shop scheduling prob-
lem (JSSP) was transformed into a multi-objective problem. The job shop problem is a
combinatorial optimization problem in which n jobs and m machines are given. Each job
consists of a sequence of operations, and each operation is to be processed at a specific
machine for a specific processing time. Solving the problem implies deciding when to
process each of the operations while respecting a number of constraints: i) the processing
sequences of the jobs must be respected, 7i) each machine can process only one operation
at a time, ¢3i) each job can have only one operation processed at a time, 7v) there can be
no preemption. The objectives used in the experiments were the end-of-processing times
for the last operation of each job. A comprehensive description of the JSSP is beyond the
scope of this paper, the interested reader is referred to [5]. The problem instance £t20

[12] with 20 jobs and 5 machines was used in the experiments.

C.1 The DTLZ1 problem

The algorithms used a binary representation scheme and except for the number of fitness
evaluations and population size, the operators and parameter settings from [10] were used.
The problem was used with M = 2,3,5 and 8 objectives, and 13 population sizes in the
range 100 ... 2000. For each combination of M and population size, 10 runs were made
with the NSGA-II program using the ordinary and the improved non-dominated sorting
algorithms, and the average processing time in CPU-seconds was calculated.

The results for two and eight objectives are graphically displayed on Fig. 7. There
are three graphs in both diagrams: Two graphs showing the processing time for the
improved and the ordinary algorithms, and one showing the processing time spent on
other things than non-dominated sorting in both algorithms. The plots have been drawn
in logarithmic scales and show the average processing time as a function of population
size. Plots equivalent of the plots in Fig. 7 were made for M = 3 and M = 5. The plot for
M = 3 was similar to the plot for M = 2, but for the improved algorithm the processing
times were a little higher. For M = 5 the plot was similar to the plot for M = 8, but the

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS

2 objectives

March 6, 2003

8 objectives

25

1000 g - ; = 1000 g . : :
. improved —+— E improved —+——

@ ordinary ---x--- s ordinary ---x--- o

K] baseline ---x--- ® baseline ---x--- X

» 100 g 100 L 2

(o) [o)) 3

2 o :

8 2 |

s 10 S 10k

b H E o E

5t A

= | D i « *x**

o a o K

(@] 1 E @) l 2 % - K _
100 1000

population size (logscale) population size (logscale)

Fig. 7. Processing times of the improved and ordinary algorithms on the DTLZ1 problem for 2 and 8
objectives. The graph marked ’baseline’ shows the time not spent on non-dominated sorting in both

algorithms.

processing times of the improved algorithm were somewhat lower.

Judging from the plots, the relative performance of the two algorithms is highly depen-
dent on the number of objectives. For two objectives, the improved algorithm is much
faster than the ordinary algorithm even for a small population size (for N = 100, the
processing times are 0.4 and 1.2 seconds respectively). As the population size increases,
the difference between the two algorithms becomes larger and larger; for N = 2000, the
improved algorithm is 48 times faster than the ordinary algorithm.

For eight objectives the improved algorithm is slower than the ordinary algorithm for
population sizes smaller than N = 300. For a population size of N = 100, the improved
algorithm spends roughly 60% more processing time than the ordinary algorithm. For large
population sizes, the improved algorithm is much faster than the ordinary algorithm; for
a population size of N = 1000 the improved algorithm is twice as fast as the ordinary
algorithm, and for larger population sizes the difference is even bigger.

In practical applications the inferior performance of the improved algorithm for many
objectives and small population sizes is not important, since for many objectives a large
population size is needed. In order to have sufficient selection pressure in the algorithm, a
certain proportion of the population needs be dominated. If the entire population (or close
to it) is non-dominated the algorithm has no way to distinguish good solutions from bad

ones, and the search will stagnate. Let us follow Deb [9, section 8.8.2], and assume that

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 26

at most 30% of the population should be non-dominated. Assuming randomly distributed
objectives, for a six-objective problem, we need a population size of almost 800. For a
seven objective problem, the population size should be in the 1500-2000 range [9, figure
276].

The plots of Fig. 7 all seem linear, and this is also the case for M = 3 and M = 5. Since
the plots are log-scale, this indicates that the processing times follow a 7' = SN“ relation.
The o parameters were calculated using linear regression, and this revealed that for the
ordinary algorithm « was very close to 2 in all of the experiments. This confirms the
O(N?) processing time of this algorithm. For the improved algorithm, a ranged between
1.1 (M =2) and 1.4 (M = 8), confirming that the asymptotic run-time of this algorithm
is indeed better than for the ordinary algorithm.

The speedup of the fast algorithm over the slow algorithm has been plotted in Fig. 8.
The speedup is defined as the processing time of the ordinary algorithm divided by the
processing time of the improved algorithm. As expected the largest speedup is achieved
for M = 2, while the speedup becomes smaller as M increases, but for large population

sizes the speedup is substantial, regardless of the number of objectives.

100 g

20bj —+——

[y
o

speedup (logscale)

100 ] ] 1000
population size (logscale)

Fig. 8. The speedup achieved by the improved algorithm as a function of population size for 2,3,5 and 8
objectives for the DTLZ1 problem.

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 27

C.2 The job shop problem

The representation, decoding, genetic operators and parameters were identical to the
algorithm used in [15]. Since these details are not important for what follows, the are left
out for brevity. Phenotype construction and genetic operators are much slower for this
problem than they were for the DTLZ1 problem. For the DTLZ1 problem, constructing
a new genotype and phenotype took in the range 2 x 107> to 5 * 10~ CPU seconds. For
the JSSP, it took almost ten times longer.

The processing time of the ordinary and the improved algorithm have been plotted
in Fig. 9. The figure indicates that if non-dominated sorting is not the bottleneck in the
algorithm, only little can be gained by using the improved algorithm. For small population
sizes, genetic operators and phenotype construction use almost all the processing time
spent by the algorithms (as indicated by the graph marked ’'baseline’ on Fig. 9), and the
speedup offered by the improved algorithm is negligible. For N = 100, both programs
spend only 15% of their processing time doing non-dominated sorting. However, for larger
population sizes the non-dominated sorting begins taking substantial processing time, and

for a population size of 2000 a speedup of 4.3 is reached.

1000 g

improved —+— ,
ordinary ---x--- X
baseline ------ N

[y

o

o
T

CPU seconds (logscale)

[EY
o
T

100 _ ) 1000
population size (logscale)

Fig. 9. The processing times of the ordinary and improved algorithm on the job shop problem. The

graph marked ’baseline’ shows the time not spent on non-dominated sorting in both algorithms.

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 28

C.3 Program availability

The C++ source of the program used in the experiments is available for download at

http://www.daimi.au.dk/“mjensen/.

IV. CONCLUSION

This paper has treated the issue of run-time complexity in MOEAs. Most MOEAs
published so far have running times bounded only by O(GM N?) or O(GM N A), where
(G is the number of generations, M is the number of objectives, N is the population size
and A is the size of the archive. In some applications using an algorithm with a large
population size is desirable, but the N? and NA terms in the algorithm processing times
can lead to very high computational demands for large population sizes.

We have developed a new algorithm for non-dominated sorting, which is used for fitness
assignment in a number of MOEAs including the NSGA-II. This algorithm runs in time
O(NlogM™~' N), and improves the run-time complexity of the NSGA-II from O(GM N?)
to O(GNlog™ ™' N). Experiments with the NSGA-II using the previous and the new
non-dominated sorting algorithms demonstrated that for problems in which phenotype
construction and genetic operators are fast, the speedup achieved by the new algorithm
can be very substantial, especially for large population sizes and few objectives. For
problems where phenotype construction and genetic operators take more processing time,
the new algorithm can still save substantial amounts of processing time, provided that the
population is large. The new implementation of the NSGA-II is available for download.

A number of algorithms and data-structures known from computer science can be used
to decrease the computational demand of a number of MOEAs. For MOEASs using identifi-
cation of non-dominated solutions for fitness assignment, the running time can be improved
to O(GN log"~2 N), while for MOEAs using dominance counting the improved running
time becomes O(GN log™ ' N).

Archive-based MOEAs, can be improved by implementing the archive using a data-
structure for dynamic orthogonal range-searching. If a dynamic range tree is used, this can
improve the running time of certain MOEAs from O(GM N A) to O(GN log" ! Aloglog A).

Some MOEAs use niching mechanisms with running times proportional to N2. These

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 29

mechanisms are difficult to improve, but for mechanisms relying on nearest neighbor cal-
3 .
culations the case of two objectives can be improved to O(/N2 log N), and in certain cases

hypergrids can be used to speed up the calculation of sharing-functions.

ACKNOWLEDGEMENT

I wish to thank the anonymous reviewers for helpful suggestions and my coworkers at
EVALife for help in revising the paper. I also thank Gerth Stglting Brodal from BRICS
for a helpful discussion.

This work was partly supported by the Danish Technical Research Council, grant no.
26-02-0140.

REFERENCES

[1] H. A. Abbass, R. Sarker, and C. Newton. PDE: A Pareto-frontier Differential Evolution Approach for Multi-
objective Optimization Problems. In Proceedings of CEC 2001, volume 2, pages 971-976, 2001.

[2] R. Balling and S. Wilson. The Maximin Fitness Function for Multi-objective Evolutionary Computation:
Application to City Planning. In L. Spector et al., editors, Proceedings of GECCO 2001, pages 1079-1084.
Morgan Kaufmann, 2001.

[3] T. Bick, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Computation. IOP Publishing
and Oxford University Press, 1997.

[4] J. L. Bentley. Multidimensional divide-and-conquer. Communications of the ACM, 23(4):214-229, 1980.

[6] J. Blazewicz, K. H. Ecker, G. Schmidt, and J. Weglarz. Scheduling in Computer and Manufacturing Systems.
Springer, 1994.

[6] M. Blum, R. W. Floyd, V. Pratt, R. Rivest, and R. Tarjan. Time bound for selection. Journal of Comput.
Syst. Sci., 7:448-461, 1973.

[7] C. A. C. Coello. A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques.
Knowledge and Information Systems, 1(3):269-308, 1999.

[8] D. W. Corne, J. D. Knowles, and M. J. Oates. The Pareto Envelope-Based Selection Algorithm for Mul-
tiobjective Optimization. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and
H. Schwefel, editors, Parallel Problem Solving from Nature - PPSN VI proceedings, LNCS vol. 1917, pages
839-848. Springer, 2000.

[9] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley & sons, 2001.

[10] K. Deb, A. Pratab, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjective Genetic Algorithm:
NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182-197, April 2002.

[11] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Multi-Objective Optimization Test Problems. In
Proceedings of the 2002 IEEE Congress on Evolutionary Computation (CEC 2002), 2002.

[12] H. Fisher and G. L. Thompson. Probabilistic learning combinations of local job-shop scheduling rules. In
J. F. Muth and G. L. Thompson, editors, Industrial Scheduling, pages 225-251. Prentice Hall, 1963.

[13] C. M. Fonseca and P. J. Fleming. Genetic Algorithms for Multiobjective Optimization: Formulation, Discus-

March 6, 2003 DRAFT



MIKKEL T. JENSEN: REDUCING THE RUN-TIME COMPLEXITY OF MOEAS March 6, 2003 30

[14]

[15]

[16]

[17]

18]

[19]

[20]
(21]

(22]

23]

[24]

25]

[26]

(27]

sion and Generalization. In S. Forrest, editor, Proceedings of the fifth International Conference on Genetic
Algorithms, 1993.

J. Horn, N. Nafpliotis, and D. E. Goldberg. A Niched Pareto Genetic Algorithm for Multiobjective Optimiza-
tion. In In Proceedings of the First IEEE Conference on Evolutionary Computation, volume 1, pages 82-87,
1994.

M. T. Jensen. Guiding Single-Objective Optimization using Multi-Objective Methods. In Proceedings of
EvoCOP 2003, 2003.

J. D. Knowles and D. W. Corne. Approximating the Nondominated Front Using the Pareto Archived Evo-
lution Strategy. Ewolutionary Computation, 8(2):149-172, 2000.

Joshua Knowles and David Corne. M-PAES: A Memetic Algorithm for Multiobjective Optimization. In 2000
Congress on Evolutionary Computation, volume 1, pages 325-332, 2000.

H. T. Kung, R. Luccio, and F. P. Preparata. On Finding the Maxima of a Set of Vectors. Journal of the
Association for Computing Machinery, 22(4):469-476, 1975.

H. Lu and G. G. Yen. Dynamic Population size in Multiobjective Evolutionary Algorithms. In Proceedings
of CEC 2002, volume 2, pages 1648-1653, 2002.

K. Mehlhorn and S. N&her. Dynamic Fractional Cascading. Algorithmica, 5:215-241, 1990.

L. Monier. Combinatorial Solutions of Multidimensional Divide-and-Conquer Recurrences. Journal of Algo-
rithms, 1:60-74, 1980.

S. Mostaghim, J. Teich, and A. Tyagi. Comparison of Data Structures for Storing Pareto-sets in MOEAs. In
Proceedings of the 2002 Congress on Evolutionary Computation, volume 1, pages 843-848. IEEE, 2002.

K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice-Hall,
1994.

R. Thomson and T. Arslan. An Evolutionary Algorithm for the Multi-objective Optimisation of VLSI Prim-
itive Operator Filters. In Proceedings of the 2002 Congress on Evolutionary Computation, volume 1, pages
37-42. IEEE, 2002.

E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results.
Evolutionary Computation, 8(2):173-195, 2000.

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength Pareto evolutionary algorithm for
multiobjective optimization. In K. C. Giannakoglou et al., editors, EUROGEN 2001 - Evolutionary Methods
for Design, Optimisation and Control with Applications to Industrial Problems, pages 95-100, 2001.

E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative Case study and the
Strength Pareto Approach. IEEE Transactions on Evolutionary Computation, 3(4):257-271, November 1999.

March 6, 2003 DRAFT



